
123

Cluster-enabled OpenMP: An OpenMP

compiler for the SCASH software distributed

shared memory system

Mitsuhisa Satoa, Hiroshi Haradaa,

Atsushi Hasegawab and Yutaka Ishikawaa

aReal World Computing Partnership, 1-6-1 Takezono,

Tsukuba Mitsui-Blg. 16F, Tsukuba, Ibaraki 305-0032,

Japan

E-mail:msato@trc.rwcp.or.jp
bNEC Informatec Systems, Ltd., Japan

OpenMP is attracting wide-spread interest because of its

easy-to-use parallel programming model for shared memory

multiprocessors. We have implemented a “cluster-enabled”

OpenMP compiler for a page-based software distributed

shared memory system, SCASH, which works on a cluster

of PCs. It allows OpenMP programs to run transparently in

a distributed memory environment. The compiler transforms

OpenMP programs into parallel programs using SCASH so

that shared global variables are allocated at run time in the

shared address space of SCASH. A set of directives is added

to specify data mapping and loop scheduling method which

schedules iterations onto threads associated with the data

mapping. Our experimental results show that the data map-

ping may greatly impact on the performance of OpenMP pro-

grams in the software distributed shared memory system. The

performance of some NAS parallel benchmark programs in

OpenMP is improved by using our extended directives.

1. Introduction

In this paper, we present an implementation of a

“cluster-enabled” OpenMP compiler for a page-based

software distributed shared memory system called

SCASH, on a cluster of PCs.

For programming distributed memory multiproces-

sors such as clusters of PC/WS and MPPs, message

passing is usually used. A message passing system re-

quires programmers to explicitly code the communica-

tion and makes writing parallel programs cumbersome.

OpenMP is attracting wide-spread interest because

of its easy-to-use parallel programming model. While

OpenMP is designed as a programming model for

shared memory hardware, one way to support OpenMP

in a distributed memory environment is to use a soft-

ware distributed shared memory system (SDSM) as an

underlying runtime system for OpenMP.

Our target SDSM is a page-based software dis-

tributed shared memory system, SCASH [2], which

runs on a cluster of PCs connected by a high speed

network such as Myrinet.

In most SDSMs, only part of the address space is

shared. In SCASH, the address space allocated by

a shared memory allocation primitive can be shared

among the processors. Variables declared in the global

scope are private in the processor. We call this mem-

ory model the “shmem memory model”. Parallel pro-

grams using Unix “shmem” system calls use this mem-

ory model. In this model, all shared variables must

be allocated at run-time at the beginning of execu-

tion. We have implemented the OpenMP compiler for

our “shmem memory model” using the Omni OpenMP

compiler system [7]. The compiler detects references

to a shared data object, and rewrites them into the object

re-allocated in the shared memory area.

The data mapping to processors is the key to achiev-

ing good performance on the SDSM. We have added

a set of directives to specify data mapping and loop

scheduling to give application-specific knowledge to

the compiler. Using these extended directives, the pro-

grammer can exploit data locality by reducing the cost

of consistency management.

Our contribution of this paper is to propose a tech-

nique to translate an OpenMP program for our “shmem

memory model” of SCASH. We report performance

and turning of OpenMP programs by our extended di-

rectives on our PC clusters. In the next section, we

present an overview of the Omni OpenMP compiler

system and SCASH, as background. Section 3 de-

scribes how to translate the OpenMP programs for the

“shmem memory model”, and Section 4 reports the

Scientific Programming 9 (2001) 123–130

ISSN 1058-9244 / $8.00 2001, IOS Press. All rights reserved

124 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

C- Front

Exc Java toolkit

a.out

Omni OpenMP compiler

C + OpenMP

C + runtime lib. call

F77 Frontend

F77 + OpenMP

Intermediate representation
(Xobject)

Exc Toolkit

compiled by native cc
linkOmni OpenMP

runtime lib

Fig. 1. An overview of the Omni OpenMP compiler.

performance obtained on our PC clusters with some

benchmarks, including the NAS parallel benchmark

suite. Section 5 presents our concluding remarks.

2. Background

2.1. The Omni OpenMP compiler system

The Omni compiler is a translator which takes

OpenMP programs as input to generate a multi-

threaded C program with runtime library calls. The

compiler system consists of the Omni Exc toolkit and

various language front-ends, as shown in Fig. 1. C-

front and F-front are front-end programs that parse C

and Fortran source code into intermediate code, called

Xobject code. Exc Java Toolkit is a Java class library

that provides classes and methods to analyze and mod-

ify a program easily, with high level representation, and

to unparse Xobject code into a C program. The repre-

sentation of Xobject code is a kind of AST (Abstract

Syntax Tree) with data type information, on which each

node is a Java object that represents a syntactical ele-

ment of the source code, and that can easily be trans-

formed.

The Omni OpenMP compiler is implemented using

the Omni Exc toolkit. The translation pass from an

OpenMP program to the target multi-threaded code is

written in Java using the Exc Java Toolkit. The gener-

ated program is compiled by the native back-end com-

piler linked with the runtime library. The OpenMP

compiler is available for several SMP platforms, in-

cluding Linux, Sun Solaris and SGI IRIX.

2.2. The software distributed shared memory system,

SCASH

SCASH is a page-based software distributed shared

memory system using the PM low-latency and high

bandwidth communication library [8]1 for a Myrinet gi-

gabit network and various memory management func-

tions, such as memory protection, supported by an op-

erating system kernel. The consistency of shared mem-

ory is maintained on a per-page basis. SCASH sup-

ports two page consistency protocols, invalidate and

update. The home node of a page is a node that keeps

the latest data of the page. In the invalidate protocol,

the home node sends an invalidation message to nodes

which share the page so that the page is invalidated on

these nodes. The invalidate protocol is used as default.

SCASH is based on the Release Consistency (RC)

memory model with the multiple writers protocol. The

consistency of a shared memory area is maintained at a

synchronization point called the “memory barrier syn-

chronization” point. At this point, only modified parts

are transferred to update pages. Explicit consistency

management primitives are also supported for the lock

operations.

3. The translation of OpenMP programs to

SCASH

3.1. Transformation for the “shmem memory model”

In SCASH, variables declared in the global scope are

private in the processor. The shared address space must

be allocated explicitly by the shared memory allocation

primitive at run time. We call this memory model the

“shmem memory model”.

In the OpenMP programming model, global vari-

ables are shared as the default. To compile an OpenMP

program into the “shmem memory model” of SCASH,

the compiler transforms code to allocate a global vari-

able in shared address space at run time. The com-

piler transforms an OpenMP program by means of the

following steps:

1. All declarations of global variables are converted

into pointers which contain the address of the data

in the shared address space.

1Currently, the PM communication library supports Gigabit and

Fast Ethernet.

M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler 125

2. The compiler rewrites all references to the global

variables to the indirect references through the

corresponding pointers.

3. The compiler generates the global data initial-

ization function for each compilation unit. This

function allocates the objects in shared address

space and stores these addresses in the corre-

sponding indirect pointers.

For example, the following code:

double x; /* global variable

declaration */

double a[100]; /* global array

declaration */

. . .

a[10] = x;

is transformed into:

double * G x; /* indirect pointer

to ‘‘x’’ */

double * G a; /* indirect pointer

to ‘‘a’’ */

. . .

(G a)[10] = (* G x); /* reference

through the pointers */

The following initialization function G DATA

INIT is generated for the above code:

static int G DATA INIT() {
shm data init(& G x,sizeof(double));

shm data init(& G a,sizeof(double)

*100);

}

The run-time library function shm data init

specifies the size and the indirect pointer address for

the shared object. The initialization function also con-

tains the data mapping information if specified in the

program. Figure 2 illustrates the code after this trans-

formation.

The global data initialization function entry point is

placed in the ‘.ctors’ section2 in order to be linked

and called at the beginning of execution, before execut-

ing the “main” program. Actually, each initialization

function only makes the table for the shared objects

in each node. In the runtime initialization phase, the

2The “.ctors” section means a “constructor” section which is

originally used to place the “constructor” of C++ programming

language. Each object file that defines an initialization function puts

a word in the constructor section to point to that function. The linker

accumulates all these words into one contiguous ‘.ctor’ section.

_G_x

_G_a

code

shared

memory

area in

SCASH

data
(private)

node1 node2 node3

code code

data
(private)

data
(private)

double x

double a[100]

Fig. 2. Transformation for the “shmem memory model”.

records of the shared objects in the table are summa-

rized, and objects are allocated in the shared address

space on the master processor (node 0). Then, the

addresses of the allocated objects are broadcasted to

initialize the indirect pointers in each node.

Note that if the shared memory was supported by

hardware or/and operating systems as in SGI Origin

2000 the transformation described above would not be

necessary. Our method is for a user-level distributed

shared memory system, and does not need any mod-

ification of the operating system and the standard li-

braries. It just rewrites the references to the shared

data objects and does not need complicated program

analysis.

3.2. OpenMP directive translation and the runtime

library

The OpenMP directives are transformed into a set

of runtime functions which use SCASH primitives to

synchronize and communicate between processors.

To translate a sequential program annotated with par-

allel directives into a fork-join parallel program, the

compiler encapsulates each parallel region into a sepa-

rate function. The master node calls the runtime func-

tion to invoke the slave threads which execute this func-

tion in parallel. All threads in each node are created at

the beginning of execution, and wait for the fork opera-

tion on slave nodes. At the fork, pointers to shared vari-

126 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

ables with auto storage class are copied into a shared

memory heap and passed to slaves.

No nested parallelism is supported.

In SCASH, the consistency of all shared memory ar-

eas is maintained at a barrier operation. This matches

the OpenMP memory model. The lock and synchro-

nization operations in OpenMP use the explicit consis-

tency management primitives of SCASH on a specific

object.

3.3. The OpenMP extension for data mapping and

loop scheduling

In SDSMs, the home node allocation of pages affects

the performance because the cost of consistency man-

agement is large compared to that of hardware NUMA

systems. In SCASH, a reference to a page in a remote

home node causes page transfer through the network.

When the home node of a page is different from the

current node, the modified memory must be computed

and transfered at barrier points to update the page in

remote nodes. SCASH can deliver high performance

for an OpenMP program if the placement of data and

computation is such that the data needed by each thread

is local to the processor on which that thread is running.

In OpenMP, a programmer can specify thread-parallel

computation, but its memory model assumes a single

uniform memory and provides no facilities for laying

out data onto specific distinct memory space. And,

no loop scheduling method is provided to schedule in

a way that recognizes the data access made by that

iteration.

We have extended the OpenMP with a set of direc-

tives to allow the programmer to specify the placement

of data and computation on the shared address space.

The data mapping directive specifies a mapping pattern

of array objects in the address space. It is borrowed

from High Performance Fortran(HPF). For example,

the following directive specifies block mapping with

the second dimension of a two-dimensional array A:

In Fortran:

dimension A(100,200)

!$omn mapping(A(*,block))

In C:

double A[200][100];

#pragma omni mapping(A[block][*])

The asterisk (*) for the first dimension means that

the elements in any given column should be mapped in

the same node. The block keyword for the second

dimension means that for any given row, the array ele-
ments are mapped on each node in large blocks of ap-
proximately equal size. As a result, the array is divided
into contiguous groups of columns, with home nodes
for each group assigned to the same node. The keyword
cyclic (n) can be used to specify cyclic mapping.
The alignment mapping directive is also provided to
align data mapping of array to other arrays.

Since the consistency is maintained on a page-basis
in SCASH, only page-granularity consistency is sup-
ported. If mapping granularity is finer than the size
of the page, the mapping specification may not be ef-
fective. In contrast to HPF, each processor may have
the entire copy of the array in the same shared address
space. In this sense, this directive specifies “mapping”
in the memory space, not “distribution” in HPF.

In addition to the data mapping directive, we have
added a new loop scheduling clause, “affinity”, to
schedule the iterations of a loop onto threads associ-
ated with the data mapping. For example, the iterations
are assigned to the processor having the array element
a[i][*] in the following code:

#pragma omp for schedule(affinity,
a[i][*])
for(i = 1; i < 99; i++)
for(j = 0; j < 200; j++)
a[i][j] = . . .;

Note that, in the current implementation, mapping
and loop scheduling for only one of the dimensions
can be specified because our current OpenMP compiler
supports single level parallelism.

In C programs, a data is often allocated by the stan-
dard memory allocation functionmalloc. In SCASH,
in order to allocate the data in a shared memory
space, the SCASH-specific memory allocation function
ompsm galloc must be used in stead of malloc.
This function takes the arguments which specify the
data mapping of the allocated address space. The pro-
grammer may allocate the data mapped into a particular
processor, or the data with block mapping.

3.4. Compatibility with SMP programs

From the viewpoint of the programmer, our imple-
mentation for the SDSM is almost compatible with one
for the hardware SMP with the following few excep-
tions:

– In a cluster environment, I/O operations are per-
formed independently in each node. The file de-
scriptor allocated in a node cannot be used in dif-
ferent nodes.

M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler 127

Table 1

Execution time (in seconds) and Speedup in pcc2 (Pentium Pro 200MHz, 256MB memory, Myrinet

network, Linux)

No. of nodes seq 2 4 8 16 32

lap/BLK 17.74 (1) 14.30 (1.24) 7.84 (2.26) 4.69 (3.78) 2.88 (6.16) 1.79 (9.91)

lap/RR 17.74 (1) 49.39 (–) 33.88 (–) 20.15 (–) 12.87 (1.38) 10.15 (1.75)

cg/BLK 83.79 (1) 48.90 (1.73) 29.49 (2.84) 20.86 (4.02) 18.08 (4.63) 19.65 (4.26)

cg/RR 83.79 (1) 55.20 (1.52) 33.88 (2.47) 23.33 (3.59) 18.83 (4.44) 19.73 (4.24)

– In C OpenMP programs, the variables declared

in external libraries must be declared as thread-

private. Global variables without threadprivate

are re-allocated in a shared address space by the

compiler.

– A dynamically allocated heap by using standard

malloc is not shared. Use the ompsm galloc

instead, as described in the previous section.

– The number of threads is given by the command

line of the SCASH system run command scrun,

not by the OpenMP environment variable.

4. Performance evaluation

4.1. Data mapping and scalability

We take two kinds of benchmarks to examine the

effect of data mapping and scalability. The bench-

mark “lap” is a simple Laplace equation solver with

a 5-point stencil operation (1024*1024 and 50 itera-

tions). The benchmark “cg” is the NAS parallel bench-

mark CG (version 1) of class A. Both programs are

written in C OpenMP. Table 1 shows the preliminary

performance on the RWC PC Cluster II, (pcc2: Pen-

tium Pro 200 MHz, 256 MB memory, Myrinet network,

Linux). In SCASH, the home nodes are assigned to the

pages in a round-robin manner in the order of address

as the default. The execution time using this default

home node allocation is indicated with RR. The execu-

tion time with BLK shows the performance when array

objects are mapped by block mapping on the largest

dimension. As a result, the large shared objects are

equally divided into successive blocks for nodes. No

scheduling clause is specified for any loops in either

program. The column “seq” indicates the execution

time of the sequential program compiled without any

OpenMP directives.

In “lap” benchmark, we found that the home node

mapping gives great impact on the performance. In

each iteration, all elements in the large array are up-

dated. At the barrier operation at the end of each it-

eration, modified elements are transfered to update the

home pages, resulting in a large amount of traffic in
“RR”. In BLK, the default loop scheduling matches
the block mapping of the arrays. Most elements are
referenced by the processor that is the home node for
the pages containing the elements. The performance
scales up to 16 nodes in this case. If a different loop

scheduling such as cyclic scheduling was specified to
the loop, the result would be greatly different.

In “cg”, we found that the data mapping has less of
an effect than in “lap”, and its performance does not
scale on more than 8 nodes. The major computation
in “cg” is a sparse matrix vector multiplication. The
large matrix is a read-only object so that the copy of

the object is re-used in each iteration. The vectors are
referenced and updated according to the data of the
matrix. Since the elements in the vector are randomly
referenced in this benchmark, all-to-all communication
is required at the end of the parallel loops. This limits
the scalability in SCASH.

For OpenMP programs for SCASH, the compiler

maps the array objects using block mapping when no
particular mapping is specified. This is sometime use-
ful because the block mapping may match default loop
scheduling in our compiler, as seen in the results of
“lap”.

It should be noted that the overhead caused by rewrit-
ing global variable references by indirect pointers is
very small in these benchmarks.

4.2. Performance tuning using the data mapping

directives

We have parallelized some benchmarks in the NAS
parallel benchmark suite, based on serial version 2.3,
using OpenMP. For parallelization, we simply added

OpenMP directives, and did not modify the original
code. To examine the scalability of these programs on
hardware-supported shared memory multiprocessors,
Fig. 3 shows the performance of our OpenMP version
of BT and SP on a COMPAQ ProLiant 6500 (Pentium II
Xeon 450 MHz, 1 GB memory, 4 CPU SMP, Linux) and
a Sun E450 (Ultra SPARC 300 MHz, 1 GB memory,

4 CPU SMP, Solaris 2.6) by using the SMP version of
our compiler.

128 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

0

500

1000

1500

2000

2500

3000

3500

COMPAQ ProLiant
6500

SUN E450

SP
BT

e
xe

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

S 2 4

COMPAQ ProLiant
6500 SUN E450

S 2 4 S 2 4 S 2 4

BTSP

number of
processors

Fig. 3. Performance of hardware-supported shared memory multiprocessors.

Table 2

Execution time (in seconds) and Speedup of NAS parallel benchmarks in

OpenMP on compas (Pentium II Xeon 450MHz, 1GB memory, Myrinet

network, Linux)

No. of nodes seq 2 4 8

SP 2.3omp 1807.7 1319.6 (1.37) 821.3 (2.20) 708.2 (2.55)

SP 2.3opt – 1235.8 (1.46) 753.0 (2.40) 462.7 (3.91)

SP PBN-3.0b 1512.9 1441.7 (1.05) 923.6 (1.64) 610.8 (2.48)
BT 2.3omp 2302.1 1413.0 (1.63) 777.3 (2.96) 491.0 (4.69)

BT 2.3opt – 1360.5 (1.69) 754.8 (3.05) 413.8 (5.56)

BT PBN-3.0b 1456.2 1048.4 (1.39) 621.6 (2.34) 373.3 (3.90)

Table 2 shows the performance of the NPB OpenMP
benchmarks on our COMPaS Cluster (compass: Pen-

tium II Xeon 450MHz,1GB memory, Myrinet network,

Linux). The size of all benchmarks is class A. The col-
umn “seq” indicates the execution time of the sequen-

tial program compiled without any OpenMP directives
respectively.

We eliminated unnecessary barrier operations by
adding “nowait” clauses at the end of some parallel

loops to reduce unnecessary consistency traffic. If a

variable can be referenced within its own processor lo-
cally, we made the variable “threadprivate” to reduce

the amount of shared data. The rows indicated by
“omp” indicate the performance using only the

OpenMP standard directives.

PBN-3.0b (Programming Baseline for NPB) [6] is a
new OpenMP benchmark suite of NAS parallel bench-

marks released by the NASA Ames Lab. The programs
in this suite are optimized from those of NPB 2.3. The

rows indicated by “PBN-3.0b” show the performance
of this benchmark on the SCASH.

We have tuned the performance of our OpenMP NPB

benchmarks using data mapping directives and affin-
ity loop scheduling. The rows indicated with “opt”

show the optimized performance by our extended di-

rectives. Both benchmarks, BT and SP, solve multiple

independent systems in three dimensional space which

are stored in multi-dimensional arrays. For example,

we specified block mapping with the second largest

dimension for the four-dimensional array rhs in the

benchmark SP as follows:

dimension rhs(0:IMAX/2*2,

0:JMAX/2*2, 0:KMAX/2*2, 5)

!$omn mapping(rhs(*,*,block,*))

One loop in the SP was scheduled as follows:

do m = 1, 5

!$omp do schedule(affinity,

rhs(*,*,k,*))

do k = 1, grid points(3)-2

do j = 1, grid points(2)-2

do i = 1, grid points(1)-2

u(i,j,k,m) = u(i,j,k,m)

+ rhs(i,j,k,m)

end do

end do

end do

!$omp end do nowait

end do

M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler 129

In this loop, the iterations for k are assigned to the

processor which has the elements rhs(*,*,k,*).

The benchmark BT scales better than the bench-

mark SP because BT contains more computations than

SP. Each sub-dimension of the array is accessed in

three phases of x solve, y solve, and z solve

for each axis in the three-dimensional space. To par-

allelize these programs, the arrays are mapped with

block mapping on the dimension corresponding to z.

Although this mapping makes two routines, x solve

andy solve, faster, thez solve routine never scales

because the data mapping does not match the access

pattern of this routine. For example, most loops in

x solve ware parallelized at the most outer loop as

shown in the above example. On the other hand, the

loops in z solve ware parallelized as follows:

do k = 0, grid points(3)-3

!$omp do

do j = 1, grid points(2)-2

do i = 1, grid points(1)-2

k1 = k + 1

. . ..

rhs(i,j,k1,m) = lhs(i,j,k,m)

+ . . .

. . .

end do

end do

!$omp do end

end do

The most outer loop cannot be parallelized because

the loop has the dependency between the iterations.

The loops ware parallelized at the inner loop, resulting

in mismatch between data mapping and iterations. To

improve the performance of all routines, either remap-

ping or re-ordering of data would be required to make

the access pattern of each routine match the data map-

ping.

5. Related works

H. Lu et.al. [4] presents an OpenMP implementa-

tion for the TreadMarks [1] software DSM. Their com-

piler only supports a subset of OpenMP. Instead, they

propose some modifications of the OpenMP standard

to make OpenMP programs run easier and more ef-

ficiently. This approach may lose the portability of

OpenMP programs. Our compiler supports a full set of

OpenMP so that OpenMP compliant programs run on

SDSMs without any modifications.

Hu [5] also presents an OpenMP for SMP clusters.

They discuss performance on the modified TreadMarks

software distributed shared memory system which uses

POSIX threads with an SMP nodes.

The SGI OpenMP compiler also supports similar

extensions to specify data mapping and affinity loop

scheduling for their hardware-supported DSM system.

Bricak et al. [3] proposes similar extensions to

OpenMP for NUMA machines in the COMPAQ

OpenMP compiler. While we support only one-

dimensional mapping with page granularity, they sup-

port multi-dimensional mapping and element-wise

granularity by exchanging dimensions. The element-

wise granularity would be a novel technique to exploit

locality for our system.

6. Concluding remarks

We have presented an OpenMP compiler for a full

set of OpenMP API on the software distributed shared

memory system, SCASH, and examined its perfor-

mance on our clusters. The compiler transforms

OpenMP programs so that shared global variables are

allocated at run time by SCASH primitives. Our im-

plementation enables OpenMP programs to run trans-

parently on the cluster environments with reasonable

speedup, as shown in results of our experiment.

The page home mapping is the key to achieving good

performance on the SDSM. We have added a set of

directives to specify data mapping in a flexible way,

which gives application-specific knowledge to the com-

piler. The loop scheduling used to exploit locality for

data mapping can be used to tune the performance by

reducing the cost of consistency management.

When the data access pattern does not match the

data mapping, the performance degrades in the SDSM

more seriously than in the hardware NUMA system.

To improve the performance in programs which have

different access patterns, remapping and re-ordering of

data would be required.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Raja-
mony, W. Yu and W. Zwaenepoel, Treadmarks: Shared memory

computing on networks of workstation, IEEE Computer 29(2)

(Feb. 1996), 18–28.

[2] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto and

T. Takahashi, Dynamic Home Node Reallocation on Software

Distributed Shared Memory, In Proc. of HPC Asia 2000, Bei-

jing, China, May 2000, pp. 158–163.

130 M. Sato et al. / Cluster-enabled OpenMP: An OpenMP compiler

[3] J. Bircsak, P. Craig, R. Crowell, Z. Cvetanovic, J. Harris, C.A.

Nelson and C.D. Offner. Extending OpenMP For NUMA Ma-

chines, In Proc. of Supercomputing 2000 (CD-ROM), Nov.

2000.

[4] H. Lu, Y.C. Hu and W. Zwaenepoel, OpenMP on Network

of Workstations, In Proc. of Supercomputing ‘98 (CD-ROM),

Nov. 1998.
[5] H. C. Hu and H. Lu, A.L. Cox and W. Zwaenepoel, OpenMP

for Networks of SMPs, Journal of Parallel and Distributed

Computing 60(12) (Dec. 2000), 1512–1530.

[6] H. Jin, M. Frumkin and J. Yan, The OpenMP Implementa-

tion of NAS Parallel Benchmarks and Its Performance, NAS

Technical Report NAS-99-011, Oct. 1999.

[7] M. Sato, S. Satoh, K. Kusano and Y. Tanaka, Design of OpenMP

Compiler for an SMP Cluster, In Proc. of 1st European Work-

shop on OpenMP (EWOMP’99), Lund, Sweden, Sep. 1999,

pp. 32–39.

[8] H. Tezuka, A. Hori, Y. Ishikawa and M. Sato, PM: An Operat-
ing System Coordinated High Performance Communication Li-

brary, Lecture Notes in Computer Science, High-Performance

Computing and Networking, 1997, pp. 708–717.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

