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ABSTRACT

In recent years, the amplitude of matter fluctuations inferred from low-redshift probes has been found to be generally lower than
the value derived from cosmic microwave background (CMB) observations in the ΛCDM model. This tension has been exemplified
by Sunyaev-Zel’dovich and X-ray cluster counts which, when using their Planck standard cluster mass calibration, yield a value
of σ8, appreciably lower than estimations based on the latest Planck CMB measurements. In this work we examine whether non-
minimal neutrino masses can alleviate this tension substantially. We used the cluster X-ray temperature distribution function derived
from a flux-limited sample of local X-ray clusters, combined with Planck CMB measurements. These datasets were compared to
ΛCDM predictions based on recent mass function, adapted to account for the effects of massive neutrinos. Treating the clusters mass
calibration as a free parameter, we examined whether the data favours neutrino masses appreciably higher than the minimal 0.06 eV
value. Using Markov chain Monte Carlo methods, we found no significant correlation between the mass calibration of clusters and
the sum of neutrino masses, meaning that massive neutrinos do not noticeably alleviate the above-mentioned Planck CMB–clusters
tension. The addition of other datasets (baryon acoustic oscillations and Ly-α) reinforces those conclusions. As an alternative possible
solution to the tension, we introduced a simple, phenomenological modification of gravity by letting the growth index γ vary as
an additional free parameter. We find that the cluster mass calibration is robustly correlated with the γ parameter, insensitively to
the presence of massive neutrinos or/and additional data used. We conclude that the standard Planck mass calibration of clusters, if
consolidated, would represent evidence for new physics beyond ΛCDM with massive neutrinos.
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1. Introduction

The accumulation of high-quality data over the last three decades
allows us now to consider cosmology as a precision science
(Smoot et al. 1992; Riess et al. 1998; Perlmutter et al. 1999;
Eisenstein et al. 2005; Bennett et al. 2013; Betoule et al. 2014;
Alam et al. 2017; Planck Collaboration VI 2018). The standard
model of cosmology, the Λ cold dark matter (ΛCDM) paradigm,
successfully reproduces the vast majority of those observations
(Tegmark et al. 2004; Kowalski et al. 2008; Blanchard 2010) and
the values of its associated cosmological parameters are now
very well constrained (Planck Collaboration XIII 2016). The
ΛCDM model succeeds not only in explaining the observed
properties of our present Universe (supernovae, baryon acous-
tic oscillations – BAO) and its early stages (cosmic microwave
background – CMB – fluctuations)) beyond the standard Big
Bang picture (expansion, CMB spectrum, Big Bang nucleosyn-
thesis) but also in predicting some of these specific properties
(Blanchard et al. 2003). However, recent results revealed some
tensions between this standard theory and observables of the
late Universe. One particular result has attracted a lot of atten-
tion with the first data release of the Planck satellite: the mea-
surement of the abundance of galaxy clusters detected through
their imprint on the CMB by the Sunyaev-Zel’dovich (SZ)
effect (Planck Collaboration XX 2014). Taken at face value, the
observed SZ-cluster number counts – using a specific calibra-
tion of cluster masses – are significantly lower than predicted
by the ΛCDM model when using the cosmological parame-

ters derived from CMB data. This leads to an appreciable dif-
ference in the derived value of the σ8 parameter, which char-
acterizes the current amplitude of matter fluctuations. Several
local probes also lead to some similar tensions: measurements
of the linear growth rate of structures through weak lensing
(Heymans et al. 2013; Köhlinger et al. 2017; Abbott et al. 2016)
and redshift-space distortions (Satpathy et al. 2017) that appear
to be consistently lower than the Planck-normalizedΛCDM pre-
dicted values. However, those apparent discrepancies have not
yet reached a “worrying” level of significance, and may also
be potentially affected by systematic effects (Massey et al. 2007;
Applegate et al. 2014). It should also be noted that the compari-
son of the most recent results from the large-scale Dark Energy
Survey (Abbott et al. 2018) and the latest Planck CMB observa-
tions (Planck Collaboration VI 2018) show a less severe tension.

The origin of the discrepancy between CMB cosmology and
cluster counts measurements remains an open question. Consid-
ering the current observations by the Planck satellite (as well
as the Atacama Cosmology Telescope and South Pole Tele-
scope on the ground), it is fairly reasonable to assume that
most of the tension should not originate from CMB obser-
vations. Potential biases or systematic effects might remains,
but it appears unlikely given the exquisite quality of the cur-
rent data and the meticulous care taken in their analysis (see
Planck Collaboration I 2016; Planck Collaboration XVI 2014,
as well as further analyses by Couchot et al. 2017b,a and consis-
tency checks with previous data from the Wilkinson Microwave
Anisotropy Probe by Planck Collaboration Int. LI 2017).
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However, the situation is less clear for clusters and their
cosmological analysis. On the one hand, a robust theoreti-
cal framework has been available for predicting cluster counts
since the seminal work of Press & Schechter (1974), allowing
us to compute the so-called halo mass function – the abun-
dance of dark matter halos as a function of their mass. Since
then, this framework has been consolidated thanks to the use
of N-body simulations (Sheth & Tormen 1999; Jenkins et al.
2001; Tinker et al. 2008; Courtin et al. 2011; Watson et al. 2013;
Despali et al. 2016). On the other hand, a variety of issues
can in practice plague the analysis of clusters samples, such
as unaccounted or incorrectly accounted statistical biases (e.g.
Eddington and Malmquist biases), or improper selection func-
tions (see e.g. Battaglia et al. 2016; Ascaso et al. 2017). How-
ever, one major obstacle in particular stands out: the theoretical
mass function predicts cluster abundances as a function of their
total mass, but the latter is not a directly observable quantity.
Consequently, proxies are required and are related more or less
directly to the cluster mass: luminosity, X-ray temperature, and
weak lensing for example. These observables are then related to
the mass through so-called scaling laws or relations that need
to be carefully calibrated. A certain number of assumptions are
often required, and a consensus has yet to be reached in many
cases for such relations. A crucial point is that differences in the
scaling laws and their normalization can in turn lead to differ-
ences in the cosmological results that are obtained from a given
dataset. A bias in the scaling laws can thus propagate into biases
in the inferred parameters (Blanchard & Douspis 2005).

If the tension between early and late observables were
confirmed, we might have to consider as a consequence exten-
sions or alternatives to the standard ΛCDM model of cosmol-
ogy. Since the CMB itself is mostly sensitive to the physics
of the early Universe, one can reconcile it with clusters obser-
vations by introducing a modification that only has a signifi-
cant impact at late times. More specifically, a new theory with
a lower growth rate of structures would predict a lower abun-
dance of clusters, in better agreement with the data. Modifica-
tions of the growth rate can result from different physical ori-
gins: one possibility is to add mass to neutrinos in the standard
cosmology (instead of approximating them as massless). Among
other effects, massive neutrinos indeed slow down the growth
of matter perturbations during the matter- and dark-energy-
dominated era on scales smaller than their free-streaming length
(see e.g. Lesgourgues & Pastor 2012 for a review on neutrinos in
cosmology).

In the present paper, we first examine whether the afore-
mentioned discrepancy between clusters and CMB cosmology
can be solved by introducing massive neutrinos. Combining the
temperature distribution function from a flux-limited sample of
local X-ray clusters with the latest CMB measurements from
the Planck satellite, we performed a Bayesian analysis through
Monte Carlo Markov chains (MCMC), using not only the param-
eters of the standard model but also the neutrino masses and
the cluster mass calibration as free parameters. We later intro-
duced a phenomenological modification of the growth rate of
structures, modelled by the so-called growth index γ (see e.g.
Wang & Steinhardt 1998; Linder 2005) as an additional degree
of freedom. We tested the robustness of our conclusions when
including additional constraints and datasets, namely BAO and
Ly-α forests, which probe the late Universe at redshifts higher
than our cluster sample.

In Sect. 2, we describe the formalism used for predicting
clusters abundances, as well as the extensions to the standard
model we examine and their impact on cluster counts. In Sect. 3,

we detail the datasets used in this work, and the implementation
of the MCMC analysis to sample the posterior probability dis-
tribution function. We present and discuss our results in Sect. 4
and summarize our conclusions in Sect. 5.

2. Cluster abundance and cosmology

2.1. The halo mass function

In the standard theory of structure formation, primordial small
inhomogeneities grew by gravitational instability in an expand-
ing universe (Lemaître 1933). At early times, the amplitude of
fluctuations is small and their growth can be described by lin-
ear theory. Clusters are, however, non-linear objects in the sense
that their contrast density is much larger than one. The forma-
tion of these objects therefore cannot be tracked directly by
linear theory. However, they are believed to result from collaps-
ing regions in the gravitational instability picture as derived by
Jeans in static Newtonian theory (Jeans 1902). The dynamics of
spherical regions in general relativity was provided by Lemaître
(1933). The non-linear spherical model allows us to link the col-
lapse of non-linear objects to the sole condition that their linear
amplitude is larger that some threshold δc.

Derivation of the mass function of cosmological struc-
tures from initially Gaussian fluctuations was first addressed
by Press & Schechter (1974). Under general hypotheses of self-
similarity, the exact mass function can be written in a simple
form (Blanchard et al. 1992),

n(m) = −
ρ0

m2

d ln ν
d ln m

νF (ν), (1)

where ρ0 is the mean matter density today, and ν = δc(z)/σ(m)
is the normalized amplitude of fluctuations. Within a sphere of
comoving radius R that contains mass m = 4πρ0R3/3, σ2(m) is
the variance of the linear density perturbations:

σ2(m) = σ2(R) =
1

2π2

∫ ∞

0
k2P(k)W2(kR)dk, (2)

where P(k) is the linear power spectrum and W(kR) is the
Fourier transform of the top-hat window function. As mentioned
before, δc represents the critical value of the initial overdensity
that is required for collapse at z, computed using the spheri-
cal collapse model. In the most general case, this quantity is
redshift-dependent although weakly in the ΛCDM paradigm
(Kitayama & Suto 1996) and with a weak dependency on cos-
mological parameters. In the following, we use the fitting for-
mula of Kitayama & Suto (1996).

The original form of the function F derived by Press and
Schechter is

FPS(ν) =

√

2
π

exp

[

−
ν2

2

]

. (3)

A more refined determination of F has been the subject
of numerous investigations such as Sheth & Tormen (1999,
ST99 hereafter) who investigated the consequences of the non-
sphericity of the collapse, while Bond et al. (1991) used the peak
formalism and derived the so-called “excursion set” theory as
a generalization of the Press and Schechter formalism. After-
wards, continuous improvements of N-body simulations have
allowed a more accurate determination for the mass function (cf.
citations throughout this work). Two different approaches can be
found in the literature:
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i) the first approach uses the ST99 formula (or small variations
thereof), which is based on the historically-first functional
form of Press and Schechter,

νFST(ν) = A

√

2a

π

[

1 +

(

1
aν2

)p]

exp

[

−
aν2

2

]

, (4)

where A, a, and p were parameters originally fitted by ST99
on an N-body simulation with Einstein-de Sitter cosmology;

ii) the second approach formulates the mass function in terms
of σ rather than ν (see e.g. Jenkins et al. 2001; Warren et al.
2006). A widely used form is that of Tinker et al. (2008, T08
hereafter),

νF = fT(σ) = A

((

b

σ

)a

+ 1

)

exp
[

−
c

σ2

]

, (5)

where A, a, b, and c were fitted on ΛCDM N-body simula-
tions.

This second formulation breaks the self-similar nature of the
mass function, essentially meaning that the threshold δc depen-
dence on cosmology as well as the virial reference are irrelevant.
This might well be because both the concordance cosmological
model and its power spectrum are not self-similar. Indeed, sev-
eral authors recently claimed a break of the self-similarity of the
mass function (Tinker et al. 2008, see also Courtin et al. 2011).

However, using very high-resolution simulations,
(Despali et al. 2016, hereafter D16) recently found that the
scaling of the mass function implied by Eq. (1) still holds,
provided that one uses the spherical overdensity algorithm and
the virial mass density contrast for halo definition. Furthermore,
they showed that the ST99 formula provides an accurate fit at
all relevant redshifts and a wide variety of ΛCDM cosmologies,
after revising the values of the free parameters of the fitting
function. The authors provide as well a second set of values to
be used specifically for an optimal fit on clusters scales. In the
present work, we checked that these two sets lead to virtually
identical results when applied to our data. In this work we use
the D16 formula of the mass function,

FD(ν) = A

√

2a

π

[

1 +

(

1
aν2

)p]

exp

[

−
aν2

2

]

, (6)

with A = 0.3295, a = 0.7689, and p = 0.2536 with a redshift-
dependent function for δc appropriate for ΛCDM models.

In order to compare the theoretical halo mass function to the
actual measured abundance of galaxy clusters, we need a relation
between the cluster mass m entering the mass function, and the
clusters observable O considered (e.g. SZ signal, temperature).
Furthermore, some dispersion is expected in the relation, which
can be taken into account by writing

N(> O) =
∫ +∞

0
p(>O|m) n(m) dm, (7)

where p(>O|m) represents the probability that a cluster of mass
m will be observed with a value of the observable greater than
O. A convenient way to take the dispersion into account is to
assume a log-normal probability distribution for O, which leads
to a (positive) offset in the calibration of mass-observable rela-
tion (Blanchard et al. 2000). In the present study we use the clus-
ter temperature as observable and rely on the following relation
between temperature and mass, assuming a standard power-law
scaling relation:

T = AT−M(h M∆)2/3

(

Ωm∆(z)
178

)1/3

(1 + z), (8)

where AT−M is the normalization parameter, ∆ is the density
contrast chosen for the definition of a cluster, expressed with
respect to the total background matter density1 of the Universe
at redshift z, and M∆ is the mass of the cluster according to the
same definition. We note that the 2/3 exponent is consistent with
the existing data (Ilić et al. 2015). The dispersion is taken into
account in the calibration according to the earlier remark; more
details on this procedure can be found in Ilić et al. (2015). Rela-
tion (7) can then be used to determine the integrated temperature
function and becomes:

N(> T ) =
∫ +∞

M(T )
n(m)dm. (9)

The calibration of the relation AT−M is a subject of strong debate:
standard mass estimates are based on hydrostatic assump-
tions although these are subject to theoretical uncertainties
(Balland & Blanchard 1997). Calibration of X-ray telescopes,
in particular between XMM and Chandra, is also an issue
although not regarded as large enough possibly to solve the
discrepancy (Schellenberger et al. 2015; Israel et al. 2015). Fur-
thermore, hydrodynamical simulations have shown that gas in
clusters is not in hydrostatic equilibrium (Bryan & Norman 1998;
Nagai et al. 2007; Piffaretti & Valdarnini 2008; Meneghetti et al.
2010). This has lead to the introduction of an encompassing
“mass bias” (referred to as 1 − b in the literature or more properly
as the B = 1/(1 − b) parameter, cf. Makiya et al. 2018) defined as
the ratioof themass proxyused toestablish the scaling relation and
the true mass (see e.g. Planck Collaboration XXIX 2014).

Several attempts have been made to determine AT−M both
from theoretical considerations and simulations, with inferred
values varying from ∼3 to ∼6 (Blanchard & Douspis 2005).
Given the above tension, obtaining a reliable mass proxy with
a well-determined calibration has become a critical issue in
clusters studies and has been the focus of many works in
the recent literature (Wang et al. 2016; Planck Collaboration VI
2018). Ilić et al. (2015) used a different approach in the con-
text of the ΛCDM model, treating AT−M as an additional free
parameter to be determined, and constrained it using MCMC
techniques with a robust local X-ray clusters sample and Planck
CMB measurements as data. In the present work, we follow the
same approach and add AT−M as a free parameter in the analysis,
in a more general cosmological context.

2.2. Neutrinos and the growth of structures

In the present work, we investigate ways to alleviate the ten-
sion between early and late cosmological probes, exemplified by
cluster abundance measurements. As mentioned earlier, lower-
ing the growth rate of structures in the Universe can reconcile the
two datasets. Massive neutrinos – beyond the “minimal mass”
attributed to them in the current standard cosmological model –
offer a possible solution to the tension. Indeed, their presence can
alter the aforementioned growth rate, damping the amplitude of
matter fluctuations on scales smaller than their free-streaming
length. This is further motivated by the fact that neutrinos are
experimentally known to be massive, with at least two species
being non-relativistic today.

We briefly recall here some elements of neutrino physics
and their influence in cosmology, considering three families
with non-zero, degenerate masses, which will be our assumption
throughout the rest of this work (see Lesgourgues & Pastor 2012,

1 Equation (8) is different when the contrast density ∆c is expressed
with respect to the critical density at redshift z.
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for a complete review). After decoupling from the rest of the
matter-energy content in the early universe (∼1s after the Big
Bang), massive neutrinos remain relativistic for an extended
period of time, and as such are part of the radiation content of
the Universe. Their energy density can be expressed as a func-
tion of the photon energy density and the effective number of
neutrinos Neff (≃3.046 in our case), defined as

ρν = Neff
7
8

(

4
11

)4/3

ργ. (10)

This equation is valid when neutrino decoupling is complete and
holds as long as all neutrinos are relativistic. At later times, mas-
sive neutrinos become non-relativistic and can be considered as
part of the matter content of the Universe. Their energy density
today in units of the critical density can be approximated as

Ων =
ρν

ρ0
c

=

(

Neff

3

)3/4 ∑

mν

94.07 h2 eV
, (11)

where
∑

mν is the sum of all three neutrino masses.
The presence of neutrinos (massive or not) affects cosmolog-

ical observables in several ways. As part of the total energy con-
tent of the Universe, they influence its background evolution to a
varying degree, depending on their properties (number, masses,
and so on). As a consequence all observables based on distance
measurements will be affected, such as supernovae, BAO, and the
angular scale of the sound horizon at last scattering (as measured
by the position of CMB peaks). Beyond their effect on the loca-
tions of the peaks, neutrinos also have an effect around the first
acoustic peak of the CMB, which is due to the early integrated
Sachs-Wolfe (ISW) effect. Moreover, the latest CMB data from
the Planck satellite now allow us to probe another signature of
neutrinos in the CMB, namely their effect through gravitational
lensing, which dampens the amplitude of the acoustic peaks.

More generally, as mentioned before, massive neutrinos
affect the growth of structure, which in turn affects many observ-
ables: gravitational lensing, galaxy clustering, as well as the
abundance of galaxy clusters. This can be expressed through
their effect on the so-called matter power spectrum,

Pm(k, z) = 〈|δm(k, z)|2〉, (12)

whereδm=δρm/ρ̄m represents the total matter overdensity. In prac-
tice, the matter power spectrum at any redshift can be written as

Pm(k, z) = Pprim(k)T 2
m(k, z), (13)

where Pprim(k) is the near scale-invariant primordial power spec-
trum, and Tm is a so-called “transfer function” that encapsu-
lates all the details of the growth of structures. This function can
be split into different contributions corresponding to the various
forms of matter:

Tm =
ΩcdmTcdm + ΩbTb + ΩνTν

Ωcdm + Ωb + Ων
(14)

where the cdm, b, and ν subscripts respectively refer to CDM,
baryons, and neutrinos. Then, the influence of neutrinos depends
on the wavenumber k considered:

– on scales larger than a certain threshold (roughly propor-
tional to the inverse square root of their mass), neutrino
free-streaming can be ignored and neutrino perturbations are
indistinguishable from CDM perturbations. On those scales,
the matter power spectrum Pm(k, z) can be shown to depend
only on the matter density fraction today (including neutri-
nos) and the primordial perturbation spectrum.

– on scales smaller than the free-streaming length, massive
neutrinos do not cluster, that is, δν ≪ δcdm (∼ δb). Conse-
quently, even if the evolution of δcdm was not affected by
neutrinos, the power spectrum would be reduced by a fac-
tor (1 − fν)2 where fν ≡ Ων/Ωm. In practice, the growth
rate of δcdm is reduced through an absence of gravitational
back-reaction effects from free-streaming neutrinos. At low
redshift, the matter power spectrum is thus affected by a
step-like suppression that starts around the free-streaming
scale and saturates at higher wavenumbers (k ∼ 1 h Mpc−1)
with a constant amplitude ∆Pm(k)/Pm(k) ≃ −8 fν.

Although we focused here on the effects of a non-zero mass,
the growth of structure is also sensitive to the effective number
of neutrino species. Stringent experimental limits have deter-
mined the number of so-called “active” neutrinos (sensitive to
weak interactions) to be equal to three, but leave room for addi-
tional, “sterile” neutrinos species that interact only through grav-
ity and can leave an imprint on cosmological observables (see
Lesgourgues et al. 2013, for a detailed discussion). In the present
work, we report our results on such scenarios in Appendix A.

2.3. Effects of modifications of gravity

An alternative approach to reconcile early and late probes is to
consider modifications to the standard theory of gravity. Indeed,
such modifications can potentially lower the growth rate of struc-
tures by effectively reducing the strength of the gravitational
force. In this context, one can either introduce a new full theory
of gravitation such as f (R) or Galileons (see e.g. Clifton et al.
2012, for a comprehensive review) or apply a phenomenologi-
cal modification to the equations governing structure formation.
In the present work, we follow the latter approach by modifying
directly the growth rate of structure.

Let us recall here a few elements of linear perturbation the-
ory. In the ΛCDM paradigm, after radiation-matter equality, the
following second-order equation governs the growth of the mat-
ter perturbations δm:

δ′′m + [2 + (ln H)′]δ′m =
3
2
Ωm(a)δm, (15)

where primes denote derivatives with respect to ln a andΩm(a) ≡
8πGρm(a)/3H2. We usually define the so-called growth factor
D(a) with

δm(a) = δm,0D(a), (16)

where δm,0 is often taken by convention to be the matter density
contrast today at a = 1, thus D(a) = 1 today. The growth factor
in ΛCDM is very well approximated by the expression (Peebles
1980)

D(a) ≈ exp

(∫ a

1

da′

a′
Ωm(a′)γ

)

(17)

or equivalently, that the so-called growth rate f defined as

f ≡
d ln D

d ln a
(18)

is well approximated by

f ≈ Ωm(a)γ, (19)

where γ is called “growth index” and found to be ∼0.545 in
ΛCDM. A simple and direct way to introduce a phenomenolog-
ical modification to the growth rate is to define it exactly as in
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Eq. (19) and consider γ as an additional free parameter than can
differ from its ΛCDM value (an idea first introduced by Linder
2005). This approach has been adopted many times in the litera-
ture, both when analysing current data as well as in the context
of forecasts for future missions (cf. Laureijs et al. 2011, for the
future Euclid satellite). However, using only a single number to
parametrize deviations of the growth rate not only confines us
to a limited number of scenarios, but the remaining ones also
struggle to reproduce the behaviour of any actual, realistic the-
ory of modified gravity. As a consequence, a number of authors
explored instead the use of γ as a varying function of time by
expressing it as a Taylor expansion (with respect to z, a, ln a, ...)
truncated to some order (Gong 2008). Then, the coefficients of
the expansion γ0, γ1, and so on become additional free parame-
ters in the analysis. Some authors have derived recipes to link
such sets of coefficients with actual full theories of modified
gravity (Steigerwald et al. 2014). In the present work we limit
our analysis to the original γ parameter; further parametrizations
will be explored in a future work.

2.4. Impact on cluster observables

To conclude this section, we illustrate the effects of massive neu-
trinos and a modification of gravity on our observable of interest:
the abundance of local clusters as a function of mass. Both phe-
nomena are related to cluster counts mainly through their influ-
ence on the linear growth rate of structure, which in turn affects
the matter power spectrum Pm(k, z) and the variance of the asso-
ciated matter density fluctuations defined in Eq. (2). The two left
panels of Fig. 1 show the impact of different values of the neu-
trino masses – with all other cosmological parameters fixed2 –
on the cumulative temperature mass distribution. With the σ8
parameter fixed, the three neutrino masses naturally yield the
same cluster abundance at the temperature corresponding to the
8 Mpc h−1 scale, here ∼4 keV.

We mention here an important point regarding neutrinos and
cluster counts. Recent works in the literature (Costanzi et al.
2013; Castorina et al. 2014) based on high-resolution N-body
simulations showed that theoretical cluster counts computed the
“traditional” way are a poor fit to numerical simulations that
include massive neutrinos. The same authors provide a new pre-
scription for the theoretical number counts in the presence of
massive neutrinos that significantly improves the fit and consists
in the two following steps:

– replacing the total matter density ρm – including neutrinos –
in the formula of the mass function of Eq. (1) by the matter
density of CDM and baryons only, ρcdm+b. We will refer to
this step alone as the “matter prescription”.

– replacing the variance of the total matter density fluctuations
as written in Eq. (2) by the variance of dark matter + baryons
fluctuations only; this is equivalent to replacing the transfer
function Tm(k, z) in the expression of the matter power spec-
trum in Eq. (13) by the transfer function

Tcdm+b =
ΩcdmTcdm + ΩbTb

Ωcdm + Ωb
. (20)

The combination of these two steps will be referred to as the
“CDM prescription”. The two right panels of Fig. 1 illustrate
the influence of the two steps of the neutrino prescription on
the cumulative temperature function. The effect of the first step

2 More precisely, amongst the standard parameters used in CMB stud-
ies, τ, θMC , and ns are kept fixed, whileΩbh2,Ωch

2 , and As are adjusted
to give a constant Ωm and σ8 for all neutrino masses considered.
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Fig. 1. Temperature distribution functions (top panels) and ratios with
respect to the blue reference model (bottom panels). Left panels: effect
of massive neutrinos (no neutrino prescription used, σ8 and Ωm kept
constant) while the ones on the right show the effects of the various steps
of the neutrino prescription for a given neutrino mass (

∑

mν = 0.5 eV).

(orange curve) is fairly straightforward, as it reduces the mass
function of Eq. (1) by the ratio ρcdm+b/ρm, and thus the cumula-
tive mass (or temperature) function by an amount that increases
with the mass (or temperature). On the contrary, the second
step (green curve) boosts the variance of matter fluctuations
(described in Eq. (2)) and therefore cluster abundances. When
combined (red curve), the two steps somewhat balance each
other, with a final net increase of cluster abundances. In the
present work, we adopt this neutrino prescription whenever mas-
sive neutrinos are included in our analysis (using either one or
both of the steps described).

Though not illustrated here, the impact of the phenomeno-
logical parameter γ on the temperature distribution function is
fairly straightforward. Values of γ bigger that the fiducialΛCDM
one will decrease cluster abundances over the whole range of
temperature or masses, as it lowers the whole matter power spec-
trum at once by scale-independent factor (cf. Eq. (21)). This
distinguishes γ from the effect of massive neutrinos, as the lat-
ter affect the matter power spectrum differently depending on
the scales considered. As a consequence, although their global
effect is the same, the two ΛCDM extensions considered here
change cluster abundances in distinct ways, which will have con-
sequences on our results (reported in Sect. 4).

For another practical note, the influence of a modification
of gravity through γ is implemented in our analysis once again
through a modification of the matter power spectrum. Any value
of γ greater or smaller than ∼0.545 (corresponding to the best-fit
value for ΛCDM) will result respectively in a smaller or greater
growth rate f , which in turns impacts the growth factor D. By def-
inition – and neglecting potential scale dependencies – the matter
power spectrum is proportional to the square of the growth factor.
Thus the resulting modified power spectrum can be written as

Pm,MG(k, z, γ) = Pm(k, z)

(

D(z∗)
D(z)

DMG(z, γ)
DMG(z∗, γ)

)2

, (21)
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where Pm is the ΛCDM matter power spectrum, and D and DMG
are respectively the growth factor in ΛCDM (i.e. for γ ∼ 0.545)
and in the modified gravity scenario for the chosen γ, with both
function normalized to 1 today. The redshift z∗ needs to be deep
enough in the matter-dominated era, where Ωm ∼ 1 and thus the
influence of γ is negligible; in practice, it is sufficient to choose
z∗ ∼ 100.

3. Datasets and methods

3.1. Cluster and CMB data

We use in our analysis the sample of X-ray selected clusters
of Ilić et al. (2015), where a complete description of the cat-
alogue can be found. We summarize its main characteristics
here. This sample was built from the online database BAX
(Sadat et al. 2004). The redshift range of the sample was lim-
ited to z = 0.1, so as to limit the potential internal evolution
of the abundance of these objects. The chosen minimal X-ray
flux (=1.8 × 10−11 erg s−1 cm−2) allows the sample to be com-
plete. It is the largest ever used for the determination of the
local temperature distribution function, with 73 clusters cover-
ing a temperature range of [0.8, 9] keV with a mean redshift of
z ∼ 0.05.

The relation between the measured temperature of those
clusters and their total masses is then given by the scaling law
of Eq. (8) and a choice of calibration through the AT−M parame-
ter. As mentioned earlier, AT−M is considered as a free parameter
in most of our analysis.

However, in order to match the Planck mass calibration
Planck Collaboration XX (2014; where the so-called hydrostatic
bias value is 1 − b = 0.8), we have to determine the correspond-
ing value of AT−M . By fitting X-ray-derived masses to the Planck
SZ-derived ones, Ilić et al. (2015) determined it to be approxi-
mately ∼7.86, when using the same cluster mass definition (crit-
ical M500) as Planck Collaboration XX (2014). In the following,
we refer to this specific value as the “Planck cluster calibration”.
To extrapolate this value to the main mass definition used in this
work (the virial mass), we make use of the one-dimensional (1D)
posterior distribution for AT−M that we produced for both mass
definitions (cf. Fig. 2). From it we can associate a “probability”
(more precisely a marginalized likelihood value) to the Planck
cluster calibration in the critical M500 case. We then look for
the AT−M value that has the same probability in the virial mass-
case posterior, and is chosen as the “Planck cluster calibration”
for this mass definition. We thus ensure that this resulting value
of AT−M provides the same level of “fitness” (for the measured
cluster temperature function) as in the critical M500 case, while
marginalizing over cosmological parameters. A consequence of
this procedure is that the extrapolated AT−M value depends on
the choice of the mass function. We derived as Planck cluster
calibration values AT−M ∼ 9.06 and AT−M ∼ 8.72 when using
the T08 and D16 mass functions, respectively. Although dif-
ferent, those two values are close enough to each other (well
within the width of the 1σ interval of the AT−M posterior) so
that our choice will not affect much the relevant parts of our
analysis.

In combination with cluster data, we use the latest publicly
available data release from the Planck Collaboration, namely
the 2015 CMB spectra and associated likelihood code. We
include both the TT, EE, BB, and TE likelihood in the low-
multipole range and the TT, TE, and EE likelihood in the
high-multipole range (see Planck Collaboration XI 2016, for a
complete description).
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D16, M = M500c

T08, M = Mvir
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Fig. 2. Posterior distributions for the mass calibration parameter AT−M

when combining CMB and X-ray cluster data, for the T08 and D16
mass function and two definitions for the cluster mass (M500c and Mvir).
The grey vertical dashed line corresponds to the Planck cluster cali-
bration value for the M500c mass definition. The blue and green verti-
cal dashed lines correspond to the extrapolated Planck cluster calibra-
tion for the Mvir definition, using respectively the T08 and D16 mass
function.

3.2. Additional probes

To attempt to solve the observed tension between early and late
times probes, we chose to consider two distinct ΛCDM exten-
sions that both have a major effect at late times. While the
Planck data provides exquisite constraints on the parameters of
the standard cosmological model, CMB data alone tend to give
relatively poor constraints on such extensions, as they mostly
provide insight into the early Universe. As a consequence, we
also test in the present work the robustness of our results when
introducing two additional late-time probes on top of galaxy
clusters:

– measurements of the BAO scale from the power spectrum
of galaxies at high redshift from Anderson et al. (2014) and
Font-Ribera et al. (2014);

– the 1D matter power spectrum reconstruction from Lyman-α
forest observations at an average redshift of ∼3.5 from
Palanque-Delabrouille et al. (2015); for this probe, we
adapted a code kindly made available to us by C. Yèche and
collaborators.

Lyman-α data provides additional constraints on the shape of the
power spectrum at different redshifts and valuable complemen-
tary information on structure formation, leading to tight cosmo-
logical constraints.

3.3. Numerical methods and tools

To explore our full parameter space under the constraint of our
datasets, we adopted a standard MCMC analysis using two pub-
licly available codes: the CosmoMC package (Lewis & Bridle
2002; Lewis 2013) and the Monte Python code (Audren et al.
2013). In these codes, the computation of cosmological quanti-
ties and observables are performed respectively by the CAMB
(Lewis et al. 2000; Howlett et al. 2012) and CLASS (Blas et al.
2011) Boltzmann codes, whose main purpose is to compute the-
oretical power spectra of CMB anisotropies.
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The latest Planck CMB likelihood is already interfaced with
the two aforementioned MCMC codes, as well as the BAO like-
lihood. The Lyman-α likelihood was integrated by us into the
MCMC codes, and adapted to the models considered in this
work. We also developed a dedicated module for computing
the likelihood associated with our cluster sample; the module
makes use of the outputs from the Boltzmann codes (such as
background quantities and matter power spectrum) to compute
the required cluster observables. A more detailed description
of technical aspects of this likelihood module can be found in
Ilić et al. (2015).

While massive neutrinos are already implemented in both the
CLASS and CAMB codes, the other ΛCDM extension we con-
sidered (the γ parametrization) is not part of these Boltzmann
codes by default. As a model introduced to study phenomeno-
logical modifications of the late growth of structure, it is not very
well suited for CMB studied and is tricky to implement consis-
tently in a Boltzmann code, compared to a proper full theory of
modified gravity. In the present work we therefore implement
the γ model only at the level of the likelihood for two of our
affected probes, namely clusters and Lyman-α observations, by
modifying the matter power spectrum according to Eq. (21). The
amplitude of matter fluctuations is therefore given by

σM,MG(z) =
D(z∗)

DMG(z∗)
DMG(z)

D(z)
σM,Λ(z) (22)

and we then compute the mass function according to our pre-
scriptions as explained above. We leave out from the main
analysis the effects of a late modification of gravity on the
CMB observables, which would appear in the power spectra
of its anisotropies mainly through lensing and ISW effects. We
explore briefly in Appendix B if accounting for one of these
effects (ISW) can affect our conclusions, although a more thor-
ough treatment would require going beyond the γ parametriza-
tion as it is not well-suited for CMB studies. Finally we chose
to neglect correlations between our probes, arguing that they
should be fairly low as our datasets do not overlap much in
redshift. Consequently, the total combined likelihood of all our
probes will be simply the product of all the individual likelihoods
considered.

On a more technical note, throughout our work we use flat
priors for the six standard ΛCDM cosmological parameters (the
same ones used in the Planck CMB analyses), as well as for the
sum of neutrino masses, our calibration parameter AT−M , and
our MG parameter γ. In most of the scenarios we explored, we
checked a posteriori that our choice of priors did not influence
our posterior distributions. In the cases where they did have an
influence, we mention it in the relevant section.

4. Results

4.1. (Re-)stating the tension in ΛCDM

The tension between cluster counts and the Planck CMB mea-
surements in the ΛCDM paradigm is best illustrated by their
respective constraints in the Ωm − σ8 plane, as shown in Fig. 3.
In this plane, the CMB alone (green contour) provides tight con-
straints that represent a tiny part of the parameter space. On the
other hand, X-ray cluster counts are not sensitive to the Hub-
ble constant and are almost independent of the other cosmolog-
ical parameters except for the amplitude of matter fluctuations
at a fixed matter density. This leads to a band of degeneracy
(red and blue contours respectively for the T08 and D16 mass
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CMB + X-ray clusters (D16, free cal.)

X-ray clusters (T08, Planck cal.)

X-ray clusters (D16, Planck cal.)

SZ clusters (T08, Planck cal.)

Fig. 3. Confidence contours (68/95%) in the Ωm − σ8 plane for various
combinations of datasets (CMB, X-ray or SZ clusters) and assumptions
(T08 or D16 mass function, AT−M left free or fixed to the Planck cluster
calibration, cf. Sect. 3.1). For the clusters-only cases, additional uniform
priors onΩm and H0 have been applied (see Sect. 4.1 for details). On this
figure, the “CMB” and “CMB + X-ray clusters” contours are virtually
identical.

functions) between the two parameters. When using only clus-
ters as constraints, we imposed additional flat priors on both
Ωm (∈ [0, 1]) and H0 (∈ [20, 100]) to help the convergence of
our MCMC. Those priors do influence the posterior contours
of Fig. 3 (and Fig. 4 in the next section), with wider priors
resulting in more extended contours but only in the direction
of the Ωm − σ8 degeneracy. Therefore, these additional priors
do not affect our conclusions: using here the standard Planck
mass calibration for our X-ray clusters, we clearly see a sig-
nificant tension between the constraints from the two datasets,
entirely consistent with the one obtained from Planck SZ counts
(Planck Collaboration XX 2014) and the conclusion of Ilić et al.
(2015). This conclusion is virtually independent of the choice of
mass function (T08 or D16). Relaxing the constraint on AT−M ,
the tension can then be directly visualized with the 1D poste-
rior distribution of AT−M shown in Fig. 2: as expected, the stan-
dard Planck cluster calibration (dashed line) is quite strongly dis-
favoured by the data (at the ∼4σ level for the T08 mass function
and critical M500 mass definition). This leads again to the con-
clusion that either our cosmological model or our understand-
ing of clusters needs to be revised in order to reconcile both
datasets.

4.2. Introducing massive neutrinos

4.2.1. X-ray clusters versus CMB

We present our results when introducing three degenerate, mas-
sive neutrinos in the ΛCDM model, with the sum of their mass
∑

mν as an additional free parameter (as opposed to a single
massive one with mass 0.06 eV and two massless in the fiducial
ΛCDM model).

We initially kept the normalization parameter AT−M fixed
to its standard Planck cluster value. Results are summarized
in the σ8 − Ωm plane of Fig. 4, which shows on the one hand
CMB-alone constraints, and on the other hand the contours pro-
duced by X-ray clusters assuming the standard Planck cluster
calibration, both with and without free neutrino masses. In the
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Fig. 4. Confidence contours (68/95%) in the Ωm − σ8 plane for various
datasets (CMB and X-ray clusters) and assumptions (three neutrinos
with free masses or only one fixed to the standard 0.06 eV value). For
the clusters-only cases, AT−M is fixed to the Planck cluster calibration
and additional uniform priors on Ωm and H0 have been applied (see
Sect. 4.1 for details). The “CMB + X-ray clusters” contours with free
calibration (not shown on this figure) are again identical to the “CMB”
contours.

case of clusters, the effect of inclusion of free neutrino masses is
to shift slightly the crescent-shaped contours towards lower σ8
and higher Ωm along the main degeneracy direction, not mod-
ifying the preferred value of σ8 for a fixed Ωm. This effect is
quite small and comparable to the difference we found when
using the two different mass function (T08 and D16). For the
CMB, allowing for massive neutrinos opens up slightly the con-
tours (from green to grey) towards lower amplitudes of the
matter fluctuations σ8 and higher Ωm. Because the CMB con-
tours are essentially parallel to those of clusters, the shift pro-
duced by massive neutrinos on both contours does not help to
reduce the tension. We conclude that the tension between CMB
and X-ray cluster counts with the standard Planck mass cal-
ibration cannot be alleviated by allowing for massive neutri-
nos: in the Ωm ∼ 0.3 region, the inclusion of massive neu-
trinos leaves the cluster contours essentially unchanged, while
the CMB contours open up in a way parallel to the cluster
contours.

Let us now examine in more detail this issue when we relax
the mass calibration. In Fig. 5 we present the contours in the
AT−M −

∑

mν plane for the T08 (red) and D16 (blue) mass func-
tions. The 1D posteriors on the neutrino masses as well as on
AT−M are almost unchanged. We also examine the role of the
various prescriptions in Fig. 6: small differences are found that
remain well below the 1σ uncertainty. The contours show a weak
correlation of AT−M with neutrino masses: going from a mass of
∼0–0.5 eV, the preferred value of AT−M is increased by ∼0.2,
0.3 and 0.7 respectively in the CDM prescription, no prescrip-
tion, and matter prescription cases. These small effects seem to
vary slightly with the mass function and are far too small (well
below the ∼1.5 width of the 68% confidence limits) to modify
the amplitude of the discrepancy: the likelihoods on AT−M and
on the neutrino masses are essentially unchanged. In the follow-
ing, we adopt the CDM prescription as a reference.

When massive neutrinos are allowed, contours in the σ8 −

Ωm plane are almost identical in the range of Ωm preferred by
the CMB. We conclude that there is no indication that neutrinos
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Fig. 5. Confidence contours (68/95%) and posterior distributions for the
AT−M and

∑

mν parameters for our two choices of mass functions (T08
in red and D16 in blue) with the Mvir cluster mass definition. The green
AT−M posteriors correspond to the case where the neutrino mass is fixed
to the standard 0.06 eV value. The black

∑

mν posterior comes from the
CMB-only case.
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Fig. 6. Confidence contours (68/95%) and posterior distributions for the
AT−M and

∑

mν parameters, using the D16 mass function and Mvir clus-
ter mass definition. Three choices of neutrino prescription are shown:
CDM prescription (blue), no prescription (yellow), and matter prescrip-
tion (grey). The same conventions for the green and black posteriors are
used as in Fig. 5.

being massive would allow any appreciable release of the so-
called clusters-CMB tension.

4.2.2. Combining with additional probes

Stringent constraints on cosmology are obtained through the
combination of different probes. Here we briefly examine the
effects of adding two probes that directly constrain the power
spectrum shape presented in Sect. 2.4. We followed the same
procedure as in the previous section, now constraining the evo-
lution of our MCMC with clusters, CMB, BAO, and Lyman-
α data. We allow for massive neutrinos and a free calibration
AT−M in addition to the usual ΛCDM cosmological parameters.
As shown before, given that our results are barely sensitive to the
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Fig. 7. Confidence contours (68/95%) and posterior distributions for
the Ωm, σ8, AT−M , and

∑

mν parameters, using the D16 mass function
and Mvir cluster mass definition. We show results obtained from CMB
and clusters data (blue) and the effects of adding Lyman-α data (green),
BAO data (red), and both (grey).

choice of the mass function, we work only with the more recent
D16 mass function in the following.

Our results are illustrated in Fig. 7. While clusters with a
free calibration do not change noticeably constraints on neu-
trinos masses (as already seen in Fig. 5), the addition of BAO
and Lyman-α data leads to tighter constraints in agreement with
Palanque-Delabrouille et al. (2015) and Yèche et al. (2017). On
the other hand, the addition of these datasets essentially leads to
AT−M constraints identical to the CMB alone.

4.3. Modified gravity as an alternative solution

Our detailed investigation in the previous section led to the firm
conclusion that the tension between CMB and clusters with
the Planck cluster calibration remains unsolved when neutrino
masses are left free. Of course the simplest solution is to consider
that the cluster mass calibration is to be revised downwards to a
value AT−M ∼ 7.2 corresponding to 1 − b ∼ 0.6. This, however,
leads to high masses for clusters that are above most observa-
tional estimations and to a high amplitude of matter fluctuations,
thus alternative possibilities are to be considered. In this section
we examine a second possibility, namely that the late growth of
structures does not follow the predictions of the standardΛCDM
model, but results from modified laws of gravity. To do so, we
consider a phenomenological modification of the late growth of
structure controlled by the introduction of a new free parameter
γ as described in Sect. 2.3. As mentioned in Sect. 2.4, we con-
sider here only the implication of the modification of the growth
rate on the cluster mass function and not the CMB observables.
We follow the same approach as in previous sections: a stan-
dard MCMC analysis to explore our full parameter space under
the constraints of our datasets, with the standard cosmological
parameters and the calibration AT−M being free and the index γ
as an additional parameter of the model.
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Fig. 8. Confidence contours (68/95%) in the AT−M −γ plane from CMB
and clusters data, with (grey) or without (green) free neutrino masses.
The D16 mass function and Mvir cluster mass definition are used here.
The AT−M − γ correlation remains stable when adding BAO (red) or
Lyman-α (blue) data (neutrinos masses still free).

4.3.1. CMB and clusters constraints

We can already intuit the constraints resulting from the com-
bination of X-ray clusters data and the CMB data in this new
paradigm. Given that the calibration AT−M is left free, the ampli-
tude of matter fluctuations is essentially unconstrained by clus-
ter abundance and a degeneracy between AT−M and γ can be
expected. We also expect constraints on other cosmological
parameters to remain essentially unchanged. We extended our
analysis by introducing again non-zero masses for neutrinos: we
checked in various cases that all constraints on cosmological
parameters are unchanged except those on σ8 and thereby on
AT−M and γ. The parameters AT−M and γ are highly degenerated
in the range of interest (0 < γ < 1). We found that the (degener-
ated) contours in the AT−M − γ plane remain remarkably stable.
Figure 8 summarizes the relation between those two parameters
in a variety of models explored in this work and with different
datasets. The choice of flat prior on γ (∈ [0, 1] in our case) has
an influence on our posterior distributions: it limits the extent of
the more degenerated contours of Fig. 8, but it does not impact
our discussions.

4.3.2. Adding BAO and Lyman-α data

As seen in previous sections, the addition of these two probes
mainly limits the range of allowed neutrino masses, but
has a limited impact on the calibration AT−M . Consequently,
the degeneracy between AT−M and γ is expected to remain
unchanged. This is indeed verified in Fig. 8 where the contours
in the AT−M − γ plane are almost identical.

4.4. Concluding on the calibration issue

As a final illustration of our analysis, we ran a MCMC combin-
ing CMB, clusters, BAO and Lyman-α data, with both neutrino
masses and the growth rate index γ being free and with two fixed
values of the calibration AT−M:

– AT−M = 7.19, the preferred value for ΛCDM from our joint
analysis of CMB and clusters using the D16 mass function;

– AT−M = 8.72, the value corresponding to the Planck cluster
calibration.

The results of this comparison are shown in Fig. 9 where the
red and blue contours correspond respectively to the first and
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Fig. 9. Confidence contours (68/95%) and posterior distributions for
the Ωm, σ8, γ, and

∑

mν parameters, using the D16 mass function and
Mvir cluster mass definition. Results are obtained from the combination
of CMB, clusters, BAO, and Lyman-α data. We fix AT−M to either the
Planck cluster calibration value (blue) or its preferred value when left
free (red, see Sect. 4.4 for details). We also show in grey the posteriors in
the standard gravity case with no cluster data. The grey vertical dashed
line corresponds to the standard γ value of ∼ 0.545.

second choice for the value of AT−M . In addition, we plotted the
1D posterior distribution of Ωm and

∑

mν in the standard-gravity
case. Both the

∑

mν − Ωm contours and the corresponding 1D
posteriors are virtually identical. On the other hand, the poste-
riors on γ and σ8 show strong differences: the Planck cluster
calibration leads to a high preferred value of γ ∼ 0.9 inconsis-
tent with the standard model, while the other calibration choice
leads to γ = 0.55 ± 0.08 in complete agreement with ΛCDM
expectations.

5. Conclusion

In the present paper, we examined the discrepancy on the ampli-
tude of matter fluctuations as estimated by σ8 obtained from X-
ray cluster abundance on one side, and derived from the Planck
CMB fluctuations in ΛCDM on the other side. Two possible
extensions of the standard ΛCDM were examined: the presence
of massive neutrinos and the impact of a modification of gravity
on the growth rate. Our strategy was to examine the constraints
that CMB and cluster abundance data yield, without further addi-
tional assumptions or data on clusters, that is, leaving the cali-
bration of the mass temperature relation AT−M free. Using the
sole combination of X-ray clusters and Planck CMB data, we
found no appreciable correlation between the cluster mass cali-
bration and neutrinos masses (with

∑

mν . 0.47 eV at the 95%
confidence level).

The addition of BAO constraints as well as those provided
by the 1D Lyman-α forest spectrum allows tighter constraints
to be imposed on the sum of the neutrino masses while leaving
the calibration essentially unchanged compared to the massless
case. From this we firmly conclude that the neutrino masses do

not relax the CMB-clusters tension in the standard CDM pic-
ture. Indeed, when we compare constraints obtained with two
different calibrations – the standard Planck cluster calibration
and a calibration based on matching cluster abundance in a
CMB-normalizedΛCDM model – we found essentially the same
constraints on neutrinos masses. This also leads to the conclu-
sion that the CMB-cluster tension is closely related to the clus-
ter mass calibration issue. Recently, Salvati et al. (2018) have
revised the constraints on the 1 − b calibration parameter using
Planck SZ cluster counts and the power spectrum of the hot gas,
in addition to the Planck CMB data using a revised value of
the optical depth τ from Planck Collaboration Int. XLVII (2016).
Their conclusions on the calibration and its role in solving the
tension are in qualitative agreement with our conclusions.

Introducing the γ model for the growth rate as a simple
modification of gravity, we found a tight correlation between
AT−M and γ. This correlation appeared to be insensitive to the
presence of possible massive neutrinos or the addition of com-
plementary data. We conclude that the CMB-cluster tension
cannot be solved simply by non-zero masses for neutrinos: if the
Planck cluster mass calibration is to be consolidated, this would
be a strong indication that the simple model of Λ cold dark mat-
ter with standard massive neutrinos cannot accommodate present
data and would call for new physics in the dark sector.
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Appendix A: Effects of additional degrees of

freedom in the neutrino sector
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Fig. A.1. Confidence contours (68/95%) and posterior distributions for
the AT−M , γ , and Neff parameters, using the D16 mass function and Mvir

cluster mass definition. Results are obtained from the combination of
CMB and cluster data when the Neff parameter is either fixed to 3.046
(blue) or left free (red). The effects of adding BAO data in the latter case
are shown in grey.
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Fig. A.2. Confidence contours (68/95%) in the AT−M−γ plane, using the
D16 mass function and Mvir cluster mass definition. Results are obtained
from the combination of CMB and cluster data when the Neff parameter
is either fixed to 3.046 with massive active neutrinos (red) or left free
to vary adding massive active neutrinos and a sterile neutrino with free
mass (grey).

In this appendix, we consider extra relativistic relics by treating
the effective number of neutrinos Neff as a new parameter, and/or
by introducing a massive sterile neutrino into the model (with
a free parameter ms controlling its mass). We first considered a
model where both the γ and the calibration AT−M are left free,
as well as the Neff parameter. Figure A.1 shows our results when
using CMB and cluster data with (grey) and without (red) the
addition of BAO data. We find constraints consistent with our
previous results where Neff was fixed to its 3.046 fiducial value
(blue). The γ − AT−M correlation remains, while Neff appears to
vary independently of these two parameters. Although slightly
tightening the constraints, adding BAO data does not change
those results.

We finally considered a model where Neff could change as
a result of the presence of a sterile neutrino. Mentioned in
Sect. 2.2, such a type of neutrino adds another degree of free-
dom to our problem, and could thus increase the chances of
fixing the CMB-clusters tension. We followed an approach sim-
ilar to Planck Collaboration XIII (2016) to include both active
massive neutrinos and a sterile one. The corresponding results
shown in Fig. A.2 illustrate that the γ−AT−M correlation remains
untouched.

Appendix B: Including a modification of the ISW

effect
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Fig. B.1. Confidence contours (68/95%) in the AT−M − γ plane, using
the D16 mass function and Mvir cluster mass definition. Results are
obtained from the combination of CMB and clusters data when account-
ing (green) or not (blue) for the modification of the ISW effect in
the CMB power spectra due to our phenomenological modification of
gravity.

As mentioned in Sect. 3.3, any change in the evolution of the
growth rate of structures (e.g. through a modification of grav-
ity or additional ingredients in our cosmological model) affects
the angular power spectra of the CMB, mainly through the lin-
ear ISW effect at large scales and the gravitational lensing on
smaller scales. While these effects have been properly accounted
for when we explored the addition of massive neutrinos in our
model, we did not include the effects of our phenomenological
modification of gravity on the CMB power spectra. Indeed, the γ
model has been designed for late probes of the growth of struc-
tures and is much less appropriate for CMB and early universe
predictions.

In order to assess whether neglecting those effects could
affect our conclusions, we applied a recipe to include nonethe-
less one of them – the ISW effect, much simpler to account
for – and modified the Boltzmann codes we used accordingly.
We show our results in Fig. B.1: we observe no significant
effect on the AT−M − γ correlation nor on their respective pos-
terior distributions (not shown). Our conclusions thus remain
unchanged.
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