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  Gene clusters could be derived based on expression profiles, function categorization
and promoter regions. To obtain thorough understanding of gene expression and
regulation, the three aspects should be combined in an organic way. In this study, we
explored the possible ways to analyze the large-scale gene expression data. Three
approaches were used to analyze yeast temporal expression data: 1) start from
clustering on the expression profiles followed by function categorization and promoter
analysis, 2) start from function categorization followed by clustering on expression
profiles and promoter analysis, and 3) start from clustering on the promoter region
followed by clustering on expression profiles. For clustering analysis on the time-
series data, we developed a largest-first algorithm, which provide a mechanism for
quality control on clusters.  For promoter analysis, we developed a core-extension
algorithm.

Introduction

DNA chip technology enables the study of gene expression in a large scale. Yeast
has been a popular model system for large-scale gene expression studies. Its
advantages over other organisms include availability of the entire genomic
sequence, relatively small size of genome and a large body of biomedical and
genetic information. Up to now, half of its 6200 ORFs have been characterized (1).
In addition, the promoter regions of more than 200 genes have been investigated in
detail and more than 40 regulatory elements are well defined. With the available
information, it is possible to combine function categorization and promoter analysis
with the large-scale gene expression study to gain in-depth view on the genome
structure and gene regulation.

Large-scale gene expression experiments are used to determine drug
targets, identify co-regulated genes (2, 3, 4) and study the response to
environmental conditions (4, 5) and the effect of a single gene on the entire genome
(5, 7).  Genes respond to experimental conditions in a dynamic way. Temporal
expression experiments are used to capture the dynamic nature of gene expression.
In such experiments, the expression data are collected over a time course. Examples
of temporal experiments can be found in the studies of diauxic shift (5), sporulation
(2) and cell cycles (3).

Co-regulated genes may share similar expression profiles, may be involved
in related functions or regulated by common regulatory elements. There are
different approaches to analyzing the large-scale gene expression data. The essence



is to identify gene clusters. For example, one can start from clustering on the
expression profiles. For genes with similar expression patterns, identify their
functions and putative regulatory elements in their promoter region. The study of
the promoter region helps to understand gene co-regulation on the transcription
level. Function categorization provides information on protein interaction and
pathways. As an alternative, one can start from function categorization. For genes
with related functions, study their expression patterns. Gene expression and
regulation are complex biological processes. Genes involved in the same pathway or
related functions unnecessarily have same expression patterns. It is important to
understand what expression patterns are associated with a specific function. Finally,
one can start from clustering genes based on their promoters. Genes carrying
putative sites of a transcription factor may be related or unrelated in the
transcription level. Few studies of regulatory elements on the genome level have
been performed (8). Clustering study on genes sharing regulatory elements may
provide clue on issues such as on what conditions those elements are active, their
roles in activation and repression and their interactions with each other. Since each
approach focuses on different aspect of the genome, they are equally important.

We tested the above three approaches using data from the sporulation
experiment (2), which contains seven time steps. Before introduce the three
approaches methods for clustering on expression profiles, function categorization
and promoter analysis are described.

Methods

Largest-first clustering algorithm.

Clustering methods are essential to the discovery of expression patterns in the time
series data. Two clustering methods are mainly used for this purpose. One is the
classic hierarchical clustering method (9). The other is self-organizing map, SOM
(10, 11). Both methods provide overviews on the entire data set. Researchers are
also interested in clusters with special features, for example clusters with the
similarity between each pair of genes being higher than a certain cutoff.  To address
such problem, we developed an algorithm based on the density search method. Due
to the fact that the largest cluster always came out first, it was termed 'largest-first'.
Using this approach, clusters could be derived based on their quality requirements.

For this algorithm, a data point corresponded to the measurement of
temporal expression of a gene, which was shown as a multi-dimensional vector. The
similarity between two data points was measured by the Pearson correlation, which
has a range from -1 to 1. Prior to clustering, a similarity matrix was generated. At
the beginning, all data points were placed in an initial data point pool, which was a
collection of unclustered data points. The algorithm underwent iterations. One
iteration generated one cluster. Clustered data points withdrew from the initial pool,



unclustered data points remained in the pool. In each round and for each data point
in the data point pool, its density of neighbors was determined by calculating the
number of data points with similarity to the selected data point above a certain
cutoff, which was a parameter given by the user. The data point with the most
number of neighbors was selected as the core for a new cluster. The next step was to
grow the new cluster. For a data point to join a cluster, its similarity to the cluster
should be greater than the cutoff. Once a cluster was updated, cluster members were
screened against each other, the ones failed to maintain the same criterion withdrew
from the cluster and returned to the pool. The algorithm stopped until no more
cluster could be found.

The major advantage of this algorithm was to provide the mechanism for
controlling the quality of clusters. The quality of an output cluster could be
controlled by the similarity cutoff. The higher the cutoff the higher the quality. The
algorithm was implemented in C.

We tested the largest-first algorithm using random sample which contained
1000 data points with 7 time steps. With the similarity cutoff = 0.9, the largest
cluster found contained only three data points.  With the similarity cutoff = 0.8, the
size of largest cluster is 12. For a given data set, tests on the random data of the
same dimensions are needed to determine the minimal size of a cluster to be
considered significant. Besides providing a mechanism to control the quality of
clusters, the largest-first algorithm provide a way to test the significance of a
cluster, basically by controlling the size of a cluster. From the random test, the
maximum expected size of clusters could be determined. For a cluster to be
significant, its size should be several times larger than the maximum expected size.

Function categorization.

MIPS provides a function catalogue of all yeast genes. Among 6350 genes and
ORFs documented in MIPS, 3529 are assigned to at least one function category. 12
major function categories are selected. Refer to table 1 and 2 for their name and
number of consisting ORFs.

For an identified cluster, two parameters were needed to decide which
function category was most related. The first parameter, designated as N, was the
number of genes within a function category. The second one designated as -ln P,
was the negative natural logarithm of the probability for finding N genes in a
function category. The frequency of a function category was determined by dividing
the size of the function category by total number of genes. The expected number of
genes belonging to a function category (E) was equal to the cluster's size times the
function category's frequency. The probability was computed assuming a Poisson
distribution. The most related function category was the one with largest -ln P value
and N much greater than E. As an alternative Z-scores could be used to determine
the most significant function categories.



Promoter analysis.

The availability of genomic sequence of yeast enables the promoter analysis in the
context of clusters. Table 1 shows transcription factors and regulatory elements
provided by SCPD (12). Consensus sequences and their functions are also given.
They are divided into two groups, uni-core and multiple-core according to the
nature of recognition sites.

Table 1.  Known transcription factors' binding sites and regulatory elements

Name Consensus sequence Related function
Uni-core
       ADR1 TCTTC Carbohydrate utilization
       GCN4 TGACTC Amino-acid metabolism
       GCR1 GMWTCCW Carbohydrate utilization
       GLN3 GATAAG Nitrogen utilization
       HAP2 ACCAATNA CCAAT-binding factor
       INO2 ATGTGAAWW Lipid biosynthesis
       MAC1 TTTGCTC Reduction and utilization  Fe, Cu
       MATA1 TGATGTWR Repress haploid genes in diploid cells
       MATα1 WCAAYGNCAG Activates alpha-specific genes
       MATα2 TCNTGT turn off a-specific genes
       MCB WCGCGW Cell cycle control
       MIG1 CCCCRSWWWWW Glucose-repression
       MSE CACAAAA Middle sporulation element
       PDR1 TCCGYGGA Detoxification
       PHO4 CACGTK Phosphate utilization
       RAP1 RMACCCA Transcription control
       REB1 CCGGGTARNNR Transcription control
       RME1 GAACCTCAA Meiosis and mitosis
       ROX1 YYNATTGTTY Repressor of hypoxic genes
       SCB CNCGAAA Cell cycle control
       STE12 ATGAAAC Mating
       SWI5 WACCAKY Cell cycle control
       UME6 WCGGCGGCWA Nitrogen repression and induction of meiosis
       YAP1 TTACTAA Oxidative stress response
       TBP TATAWAW TATA binding protein
       SFF GTMAACAA Swi five factor, function with MCM1
       ECB GGAAAAD Early cell cycle box
       STRE AGGGG Stress response element
Multi-core
        ABF1 TCRNNNNNNACG DNA-replication and transcriptional regulation
        HAP1 CGGNNNTANNCGG Heme-dependent activation
        GAL4 CGGNNNNNNNNNNNCCG Galactose-induction
        LEU3 CCGGNNCCGG Branched chain amino acid biosynthesis pathways
        MCM1 DCCNNNWWRGG Recruits coregulatory proteins for both gene

activation and repression at a variety of loci
        PUT3 CGGNNNNNNNNNNCCG Proline utilization pathway
        PPR1 CGGNNNNNNCCG Regulating pyrimidine pathway

Uni-core motifs contain only one core region to be recognized by transcription factors.
Multi-core motifs contain several core regions.



The background frequency of a promoter element was determined using the
promoter region of all yeast ORFs. The promoter region ranged from -500 to -1
regarding to the start of coding region. For an identified cluster, the promoter
regions of all cluster genes were gathered as well. The putative sites of each
promoter element were determined by searching through the promoter region for
matches to the consensus sequences. The cluster frequency of a promoter element
was determined by dividing the number of putative sites by the number of genes in
the cluster. The expected number of putative sites could be estimated based on the
background frequency. The probability (P) of finding certain number of putative
sites could be calculated assuming a Poisson distribution. The significant putative
motifs were those having a cluster frequency much higher than the background one
and large -ln P. Using this method, non-specific signals such as TATA box and
ploy(A) could be easily filtered.

There is also great interest in identifying unknown promoter elements.
Multiple sequence alignments are commonly used to find common motifs in the
promoter regions. Such examples including Gibbs sampler (13), Consensus (14) and
MEME (15). Prior information on motif length and motif distribution is required for
these approaches. Here, we present an algorithm called 'core-extension', which is
based on k-tuple analysis of the promoter region, and requires no assumption on
motif length and distribution. It is similar to approach described in (16).

Three types of k-tuples were employed. 5-tuple was a 5-mer with no
mismatch. Degenerate 5-tuple was a 5-mer with one mismatch at position 2, 3 and
4, e.g. TNACT, TGNCT, and TGANT. N represented {A, T, C, G}. Degenerate 6-
tuple was a 6 mer with one mismatch at position 2, 3, 4, 5.

The core-extension algorithm first selected significant k-tuples from the
promoter region of a gene cluster. The selection procedure was similar to that for
selecting known promoter elements. To demonstrate the procedure, 5-tuple was
used as an example. The distributions of 5-tuples in the promoter region of all ORFs
were used as a control. Over-represented 5-mers in a gene cluster were selected
based on their Z-scores. The selected 5-mers were used as cores for sequence
motifs. The initial motif was assumed to have the 5-tuple in the middle with
extensions of 5 nucleotides on both sides. All sequences matching this motif were
selected. A matrix was built upon. Each cell of the matrix contained the frequency
count of a nucleotide at the corresponding position. For each position, a position
score was computed as the standard deviation of nucleotide counts in all rows
divided by 4. The score ranged from 0 to 1. It was a measurement on how conserved
a position was. A score close to 1 indicated one nucleotide was dominant at that
position. To validate a matrix, its ends were checked. If a position at either end of a
matrix had a score lower than 0.3, it was dropped off from the matrix. The
validation procedure stopped until both end positions had scores greater than 0.3.
The matrix was used to select new putative sites using a cutoff. New putative sites
were used to update the matrix, and the matrix was validated and applied to the next



round search. Updating and searching stopped until the matrix reached a stable
stage. A consensus sequence was generated based on the final matrix output. The
core-extension algorithm was suitable for finding motifs containing a single core. It
could find conserved flanking regions around the core and incorporate mismatches
in the core region. Other advantages include no requirement of knowledge on motif
length and distribution. Degenerate 5-tuples and 6-tuples could be used to find
motifs with less conserved cores.

Approach 1: start from expression profiles

For this approach, gene clusters were derived based on expression profiles. For each
cluster, the most significant function category was determined and promoter
elements were identified.

The sporulation experiment (2) contained seven time steps. The original
data set included measurement on more than 6000 ORFs. Among them, 1870
represented characterized genes and contained no null time point data.

Using the largest-first clustering method, with similarity cutoff equal to 0.9
and cluster size larger than 30, 8 clusters were identified. The average expression
profiles of each cluster are shown in figure 1. Cluster 1, 3, 4, 5 and 6 consisted of
genes mainly repressed during sporulation. Other clusters contained induced genes.
Most of them reached the highest expression level in the middle of sporulation.
Table 2 summarizes the results from function categorization. The significance
measurements of each function category were given in table 3. Table 4 shows the
most significant function category for each cluster and identified putative regulatory
elements. Genes in cluster 2 are induced in the middle of sporulation, most of them
carried MSE, the middle sporulation element, in their promoter region. This is
consistent with previous studies (17).  Function categorization indicated that 30% of
them were related to cell growth. In cluster 4, 72 genes were related to protein
synthesis, 67 of them were ribosomal proteins. Putative RAP1 sites were identified
in the promoter regions for most of them. RAP1 repressed the expression of
ribosomal protein during sporulation (18). For clusters with similar profiles, their
related functions and regulatory elements may be totally different. For example,
cluster 2 and 8 all contained genes induced in the middle of sporulation. The
dominant function for cluster 2 was cell growth. No major function was found for
cluster 8. Their major promoter elements were also different, MSE for cluster 2
versus CCCCC for cluster 8. To understand the complexity of gene expression, one
has to combine the analysis of expression pattern, function categorization and
promoter analysis together.

Approach 2: start from function categorization



This approach was used to identify different expression profile associated with a
function category. Expression data were first sorted by function catalogue prior to
clustering. Clustering method was the largest-first described above. Promoter
analysis was performed on identified clusters.

Using the same sporulation data described above, expression data were
broken into 12 function categories. Here, we used genes related to cell growth as an
example to demonstrate the procedure.

Among the 1870 genes selected from the sporulation data, 685 genes were
related to cell growth. The result from the largest-first clustering on these genes'
expression profiles is given in Figure 2. 11 clusters were identified with similarity
cutoff = 0.8 and size greater than 10. Size of each cluster and identified putative
regulatory elements are given in table 5.

Figure 1. Clustering on the expression profiles using the
largest-first algorithm. The similarity cutoff is 0.9. The
minimal size of a cluster is 30.



Table 2. Function categorization of clusters in Figure 1

Cluster 1 2 3 4 5 6 7 8
Total number of genes 147 110 35 88 44 56 43 32
Metabolism(1047)* 50 33 18 6 14 22 11 11
Energy(246) 25 1 3 1 2 7 1 1
Cell growth(785) 27 38 4 3 6 7 16 6
Transcription(742) 18 23 5 5 9 11 9 6
Protein synthesis(346) 9 6 1 72 1 5 2 3
Protein destination(538) 17 17 7 9 8 9 8 5
Transportation facilitation(303) 13 11 2 0 4 6 4 4
Intracellular transport(450) 32 15 3 3 8 8 9 7
Cellular biogenesis(188) 7 8 2 1 2 4 3 3
Signal transduction(126) 3 1 0 1 0 0 0 0
Cell rescue, defense, death, aging(352) 18 8 3 1 1 7 5 2
Ionic homeostasis(121) 12 1 1 0 3 2 0 1
*The number in parentheses shows the number of genes related to that function.

Table 3. Significance measurement (-ln P) of function categories
for clusters in Figure 1

Cluster 1 2 3 4 5 6 7 8
Metabolism(1047) 4.2 3.3 4.8 13 2.5 3.6 2.5 2.4
Energy(246) 10 5.7 1.6 4.4 1.6 2.9 1.9 1.4
Cell growth(785) 3.7 6.3 2.9 13 2.8 3.5 4.2 2.0
Transcription(742) 6.1 2.9 2.3 8.9 2.2 2.4 2.2 2.0
Protein synthesis(346) 3.4 3.3 2.2 90 2.9 1.8 2.1 1.5
Protein destination(538) 3.5 2.7 2.2 3.1 2.2 2.2 2.2 1.8
Transportation facilitation(303) 2.4 2.4 1.5 1.7 2.0 1.7 1.9
Intracellular transport(450) 6.8 2.6 1.8 5.8 2.5 2.1 3.0 2.8
Cellular biogenesis(188) 2.1 2.4 1.3 3.2 1.4 1.8 1.6 1.9
Signal transduction(126) 2.1 2.6 2.0
Cell rescue, defense, death, aging(352) 3.0 2.6 1.6 6.7 2.9 2.1 1.9 1.6
Ionic homeostasis(121) 5.6 2.5 1.0 2.0 1.3 1.0
P is the probability of find N genes (as shown table2) belonging to a function category in a cluster.

Cluster 1, 4, 6 had different expression profiles but they seemed to be
controlled by the same transcription factors MCB, with consensus ACGCGT.
Cluster 1 and 6 were mainly repressed during sporulation, while cluster 4 was
induced in the later stage. It indicated that MCB might function differently on
different gene cluster. Cluster 2 also consisted of repressed genes, however, most of
them carried sequences similar to REB1's binding sites. Compared to cluster 6,
cluster 2 had a lagged repression. This might be due to the difference between
functions of MCB and REB1. Cluster 7 genes were induced in the middle of
sporulation. Instead of MSE, STRE was dominant in their promoter region. STRE



was the dominant in the promoter region of cluster 1 in figure 1, which was
repressed during sporulation. The same element was involved in repression as well
as induction under the same condition. The results indicted a transcription factor
may play different roles on different gene clusters.

Approach 3: start from promoter

It is important to find the relationship between promoter elements and expression
profiles. Approach 1 presents a way to identify putative promoter elements for a
given expression pattern. It is only one aspect of the problem. Another aspect is to
identify expression patterns for a promoter element. For this approach, genes
containing certain motifs were selected first. Then clustering was performed.

MSE was identified as the major regulatory element for cluster 2 in Figure
1, which was induced in the middle of sporulation. Among 1870 genes selected
from the sporulation data, 528 genes contained MSE (CACAAAA) in their
promoter region.

Figure 3 shows the clustering result on MSE containing genes from the
largest-first algorithm. The similarity cutoff was 0.8. Besides clusters induced in the
middle of sporulation, there were cluster corresponding to induction in the early and
late stage, and those repressed at various stages. It indicated MSE alone was not
enough to determine the expression pattern. It might function through interactions
with other elements. For example, cluster 5 was induced in the early middle of
sporulation. Promoter analysis showed cluster 5 was also rich in STRE (AGGGG)
besides MSE.

Conclusion

Clustering analysis, function categorization and promoter analysis help to gain
thorough overviews of the expression data. There is no logic order to define which
analysis should come first. Currently, the most commonly used approach is the
approach 1 described in the text. However, other approaches also provide useful
information. No single method is good enough. It is important to combine different
approaches together.
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Figure 2. Clustering on
expression profiles of 685 cell
growth related genes using
largest-first algorithm.
Similarity cutoff is 0.8.

Figure 3. Clustering on
expression profiles of 528
MSE containing genes using
largest-first algorithm.
Similarity cutoff is 0.8.



Table 4. Functions and regulatory elements for clusters in Figure 1

Cluster Function* Regulatory elements
1 Energy AGGGG (STRE)
2 Cell growth CACAAAA (MSE)
3 Metabolism TNCCACAC
4 Protein synthesis ACCCATACAT (RAP1)
5
6 Metabolism GCGCAAAA
7 Cell growth AGGCGCCT
8 CCCCC

*The most significant function was determined by combining information in Table 1 and 2.

Table 5. Size and promoter elements for clusters in Figure 2

Cluster Size Promoter elements
1 100 ACGCGT  (MCB)
2 89 TTACCCG (REB1)
3 30
4 38 ACGCGW (MCB)
5 21
6 24 ACGCGT (MCB)
7 23 AGGGG (STRE)
8 18
9 16
10 14
11 10
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