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Abstract: We revisit the classical approach to cluster expansions, based on tree graphs,
and establish a new convergence condition that improves those by Kotecký-Preiss and
Dobrushin, as we show in some examples. The two ingredients of our approach are: (i)
a careful consideration of the Penrose identity for truncated functions, and (ii) the use
of iterated transformations to bound tree-graph expansions.

1. Introduction

Cluster expansions, originally developed to express thermodynamic potentials as power
series in activities, are at the heart of important perturbative arguments in statistical
mechanics and other branches of mathematical physics. The classical approach to obtain
convergence conditions was based on combinatorial considerations [10, 20], which
were greatly simplified through the use of tree-graph bounds [4, 2]. A completely new
inductive approach originated in the work of Kotecký and Preiss [8], later refined by
Dobrushin [5, 6] and many others [12, 1, 11, 19, 21, 18]. This later approach is mathe-
matically very appealing and, in its original version [8], it even disposes of any reference
to power series, becoming, in Dobrushin’s words, a “no-cluster-expansion” approach.
The combinatorial approach, however, kept its adepts who reformulated it in a very clear
and compact way [13] and showed how it can lead to bounds at least as good as those
given by Kotecký and Preiss [15].

In this paper, we revisit the classical combinatorial approach and point out that it
can be used, in a rather simple and natural way, to produce improved bounds on the
convergence region and the sum of the expansion. Our approach has two ingredients.
First, we exploit an identity, due to Oliver Penrose [14], relating the coefficients of the
expansion to a family of trees determined by compatibility constraints. (As a matter
of fact, we learnt this identity from the nice exposition in [13, Sect. 3].) Successive
approximations are obtained by considering larger families of trees that neglect some
of the constraints. If only the very basic constraint is kept (links in the tree must relate
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incompatible objects), the Kotecky-Preiss condition emerges. To the next order of
precision (branches must end in different objects) Dobrushin’s condition is found. By
refining this last constraint (branches’ ends must be mutually compatible rather than
just different) we obtain a new convergence condition which leads to improvements in
several well-studied cases. In particular, for polymers on a graph—for which compati-
bility means non-intersection—our criterion yields the original polymer condition due
to Gruber and Kunz [7, formula (42)]. This somehow forgotten condition—which is
better than the ones usually applied—was obtained in the very paper that introduced the
polymer formalism, through the use of Kirkwood-Salzburg equations.

Our second ingredient is a strategy to sum tree-graph expansions that is comple-
mentary to the classical one. The latter is based on an inductive “defoliation” of tree
diagrams, which are summed “from the leaves in” with the help of the convergence
condition. Here, we show instead that tree expansions are generated by successive
applications of a transformation defined by the convergence condition. Besides leading
to an improved convergence criterion, this point of view presents, in our opinion, several
advantageous features. On the conceptual side, it shows a direct link between the conver-
gence of tree expansions and inequalities involving the functions found in Kotecký-Preiss
and Dobrushin (and our) conditions: The inequalities ensure that the iterative procedure
leads to a finite expansion. From a more practical point of view, it is easy to see that
finite iterations of the transformations yield progressively sharper bounds on the tree
expansions. Thus, our approach produces, for each convergence condition, an associa-
ted sequence of upper bounds for the pinned free energy. In particular the majorizing
tree expansions are shown to be fix points of the corresponding transformations. All this
information is absent in previous treatments.

Finally, regarding future work, our approach leaves ample room for extensions and
improvements. To emphasize this fact, we state a general result (Proposition 7) showing
how bounds on truncated functions translate into convergence criteria and associated
results. To establish our new criterion we used the Penrose identity in the most natural
and immediate way. Improvements should come from the incorporation of additional
tree conditions contained in the Penrose identity or, for specific models, through a more
accurate description of the compatibility constraints. Also, as emphasized in [18] and
reviewed in Sect. 4.1, there is a generalized Penrose identity which allows the use of
trees other than Penrose’s to characterize truncated functions. These alternative choices
may turn out to be of interest in particular settings.

Penrose identity, in its original or generalized form—and thus our approach—is valid
only for hard-core interactions (incompatibilities). The extension of our treatment to
polymer systems subjected to softer interactions is another direction for further research.

2. Set Up and Previous Results

We adopt the following abstract polymer setting. The starting point is an unoriented
graph G = (P, E)—the interaction graph—on a countable vertex set. The vertices
γ ∈ P are called polymers for historical reasons [7]. The name is misleading; Dobrushin
[6] proposes to call them animals, but the traditional name holds on. The edge set
corresponds to an incompatibility relation: Two polymers γ, γ ′ are incompatible if
{γ, γ ′} ∈ E , in which case we write γ � γ ′. Otherwise they are compatible and we
write γ ∼ γ ′. (Unfortunately, this notation—well established within the mathematical-
physics community—is the opposite to that adopted in graph theory.) The set of edges
is arbitrary, except for the assumption that it contains all pairs of the form {γ, γ }, that is,
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every polymer is assumed to be incompatible with itself. In particular vertices can be of
infinite degree (each polymer can be incompatible with infinitely many other polymers).
This happens, for instance, for graphs associated to gases of low-temperature contours
or “defects”.

The physical information of each polymer model is given by the incompatibility
relation and a family of activities z = {zγ }γ∈P ∈ C

P . For each finite family � ⊂ P ,
these ingredients define complex weights on the set of subsets of �:

W�

({γ1, γ2, . . . , γn}) = 1

��(z)
zγ1 zγ2 · · · zγn

∏

j<k

11{γ j ∼γk } (2.1)

for n ≥ 1 and W�(∅) = 1/��, where

��(z) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn)∈�n

zγ1 zγ2 . . . zγn

∏

j<k

11{γ j ∼γk }. (2.2)

In physical terms, the measure (2.1) corresponds to the grand-canonical ensemble of
a polymer gas with activities z and hard-core interaction defined by the incompatibility
relation. The abstract formalism makes it equivalent to a lattice gas on the graph G
with self- and nearest-neighbor hard-core repulsion. The normalization constant (2.2)
is the grand-canonical partition function in the “volume” �. Cluster expansions allow
the control of the measures (2.1) uniformly in � and absolutely in the activities. [Thus,
the control extends to the unphysical region of non-positive (complex) activities, where
the expressions on the right-hand side of (2.1) do not define probability measures.] The
basic cluster expansion is the formal power series (“F”) of the logarithm of the partition
function, which takes the form (Mayer expansion, see e.g. [17])

log ��(z)
F=

∞∑

n=1

1

n!
∑

(γ1,...,γn)⊂�n

φT (γ1, . . . , γn) zγ1 . . . zγn (2.3)

with

φT (γ1, . . . , γn) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 n = 1
∑

G⊂G{γ1,...,γn }
G conn. spann.

(−1)|E(G)| n ≥ 2 , G{γ1,...,γn} connected

0 n ≥ 2 , G{γ1,...,γn} not connected

, (2.4)

where G{γ1,...,γn} is the graph of vertices {1, . . . , n} and edges
{{i. j} : γi � γ j , 0 ≤

i, j ≤ n
}

and G ranges over all its connected spanning subgraphs; here E(G) is the
edge set of G. The functions φT are the truncated functions of order n (also called Ursell
functions). The families {γ1, . . . , γn} such that G{γ1,...,γn} is connected are the clusters.

A telescoping argument shows that the properties of the measures (2.1) are determined
by the one-polymer ratios (“pinned” expansions)

[
log

��

��\{γ0}

]
(z)

F=
∞∑

n=1

1

n!
∑

(γ1,...,γn )⊂�n

∃i : γi =γ0

φT (γ1, . . . , γn) zγ1 . . . zγn (2.5)
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for each γ0 ∈ �. A more efficient alternative is to consider instead the formal series

[ ∂

∂zγ0

log ��

]
(z)

F= 1 +
∞∑

n=1

1

n!
∑

(γ1,...,γn)⊂�n

φT (γ0, γ1, . . . , γn) zγ1 . . . zγn . (2.6)

This leads to the (infinite volume) formal power series

�γ0(ρ) := 1 +
∞∑

n=1

1

n!
∑

(γ1,...,γn)∈Pn

∣∣∣φT (γ0, γ1, . . . , γn)

∣∣∣ ργ1 . . . ργn , (2.7)

for ρ ∈ [0,∞)P—in which φT is replaced by
∣∣φT

∣∣—and its finite-volume versions ��
γ0

obtained by restricting the sum to polymers in �. The finiteness of the positive-term
series (2.7) for a certain ρ implies the absolute convergence of (2.3), (2.5) and (2.6),
uniformly in � for |z| ≤ ρ. This leads to the control of the measures (2.1) and their
� → P limit [6]. [Throughout this paper, operations and relations involving boldface
symbols should be understood componentwisely, for instance ρ ≤ µ indicates ργ ≤ µγ ,
γ ∈ P ; −z = {−zγ }γ∈P ; ρ � = {ργ �γ }γ∈P ; |z| = {∣∣zγ

∣∣}γ∈P , etc.]
The truncated functions satisfy the alternating-sign property

φT (γ0, γ1, . . . , γn) = (−1)n
∣∣∣φT (γ0, γ1, . . . , γn)

∣∣∣ . (2.8)

(This is a well known result, that appears, for instance, in [17, Theorem 4.5.3] where it
is attributed to Groeneveld [9]. Other proofs can be found in [11, 18] and in Proposition
5 below.) Thus, (2.6) and the �-restriction of (2.7) are related in the form

��
γ0

(ρ)
F=

[ ∂

∂zγ0

log ��

]
(−ρ) (ρ ∈ [0,∞)P ). (2.9)

In the sequel we focus on the convergence of the series (2.7) for positive activities. Its
convergence allows the removal of the label “F” in all precedent identities, and it implies
the inequalities

∣∣
∣∣
[ ∂

∂zγ0

log ��

]
(z)

∣∣
∣∣ ≤

[ ∂

∂zγ0

log ��

]
(− |z|) = ��

γ0
(|z|) ≤ �γ0(|z|), (2.10)

and
∣
∣∣∣
[
| log

��

��\{γ0}

]
(z)

∣
∣∣∣ ≤ −

[
log

��

��\{γ0}

]
(− |z|) ≤ ∣∣zγ0

∣∣ ��
γ0

(|z|) ≤ ∣∣zγ0

∣∣ �γ0(|z|).
(2.11)

A rather detailed study of different properties of these objects can be found in [18].
In the present general setting, two benchmark convergence conditions were published

in 1986 [8] and 1996 [5]. For comparison purposes it is useful to write them in the
following form. Suppose that for some ρ ∈ [0,∞)P there exists µ ∈ [0,∞)P such that

ργ0 exp
[ ∑

γ�γ0

µγ

]
≤ µγ0 (Kotecký-Preiss) (2.12)
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or

ργ0

∏

γ�γ0

(
1 + µγ

) ≤ µγ0 (Dobrushin) (2.13)

for each γ0 ∈ P . [Please note that the sum and product over γ here include γ0, which is
always incompatible with itself.] Then the power series (2.7) converges for such ρ and,
moreover,

ργ0 �γ0(ρ) ≤ µγ0 (2.14)

for each γ0 ∈ P .
The reader may be more familiar with the following forms of these conditions. The

change of variables µγ = ργ eaγ shows that condition (2.12) is equivalent to the exis-
tence of a ∈ [0,∞)P such that

∑

γ :γ�γ0

ργ eaγ ≤ aγ0 (Kotecký-Preiss) (2.15)

for each γ0 ∈ P , and (2.14) becomes � ≤ ea. The substitution µγ = eαγ − 1, on the
other hand, makes (2.13) equivalent to the existence of a ∈ [0,∞)P such that

ργ0 ≤
(

eαγ0 − 1
)

exp
(
−

∑

γ :γ�γ0

αγ

)
(Dobrushin) (2.16)

for each γ0 ∈ P .
The inequality

∏

γ�γ0

(
1 + µγ

) ≤ exp
[ ∑

γ�γ0

µγ

]
(2.17)

shows that the Dobrushin condition is an improvement over Kotecký-Preiss’. Neverthe-
less, the latter is particularly suited for some applications (see, for instance, [19]) and,
furthermore, can be extended to polymers with soft self- and two-body interactions.
By contrast, the Dobrushin condition can be extended to systems with soft two-body
interaction [19] but requires hard-core self-interaction. Looking to inequality (2.17) we
see that the difference between both criteria lies in factors µγ at powers higher than
two, which are absent in the left-hand-side. A quick illustration of the consequences
of this fact is provided by polymers subjected only to self-exclusion (each polymer is
compatible with everybody else, except itself). In this case �� = ∏

γ∈�(1 + zγ ) and

�γ0(ρ) =
∑

n≥0

ρn
γ0

F= 1

1 − ργ0

. (2.18)

The Kotecký-Preiss condition requires the existence of µ > 0 such that ργ0 eµγ0 ≤ µγ0

for each γo ∈ P , and this yields a radius of convergence for �γ0 equal to
supµγ0

µγ0 e−µγ0 = e−1. The Dobrushin condition, on the other hand, provides the
sharp estimate supµγ0

µγ0/(1 + µγ0) = 1.
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3. Results

3.1. New convergence criteria. Our new criterion involves the grand-canonical partition
functions �N ∗

γ0
, associated to the polymer families N ∗

γ0
= {γ ∈ P : γ � γ0}, γ0 ∈ P

(G-neighborhood of γ0, including γ0). These functions, defined in (2.2), can also be
written in the form

�N ∗
γ0

(µ) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn )∈Pn

γ0�γi , γi ∼γ j , 1≤i, j≤n

µγ1µγ2 . . . µγn (3.1)

because compatible polymers are different. Here is the practitioner’s version of our
criterion (a more detailed statement is given in Theorem 4 below).

Theorem 1. Let ρ ∈ [0,∞)P . If there exists a µ ∈ [0,∞)P such that

ργ0 �N ∗
γ0

(µ) ≤ µγ0 , ∀γ0 ∈ P, (3.2)

then the series �γ0(ρ) [defined in (2.7)] converges for such ρ and satisfies ργ0 �γ0(ρ) ≤
µγ0 .

The inequality

�N ∗
γ0

(µ) ≤
∏

γ�γ0

(
1 + µγ

)
(3.3)

shows that condition (3.2) is an improvement over Dobrushin’s condition—which in
turn is an improvement over Kotecký-Preiss’ condition. The improvement comes from
the fact that only monomials involving mutually compatible polymers are allowed in the
left-hand side. Such improvement comes, therefore, from two sources:

(I1) In �N ∗
γ0

there are no monomials involving triangle diagrams in G, namely pairs
of neighbors of γ0 that are themselves neighbors.

(I2) In �N ∗
γ0

, the only monomial containing µγ0 is µγ0 itself, because γ0 is incompa-
tible with all other polymers in N ∗

γ0
.

Improvement (I2) is present whichever the graph G, and makes inequality (3.3) strict
except for the non-interacting example discussed circa (2.18). The terms corresponding
to (I1) and (I2) can be neatly separated by writing

�N ∗
γ0

(ρ) = ργ0 + �Nγ0
(ρ), (3.4)

where Nγ0 = N ∗
γ0

\ {γ0} (�∅ := 1). Using a bound similar to (3.3) but for �Nγ0
we

obtain another criterion—halfway between ours and Dobrushin’s—which may be useful
in some settings.

Corollary 2. Let ρ ∈ [0,∞)P . If there exists a µ ∈ [0,∞)P such that

ργ0

[
µγ0 +

∏

γ �γ0
γ 
=γ0

(
1 + µγ

)] ≤ µγ0 , (improved Dobrushin) (3.5)

for all γ0 ∈ P , then the series �γ0(ρ) converges for such ρ and satisfies ργ0 �γ0(ρ) ≤
µγ0 .
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Our condition (3.2) coincides with (3.5) for triangle-free graphs G (ex. trees, Z
d ),

and it is maximally better for complete (“triangle-full”) graphs. This and other examples
will be analyzed below.

Summing up, available convergence conditions are of the form

ργ0 ϕγ0(µ) ≤ µγ0 (3.6)

with

ϕγ0(µ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

exp
[∑

γ�γ0
µγ

]
(Kotecký-Preiss)

∏
γ�γ0

(
1 + µγ

)
(Dobrushin)

µγ0 +
∏

γ �γ0
γ 
=γ0

(
1 + µγ

)
(improved Dobrushin)

�N ∗
γ0

(µ) (ours)

. (3.7)

Each condition is strictly weaker than the preceding one except for the facts that the
improved Dobrushin condition coincides with Dobrushin’s if the polymers are
non-interacting (only self-excluding) and with our condition if G does not include any
triangle diagram. The corresponding criteria yield information on two issues: (i) regions
of convergence, and (ii) upper bounds on each �γ0 .

Regarding the first issue, it is known that the region of absolute convergence of cluster
expansions has the properties of being a “down-region”—convergence for ρ entails
convergence for ρ̃ ≤ ρ—and log-convex. The latter means that if the series converges
for ρ and ρ̃ then it converges for ρλ ρ̃

1−λ for 0 ≤ λ ≤ 1 [18]. It is reassuring to verify
that these properties also hold for the regions of validity of conditions (3.6)/(3.7). Indeed,
the “down” character is obvious, and the log-convexity property is a consequence of the
following proposition:

Proposition 3. Suppose 0 ≤ λ ≤ 1 and let us denote

RCD =
{
(ρ,µ) ∈ [0,∞)∞ × [0,∞)∞

∣
∣∣ condition CD is satisfied

}
, (3.8)

where “CD” stand for each of the conditions in (3.6)/ (3.7). Then,

(ρ,µ) , (ρ̃, µ̃) ∈ RCD =⇒
(
ρλ ρ̃

1−λ
, µλ µ̃

1−λ
)

∈ RCD. (3.9)

Proof. Given the form (3.6) of the conditions, we see that it is enough to prove that

ϕγ0(µ)λ ϕγ0(µ̃)1−λ ≥ ϕγ0(µ
λ µ̃

1−λ
) (3.10)

for each of the functions ϕγ0 in (3.7). For the last three functions this is a consequence
of the Hölder inequality in the form

( n∑

i=1

ai

)λ ( n∑

i=1

bi

)1−λ ≥
n∑

i=1

aλ
i b1−λ

i (3.11)

(ai , bi ≥ 0, i = 1, . . . , n). For the Kotecký-Preiss function, (3.10) is a consequence
of the inequality λa + (1 − λ)b ≥ aλb1−λ, valid for a, b ≥ 0 (this is an elementary
inequality, see [16, p. 112]). ��
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Our results on the second issue (upper bound on �) are contained in the following
strengthening of Theorem 1. Its formulation relies on the map iterates used in Sect. 4.2
to sum tree-graph expansions. For each fixed ρ ∈ [0,∞)P let us consider the map
Tρ : [0,∞)P −→ [0,∞]P defined by

Tρ(µ) := ρ ϕ(µ), (3.12)

where ϕ is any of the functions defined in (3.7). Denote T n
ρ = Tρ(T n−1

ρ ) the successive
compositions of Tρ with itself.

Theorem 4. Let ρ ∈ [0,∞)P be fixed and let Tρ be a map of the form (3.12)/ (3.7).
Assume there exists µ ∈ [0,∞)P satisfying (3.6), that is,

Tρ(µ) ≤ µ. (3.13)

Then:

(i) There exists ρ∗ ∈ [0,∞)P such that T n
ρ (ρ) ↗ ρ∗ and Tρ(ρ∗) = ρ∗.

(ii) For each n ∈ N,

ρ � ≤ ρ∗ ≤ T n+1
ρ (µ) ≤ T n

ρ (µ) ≤ µ. (3.14)

The deepest statement in this theorem is the first inequality in (3.14). The rest of the
theorem follows from the fact that for all choices (3.7)) of ϕ the map Tρ is monotonicity-
preserving and satisfies ρ ≤ Tρ(ρ) ≤ Tρ(µ) ≤ µ.

3.2. Comparison with previous criteria. To test our criterion we compare the estimates
of the regions of convergence provided by the criteria (3.6)–(3.7) for two families of
benchmark examples.

Polymer graphs with bounded maximum degree. These are examples where G has maxi-
mum degree � < ∞. We shall suppose that all polymers have equal activity ργ ≡ ρ for
all γ ∈ G, and therefore we search for equally constant functions µγ ≡ µ. The preceding
criteria take the form ρ ≤ µ/ϕ(µ) for appropriate functions ϕ, and the maximization
of the right-hand side with respect to µ yields the best lower bounds of the radius of
convergence of (2.7) [and hence of (2.3)].

In Table 1 we summarize both convergence criteria and best estimates on the conver-
gence radii obtained with Kotecký-Preiss, Dobrushin and improved Dobrushin condi-
tions. The only feature of the graph G relevant for these criteria is the maximal degree
� of the vertices. Therefore they provide the sharpest results for graphs which lack any
other feature and whose vertices have all degree �. These are the regular trees with
branching rate � − 1. This fact—trees supply a worst-case condition that can be used
whenever we ignore, or decide to ignore, any topological information on the graph—has
been emphasized in [19] (see, also, Remark 6). For regular trees, the weak Dobrushin
condition coincides with ours, and there is a further, optimal condition, due to Scott and
Sokal [18], which we have included in the last line of the table. This condition is derived
through a sequence of volume-dependent Dobrushin conditions. It would be interesting
to see whether a similar strategy could be developed within our approach.

In Table 2 we show the improved results obtained from the application of our criteria
to some popular examples. The values of R in the first two lines are to be compared
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Table 1. Convergence criteria and lower bounds (R�) on the radius of convergence when G is a graph with
maximal degree �. A star indicates that the value is exact for the (� − 1)-regular tree

Condition Criterion R� R6

Kotecký-Preiss ρ ≤ µ e−(�+1)µ 1

(� + 1) e
0.0525

Dobrushin ρ ≤ µ

(1 + µ)�+1

⎧
⎨

⎩

��

(� + 1)�+1 � ≥ 1

1 (∗) � = 0
0.0566

Improved Dobrushin

=(3.2) for (�−1)-reg. tree ρ ≤ µ

µ + (1 + µ)�

⎧
⎪⎨

⎪⎩

[

1 +
��

(� − 1)�−1

]−1

� ≥ 2

(� + 1)−1 (∗) � = 0, 1

0.0628

Scott-Sokal [18, Theorem 5.6]
(� − 1)(�−1)

��
(∗) 0.067

Table 2. Convergence criteria and lower bounds (R) on the radius of convergence obtained with condition
(3.2) for some graphs G of finite degree. A star indicates an exact value

Model Criterion R

Domino in Z
2 ρ ≤ µ

1 + 7µ + 9µ2 0.0769

Triangular lattice ρ ≤ µ

1 + 7µ + 8µ2 + 2µ3 4R3 + 8R2 = 1, R ≈ 0, 078

(�+1)-complete graph ρ ≤ µ

1 + (� + 1)µ
(� + 1)−1 (∗)

with the values for R6 in Table 1, and that of the complete graph with the values of
R�. The source of these improvements is, of course, the sensitivity of our new criterium
to triangle diagrams. In particular, our criterion gives the exact value of the radius of
convergence for the complete graph, for which � = [1 − (� + 1)µ]−1.

Polymers on a graph. This is the general example of cluster expansions for graphs with
vertices of infinite degree. Applications include contour ensembles of low-temperature
phases, geometrical objects of high-temperature expansions, random sets of the Fortuin-
Kasteleyn representation of the Potts model, …The general setup for these models is a
polymer family formed by the finite parts of a given set V with incompatibility defined
by overlapping. (Usually, V is formed by the vertices of a graph with respect to which
polymers form connected sets.)

For these systems it is useful and traditional to pass to exponential weight functions
a(γ ) defined by µγ = ργ ea(γ ). Condition (3.2) becomes

1 +
∑

n≥1

∑

{γ1,...,γn }⊂P
γ0∩γi 
=∅ , γi ∩γ j =∅ , 1≤i, j≤n

n∏

i=1

ργi ea(γi ) ≤ ea(γ0). (3.15)

From the constraint in the sum we only keep the fact that each of the polymers γ1, . . . , γn
must intersect different points in γ0 (otherwise they would overlap). This implies: (i)
n ≤ |γ0|, and (ii) there are n different points in γ0 touched by γ1 ∪· · ·∪γn . These points
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Table 3. Convergence conditions for general polymer models. Our condition (3.17) with a(γ ) = a |γ | coin-
cides with that by Gruber and Kunz

Kotecký-Preiss Dobrushin Gruber-Kunz

sup
x

∑

γ∈P :γ�x

ργ ea|γ | ≤ a sup
x

∏

γ∈P :γ�x

[
1 + ργ ea|γ |] ≤ ea sup

x

∑

γ∈P :γ�x

ργ ea|γ | ≤ ea − 1

can be chosen in
(|γ0|

n

)
ways. Hence, the left-hand side of (3.15) is less than or equal to

1 +
|γ0|∑

n=1

(|γ0|
n

)[
sup
x∈γ0

∑

γ∈P
γ�x

ργ ea(γ )

]n

=
[

1 + sup
x∈γ0

∑

γ∈P
γ�x

ργ ea(γ )

]|γ0|
, (3.16)

which leads us to the following sufficient condition for (3.15):

sup
x∈γ0

∑

γ∈P
γ�x

ργ ea(γ ) ≤ ea(γ0)/|γ0| − 1. (3.17)

This condition entails the finiteness of �:

�γ0(ρ) ≤ ea(γ0). (3.18)

In practice, the function a(γ ) is chosen to be of the form a(γ ) = a |γ |, with a a
positive constant. This choice, which in many cases is the expected optimal asymptotic
behavior of a(γ ) for large polymers, simplifies the procedure reducing it to the deter-
mination of the single constant a. Our emphasis in a general dependence is not just
mathematical finesse. As dominant contributions come from the smallest polymers, a
dependence of a(γ ) dealing more accurately with them would improve precision. Also,
the criteria are usually presented in the slightly weaker form obtained by replacing the
supremum over x ∈ γ0 by a supremum over x ∈ V. In this form, a condition like (3.17)
is, in fact, present in the seminal paper by Gruber and Kunz [7] [formula (42) with nor-
malization φ(x) = 1 and parametrization ξ0 = ea]. Table 3 lists the different conditions
with the preceding usual choices.

4. Proofs

The argument has two distinct parts. First, we use the Penrose tree identity for the
truncated functions to turn (2.7) into a sum over trees—a tree-graph expansion. In the
second part, we control this expansion through a natural iterative procedure defined by
the functions (3.7).

4.1. Partitionability and the Penrose identity. Formula (2.4) involves a huge number of
cancellations. Penrose [14] realized that they can be optimally handled through what
is now known as the property of partitionability of the family of connected spanning
subgraphs. While his original argument involved a particular partition scheme, it works
equally well for any other choice, as emphasized in [18]. For the sake of completeness,
and due to its potential use for extensions and alternative versions of our criterion, we
start by reproducing this simple but deep argument. Our exposition is based on [18, Sect.
2.2].
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Let us consider a finite graph G = (U, E) and denote CG the set of all connected
spanning subgraphs of G and TG the family of trees belonging to CG. Further, we consider
CG partial ordered by bond inclusion:

G ≤ G̃ ⇐⇒ E(G) ⊂ E(G̃). (4.1)

If G ≤ G̃, let us denote [G, G̃] the set of Ĝ ∈ CG such that G ≤ Ĝ ≤ G̃. Let us call a
partition scheme for the family CG any map R : TG → CG : τ �→ R(τ ) such that

(i) E
(
R(τ )

) ⊃ E(τ ), and
(ii) CG is the disjoint union of the sets [τ, R(τ )], τ ∈ TG.

A number of such partition schemes are by now available (see references in [18, Sect.
2.2]). The one proposed by Penrose is constructed in the following way: Let us fix an
enumeration v0, v1, . . . , vn for the vertices of G, and for each τ ∈ TG (thought of as
a tree rooted in v0). For any vertex vi of τ , let d(i) be the tree distance of the vertex
vi to v0 and let vi ′ be de precedessor of vi , i.e. d(i ′) = d(i) − 1 and {vi ′ , vi } ∈ E(τ ).
Penrose’s scheme associates to τ the graph RPen(τ ) formed by adding (only once) to τ

all edges {vi , v j } ∈ E \ E(τ ) such that either:

(p1) d(i) = d( j) (edges between vertices of the same generation), or
(p2) d( j) = d(i) − 1 and i ′ < j (edges between vertices one generation away).

For a partition scheme R, let us denote

TR :=
{
τ ∈ TG

∣∣
∣ R(τ ) = τ

}
(4.2)

(set of R-trees). In particular, TRPen is the set of Penrose trees. The following is the
generalized version of Penrose identity.

Proposition 5.
∑

G∈CG

(−1)|E(G)| = (−1)|V|−1
∣∣TR

∣∣ (4.3)

for any partition scheme R.

Proof. For any numbers xe, e ∈ E, we have
∑

G∈CG

∏

e∈E(G)

xe =
∑

τ∈TG

∏

e∈E(τ )

xe

∑

F⊂E(R(τ ))\E(τ )

∏

e∈F
xe

=
∑

τ∈TG

∏

e∈E(τ )

xe

∏

e∈E(R(τ ))\E(τ )

(1 + xe).

(4.4)

The first equality is due to property (ii) of partition schemes. If xe = −1, the last factor
kills the contributions of any tree τ with E(R(τ )) \ E(τ ) 
= ∅. Furthermore, for any
tree

∣∣E(τ )
∣∣ = |V| − 1. ��

We see that the hard-core condition is crucial for the identity. For polymer models
with soft repulsion, only |1 + xe| ≤ 1 is guaranteed, and this leads to the inequality

∣∣∣
∑

G∈CG

∏

e∈E(G)

xe

∣∣∣ ≤
∑

τ∈TG

∏

e∈E(τ )

|xe| ≤ |TG|. (4.5)
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This much weaker inequality is the one used in traditional treatments of the tree expansion
[4, 2].

The previous proposition applied to the Penrose scheme implies
∣∣∣φT (γ0, γ1, . . . , γn)

∣∣∣ =
∑

τ∈T 0
n

11{τ∈TPen(γ0,γ1,...,γn)}, (4.6)

where T 0
n is the set of (labeled) trees with vertices {0, 1, . . . , n} rooted in 0, and

TPen(γ0, γ1, . . . , γn) denotes the Penrose trees on the graph G{γ0,γ1,...,γn} (with the
canonical enumeration of vertices). Similar formulas are valid replacing “Pen” by any
partition scheme R.

Remark 6. As the number of Penrose trees grows with the disappearance of triangle
diagrams, the value of � (resp. the region of convergence of the cluster expansion) for
a given graph G is bounded above by (resp. contains) that of a tree where each vertex
has a degree larger than or equal to that at G. Furthermore, the latter is bounded above
(resp. contains) that of a homogeneous tree with branching rates equal to the maximal
rate.

4.2. Trees and convergence. Replacing (4.6) in (2.7) we obtain a sum in terms of trees.
Traditionally, such expansions have been inductively summed a la Cammarota [4],
namely “from the leaves in”. Conditions of the type (3.6) guarantee the reproducibility
of the inductive hypothesis. Here we present a complementary approach, based on
generating the expansion through repeated application of a nonlinear map Tρ . Conditions
(3.6) prevent the successive partial sums to diverge.

The end product of this section is the following proposition. Each τ ∈ T 0
n is uni-

quely defined by the branching factor si of each vertex i and the labels i1, . . . , isi of its
descendants.

Proposition 7. Let G = (P, E) be a polymer system and assume there exist functions
cn : Pn+1 → [0,∞), for n ∈ N, invariant under permutations of the last n arguments
such that

∣∣∣φT (γ0, γ1, . . . , γn)

∣∣∣ ≤
∑

τ∈T 0
n

n∏

i=0

csi (γi , γi1 , . . . , γisi
). (4.7)

Consider the function ϕ : [0,∞)P → [0,∞]P defined by

ϕγ0(µ) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn)∈Pn

cn(γ0, γ1, . . . , γn) µγ1 . . . µγn (4.8)

for each γ0 ∈ P . Assume that, for a given ρ ∈ [0,∞)P there exists µ ∈ [0,∞)P such
that

ργ0 ϕγ0(µ) ≤ µγ0 (4.9)

for each γ0 ∈ P . Then,

(a) The cluster expansion (2.3) for the system G converges absolutely and uniformly
in � and in the activities z with |z| ≤ ρ.
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(b) Furthermore, if Tρ = ρ ϕ is the map defined as in (3.12) but with ϕ given by (4.8),
then

(i) There exist ρ∗, T∞
ρ (µ) ∈ [0,∞)P such that

T n
ρ (ρ) ↗

n→∞
ρ∗ , T n

ρ (µ) ↘
n→∞

T∞
ρ (µ). (4.10)

(ii) Tρ(ρ∗) = ρ∗.
(iii) For each n ∈ N,

ρ � ≤ ρ∗ ≤ T∞
ρ (µ) ≤ T n+1

ρ (µ) ≤ T n
ρ (µ) ≤ µ. (4.11)

The proof requires only elementary manipulations which, however, require some
previous considerations to introduce the necessary notation.

It is useful to visualize the maps (3.12) in diagrammatic form

(
Tρ(µ)

)

γ0
= ◦

γ0
+ ◦

γ0
•1 + ◦

γ0

���•1

���•2

+ · · · + ◦
γ0

�
�

•1

���•2
...�

�•n

+ · · · .

The sum is over all single-generation rooted trees. In each tree, open circles represents
a factor ρ, bullets a factor µ and vertices other than the root must be summed over all
possible polymers γ . At each vertex with n descendants, a “vertex function” cn/n! acts,
having as arguments the ordered n + 1-tuple formed by the polymer at the vertex, the
polymer at the top offspring, the polymer at the next offspring from the top,…, in that
order. With this representation, the iteration Tρ

2(µ) corresponds to replacing each of
the bullets by each one of the diagrams of the expansion for Tρ . This leads to rooted
trees of up to two generations, with open circles at first-generation vertices and bullets at
second-generation ones. In particular, all single-generation trees have only open circles.
Notice that the two drawings of Fig. 1 appear in two different terms of the expansion,
and hence should be counted as different diagrams. More generally, the kth iteration
of Tρ involves all possible rooted tree diagrams, counting as different those obtained
by permutations of non-identical branches. We shall call these diagrams planar rooted
trees. In each term of the expansion, vertices of generation k are occupied by bullets and
all the others by open circles.

Formally, the definition of planar rooted trees is determined by a labeling choice
which we fix as follows. There is a special vertex, labeled 0 (the root), placed, say,
at the leftmost position of the drawing. From there s0 branches emerge ending at the

(a) (b)

Fig. 1. Planar rooted trees defined by (a) s0 = s(0,1) = 2 and s(0,2) = s(0,1,1) = s(0,1,2) = 0; (b)
s0 = s(0,2) = 2 and s(0,1) = s(0,2,1) = s(0,2,2) = 0
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first-generation vertices. The value s0 = 0 describes the trivial tree with the root as
its only vertex. Otherwise these vertices are drawn along a vertical line at the right of
the root and labeled (0, 1), . . . (0, s0) with the second subscript increasing from the top
to the bottom of the line. The construction continues rightwards: Each of the vertices
(0, i), gives rise to a family of second-generation vertices (0, i, 1), . . . (0, i, s(0,i)) and
so on. The vertex v is of generation � if its label has the form v = (0, i1, . . . , i�)
with 1 ≤ i j ≤ s(0,i1,...,i j−1), 1 ≤ j ≤ � (i0 ≡ 0). The sequence of such branching
factors s(0,i1,...,i�) ∈ N ∪ {0} define the planar rooted tree. Let us denote T

0,k the set
of trees with maximal generation number k; T

0,0 being the trivial tree. Figure 1 shows
two different trees of T

0,2. We enumerate the vertices following the generation number
and the “top to bottom” order in case of equal generation. [This amounts to declaring
(0, i1, . . . , i�) < (0, i ′1, . . . , i ′

�′) if � < �′ and using lexicographic order if � = �′.]
A straightforward inductive argument shows that

(
T k
ρ (µ)

)

γ0
= ργ0

[k−1∑

�=0

R(�)
γ0

(ρ) + R(k)
γ0

(ρ,µ)
]

(4.12)

with

R(�)
γ0

(ρ) =
∑

t∈T
0,�

∑

(γv1 ,...,γv|Vt | )∈P |Vt |

|Vt |∏

i=0

1

svi !
csvi

(γvi , γ(vi ,1), . . . , γ(vi ,svi )
)

×ργ(vi ,1)
. . . ργ(vi ,svi )

(4.13)

and R(k)
γ0 (ρ,µ) has a similar expression but with the activities of the vertex of the kth

generation weighted by µ. In this expression Vt denotes the set of non-root vertices of
t and we agree that c0(γv) ≡ 1 and

∏
∅ ≡ 1. We are interested in the k → ∞ limit of

(4.12). Let us denote T
0 = ∪�T

0,�. These considerations make almost immediate the
proof of the following lemma which, together with a simple combinatorial argument,
proves Proposition 7.

Proposition 8. For some fixed ρ ∈ [0,∞)P , let Tρ be a map of the form (3.12)/ (4.8) and
assume there exists µ ∈ [0,∞)P such that Tρ(µ) ≤ µ. Then T n

ρ (ρ) ↗ ρ∗ ∈ [0,∞)P

as n → ∞, with

ρ∗
γ0

:= ργ0

∑

t∈T
0

∑

(γv1 ,...,γv|Vt | )∈P |Vt |

|Vt |∏

i=0

1

svi !
csvi

(γvi , γ(vi ,1), . . . , γ(vi ,svi )
)

×ργ(vi ,1)
. . . ργ(vi ,svi )

(4.14)

for each γ0 ∈ P . Furthermore,

(i) Tρ(ρ∗) = ρ∗.
(ii) There exists T∞

ρ (µ) ∈ [0,∞)P such that T n
ρ (µ) ↘ T∞

ρ (µ) as n → ∞.
(iii) For all �, n ∈ N,

µ ≥ T n
ρ (µ) ≥ T n+1

ρ (µ) ≥ T∞
ρ (µ) ≥ ρ∗ ≥ T �+1

ρ (ρ) ≥ T �
ρ (ρ) ≥ ρ.

(4.15)
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Proof. The map Tρ is obviously monotinicity preserving in the coordinatewise partial
order of [0,∞]P and

µ ≥ Tρ(µ) ≥ Tρ(ρ) ≥ ρ. (4.16)

[The first inequality is by hypothesis, the second one by monotonicity and the third one
is immediate from the definition of Tρ .] Therefore, by induction,

µ ≥ T n
ρ (µ) ≥ T n+1

ρ (µ) ≥ T n+�+1
ρ (µ) ≥ T n+�+1

ρ (ρ) ≥ T �+1
ρ (ρ) ≥ T �

ρ (ρ) ≥ ρ

(4.17)

for all �, n ∈ N. This shows that, for each γ ∈ G, the series
(
T �
ρ (ρ)

)
�

is increasing and
bounded above while

(
T n
ρ (µ)

)
n is decreasing and bounded below. Thus, the limits ρ∗ :=

sup� T �
ρ (ρ) and T∞

ρ (µ) := inf� T �
ρ (µ) exist and are finite and, by letting alternatingly

� → ∞ and n → ∞ in (4.11), we obtain the inequalities (4.15). The fact that T∞
ρ (ρ) =

ρ∗ is immediate from expression (4.12). Finally,

ρ∗ = lim
n→∞ Tρ

(
T n
ρ (ρ)

) = Tρ

(
lim

n→∞ T n
ρ (ρ)

)
= Tρ(ρ∗), (4.18)

where the middle identity is by monotone convergence. ��

We notice that
(

T∞
ρ (µ)

)

γ0
= ρ∗

γ0
+ limk→∞ R(k)

γ0 (µ). The last limit is in fact an

infimum because R(k)(ρ,µ) ≤ R(k−1)
(
ρ, Tρ(µ)

) ≤ R(k−1)(ρ,µ).

Proof of Proposition 7. The sum in (4.14) can be written in the form

ρ∗
γ0

= ργ0

∑

t∈T
0

Wγ0(t). (4.19)

The symmetry of the vertex functions cn(γ0, γ1, . . . , gn) implies that the weights W(t)
are invariant under permutations of the branches of the planar tree t . That is, they depend
only on the underlying labeled tree τ obtained by neglecting the order of the vertices.
Formally, if T 0

n is the set of rooted trees on {0, 1, . . . , n} (=labelled trees of n + 1
vertices), there is a map T 0

n � τ �→ tτ ∈ T
0
n , where tτ is the planar tree obtained

by drawing branches starting on the root according to the order given by the labels of
the first offspring, and continuing in this way for branches within branches. This map
is many-to-one, in fact, the cardinality of the preimage of a tree t (=number of ways
of labelling the |Vt | non-root vertices of a planar rooted tree with |Vt | distinct labels
consistently with the rule “from high to low”) is

βt = |Vt |!
∏|Vt |

i=0 svi !
(4.20)

(see e.g. Theorem 145B in [3]). Thus, we can replace the sum in (4.19) by a sum over
trees τ on the set T 0 = ∪nT 0

n of rooted trees:

ρ∗
γ0

= ργ0

∑

τ∈T 0

Wγ0(tτ )

βtτ
. (4.21)
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If we expand W and permute the sum over trees with the sum over polymer sequences
(allowed operation for a series of positive terms), we obtain

ρ∗
γ0

= ργ0

∑

n≥0

1

n!
∑

(γ1,...,γn)∈Pn

[ ∑

τ∈T 0
n

n∏

i=0

csi (γi , γi1 , . . . , γisi
)
]

ργ1 · · · ργn . (4.22)

Comparing this expression with (2.7), we see immediately that hypothesis (4.7) implies
that ρ � ≤ ρ∗. The remaining statements are a consequence of Proposition 8. ��

4.3. Proof of Theorem 4. We just have to show that the different convergence conditions
can be written in the form (4.8) for vertex functions cs satisfying (4.7). Theorem 4 then
follows from Proposition 7.

We use Penrose identity (4.6) to obtain a bound of the form (4.7). For this, we keep
only the vertex constraints of a Penrose tree τ : The descendants of a given vertex may
not be linked by an edge in the initial graph G. Otherwise [by condition (p1) in Section
4.1], the graph RPen(τ ) would include such an edge and would, therefore, differ from τ .
That is, we consider the larger family of trees such that

If {i, i1} and {i, i2} are edges of τ , then γi1 ∼ γi2 . (4.23)

In this way we obtain bounds of the form (4.7) with

cn(γ0, γ1, . . . , γn) =
n∏

i=1

11{γ0�γi }
n∏

j=1

11{γi ∼γ j }, (4.24)

and Proposition 7 applies with

ϕγ0(µ) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn )∈Pn

γ0�γi , γi ∼γ j , 1≤i, j≤n

µγ1 . . . µγn ,= �Pγ0
(µ). (4.25)

This proves the criterion of Theorem 1.
If we replace in (4.23) the condition γi � γ j by the weaker requirement γi 
= γ j we

obtain

cDob
n (γ0, γ1, . . . , γn) =

n∏

i=1

11{γ0�γi }
n∏

j=1

11{γi 
=γ j }, (4.26)

and

ϕDob
γ0

(µ) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn )∈Pn

γ0�γi , γi 
=γ j , 1≤i, j≤n

µγ1 . . . µγn =
∏

γ�γ0

(1 + µγ ), (4.27)

which corresponds to the Dobrushin condition. The improved Dobrushin condition is
obtained by strengthening (4.26) through the further requirement that γi 
= γ0 for i =
1, . . . , n and n ≥ 2.
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Finally, if requirement (4.23) is ignored altogether,

cKP
n (γ0, γ1, . . . , γn) =

n∏

i=1

11{γ0�γi }, (4.28)

and

ϕKP
γ0

(µ) = 1 +
∑

n≥1

1

n!
∑

(γ1,...,γn )∈Pn

γ0�γi , 1≤i≤n

µγ1 . . . µγn = exp
[ ∑

γ�γ0

µγ

]
(4.29)

yields the criterion of Kotecký and Preiss. ��
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