
Cluster-level Feedback Power Control for Performance Optimization

Xiaorui Wang and Ming Chen
Department of Electrical Engineering and Computer Science

University of Tennessee, Knoxville, TN 37996

{xwang, mchen11}@eecs.utk.edu

Abstract

Power control is becoming a key challenge for effectively

operating a modern data center. In addition to reducing op-

erating costs, precisely controlling power consumption is

an essential way to avoid system failures caused by power

capacity overload or overheating due to increasing high

server density. Control-theoretic techniques have recently

shown a lot of promise on power management thanks to

their better control performance and theoretical guarantees

on control accuracy and system stability. However, exist-

ing work oversimplifies the problem by controlling a sin-

gle server independently from others. As a result, at the

cluster level where multiple servers are correlated by com-

mon workloads and share common power supplies, power

cannot be shared to improve application performance. In

this paper, we propose a cluster-level power controller that

shifts power among servers based on their performance

needs, while controlling the total power of the cluster to be

lower than a constraint. Our controller features a rigorous

design based on an optimal multi-input-multi-output control

theory. Empirical results demonstrate that our controller

outperforms two state-of-the-art controllers, by having bet-

ter application performance and more accurate power con-

trol.

1 Introduction

In recent years, power has become the most important

concern for enterprise data centers that host thousands of

computing servers and provide outsourced commercial IT

services. For example, running a single high-performance

300 W server for one year could consume 2628 KWh of en-

ergy, with an additional 748 KWh in cooling this server [1].

The total energy cost for this single server would be $338

a year without counting the costs of air conditioning and

power delivery subsystems [1]. On the other hand, as mod-

ern data centers continue to increase computing capabilities

for growing business requirements, high-density servers be-

come more and more desirable due to real-estate considera-

tions and better system management features. Currently, the

widely used high-density servers from major vendors (e.g.,

IBM and HP) are so-called blade servers which pack tradi-

tional multi-board server hardware into a single board. Mul-

tiple servers are then put into a chassis (also called an enclo-

sure) which is equipped with common power supplies and

various ports. The greatest immediate concerns about blade

servers are their power and cooling requirements, imposed

by limited space inside the server chassis. The increasing

high server density may also lead to a greater probability of

thermal failure and hence require additional energy cost for

cooling [2].

An effective way to reduce energy consumption of blade

servers is to transition the hardware components from high-

power states to low-power states whenever possible [1].

Most components in a modern blade server such as pro-

cessors [3, 4], main memory [5, 6] and disks [7] have ad-

justable power states. Components are fully operational,

but consume more power in high-power states while having

degraded functionality in low-power states [1]. An energy-

efficient server design is to have run-time measurement and

control of power to adapt to a given power budget so that

we reduce the power (then the performance) of the compo-

nents when actual power consumption of the server exceeds

the budget [4]. As a result of controlling power consump-

tion, we can have the maximum server performance while

not using more power than what power supplies can pro-

vide. Even though servers in a data center are usually provi-

sioned to have their peak power consumption lower than the

capacity of power supplies, it is particularly important for a

system with multiple power supplies to be able to reduce its

power budget at runtime in the case of a partial failure of its

supply subsystem.

Traditionally, adaptive power management solutions

heavily rely on heuristics. Recently, however, feedback

control theory has been successfully applied to power con-

trol for a single server [3, 8, 9]. For example, recent work

[4] has shown that control-theoretic power management

outperforms a commonly used heuristic-based solution by

having more accurate power control and better application

performance. The benefit of having control theory as a

theoretical foundation is that we can have (1) standard ap-

proaches to choosing the right control parameters so that

exhaustive iterations of tuning and testing are avoided; (2)

theoretically guaranteed control performance such as accu-

racy, stability, short settling time, and small overshoot; and

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

(3) quantitative control analysis when the system is suffer-

ing unpredictable workload variations. This rigorous design

methodology is in sharp contrast to heuristic-based adap-

tive solutions that rely on extensive empirical evaluation and

manual tuning [10].

While control-theoretic power management for a sin-

gle server has shown significant promise, its single-input-

single-output (SISO) control model may not be sufficient

for power management in a cluster environment. First, we

need multi-input-multi-output (MIMO) control algorithms

to control the power consumptions of multiple servers in

a cluster simultaneously by manipulating the performance

setting of each server. Second, the servers in a cluster are

usually coupled together due to the fact that they often run

the same application service or share common power sup-

plies at the chassis level. For example, multi-tier web ap-

plications usually have front-end HTTP servers for HTTP

parsing and response generation while the second-tier appli-

cation servers and the third-tier database servers can provide

business logic and data service, respectively [11]. Throt-

tling one server independently from others will make it the

bottleneck, and so unnecessarily degrade the performance

of the whole system. Third, instead of having a power limit

for each individual server, the aggregated power consump-

tion of all servers in a small-scale cluster such as a chassis is

usually limited by the capacity of the common power sup-

plies equipped with the chassis [12]. Therefore, servers in

a cluster are usually coupled together, and so their power

consumption cannot be controlled independently from each

other. As a result, the power management problem in a clus-

ter has become a constrained MIMO control problem.

In this paper, we propose a novel MIMO control algo-

rithm, based on the well-established Model Predictive Con-

trol (MPC) theory, to provide a control-theoretic solution

for managing the power of multiple servers in a small-scale

cluster (e.g., a chassis) of a data center. Specifically, the

contributions of this paper are four-fold:

• We analytically model the power consumption of a

server cluster using system identification and verify the

model with white noise inputs.

• We design and analyze a MIMO power control al-

gorithm based on the MPC control theory to opti-

mize application performance while controlling the to-

tal power to be lower than a constraint.

• We present the system architecture of our control loop

and the implementation details of each component.

• We present empirical results to demonstrate that our

controller outperforms two state-of-the-art power con-

trollers: a heuristic-based MIMO controller [12] and a

control-theoretic SISO controller [4].

The rest of the paper is organized as follows. Section

2 introduces the overall architecture of the power control

loop. Section 3 describes system modeling. Section 4 dis-

cusses the design and analysis of our control algorithm.

Power Meter Chassis

Model
Predictive
Controller

Utilization
Monitor

CPU
Frequency

UM UM

CPU

Power MeterPower Supply

Application Workload

Server 1 Server 2 Server N

CPU

…

…

Power Meter Chassis

Model
Predictive
Controller

Utilization
Monitor

CPU
Frequency

UM UM

CPU

Power MeterPower Supply

Application Workload

Server 1 Server 2 Server N

CPU

…

…

Feedback Loop

Precedence Constraints

Subtask

Figure 1. Power control loop for a small-scale clus-
ter

Section 5 gives the implementation details of each compo-

nent in the control loop. Section 6 presents the results of

our empirical experiments conducted on a physical testbed.

Section 7 highlights the distinction of our work by dis-

cussing the related work. Section 8 concludes the paper.

2 Cluster-level Power Control Loop

In this section, we give a high-level description of our

power control loop that adaptively manages the power con-

sumption of a server cluster by conducting Dynamic Fre-

quency Scaling (DFS) for the processor of each server.

There are two reasons for us to use processor throttling

as our actuation method in this work. First, processors typ-

ically have well-documented interfaces to adjust frequency

levels. Second, processors commonly contribute the major-

ity of total power consumption of small form-factor servers

[13]. As a result, the processor power difference between

the highest and lowest power/performance states is large

enough to compensate for the power variation of other com-

ponents and thus to provide an effective way to support a

power budget reduction in the event of power supply fail-

ure. We plan to investigate other actuation methods, such as

memory and disk throttling, in our future work.

As shown in Figure 1, the key components in the control

loop include a centralized controller and a power monitor

at the cluster level, and a CPU utilization monitor and a

CPU frequency modulator on each server. The control loop

is invoked periodically and its period is chosen based on

a trade-off between actuation overhead and system settling

time [4]. The following feedback control loop is invoked at

the end of every control period:

1. The power monitor (e.g., a power meter) measures the

average value of the total power consumption of all

servers in the last control period and sends the value

to the controller through its feedback lane. The total

power consumption is the controlled variable of the

control loop.

2. The utilization monitor on each processor sends its

CPU utilization in the last control period to the con-

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

troller. The utilization values can be used by the con-

troller to optimize power allocation in the next control

period.

3. The controller collects the power value and utilization

vector, computes the new CPU frequency level for the

processor of each server, and then sends the level to

the CPU frequency modulator on each server through

its feedback lane. The CPU frequency levels are the

manipulated variables of the control loop.

4. The CPU frequency modulator on each server changes

the CPU frequency level of the processor accordingly.

Due to its centralized architecture, our control loop is

well suitable for controlling the power consumption of a

small-scale computer cluster (e.g., a chassis). We plan to

develop decentralized power control algorithms for large-

scale clusters in our future work. Since the core of the

control loop is the model predictive controller, we focus on

system modeling and the controller design and analysis in

the next two sections. The implementation details of other

components are given in Section 5.

3 System Modeling

In this section, we analytically model the power con-

sumption of the server cluster. We first introduce several

notations. T is the control period. pi(k) is the power con-

sumption of Server i in the kth control period. fi(k) is the

frequency level of the processor of Server i in the kth con-

trol period. di(k) is the difference between fi(k + 1) and

fi(k), i.e., di(k) = fi(k + 1) − fi(k). ui(k) is the CPU

utilization of Server i in the kth control period. N is the to-

tal number of servers in the cluster. tp(k) is the total power

consumption of the whole cluster, i.e., tp(k) =
∑N

i=1 pi(k).

Ps is the power set point, i.e., the desired power constraint

of the cluster. The control goal is to guarantee that tp(k)
converges to Ps within a given settling time.

In order to have an effective controller design, it is cru-

cial to model the dynamics of the controlled system, namely

the relationship between the manipulated variables (i.e.,

fi(k), 1 ≤ i ≤ N) and the controlled variable (i.e., tp(k)).
However, a well-established physical equation is usually

unavailable for computer systems. Therefore, we use a stan-

dard approach to this problem called system identification

[14]. Instead of trying to build a physical equation between

the manipulated variables and controlled variable, we infer

their relationship by collecting data on the cluster and es-

tablish a statistical model based on the measured data.

Using the system identification approach, we have ob-

served that the power consumption of a server changes im-

mediately as the clock frequency changes. This is consistent

with the observation presented in [4] that power consump-

tion changes within a millisecond after a processor changes

its performance state. Since a power sampling period is usu-

ally hundreds of milliseconds or even seconds, power con-

sumption can be regarded to be determined exclusively by

70

80

90

100

110

120

0.4 0.5 0.6 0.7 0.8 0.9 1
Frequency ratio

P
o

w
e
r

(W
)

Server 1 Server 2

Server 3 Server 4

Model 1 Model 2

Figure 2. Power models of four servers

the current clock frequency and independent of the power

consumption in the previous control periods. Figure 2 plots

the average power consumption of the four servers used

in our experiments at five available CPU frequency levels,

which are represented as a fraction of the highest level. The

workload used to do system identification is Linpack, which

is introduced in detail in Section 6. Server 2 to 4 are almost

identical while Server 1 has slightly different components.

Two linear models fit well (R2 > 96%) for Server 1 and

the other three servers, respectively. In general, our system

model of power consumption is:

pi(k) = Aifi(k) + Ci (1)

where Ai is a generalized parameter that may vary for dif-

ferent servers. The dynamic model of the system as a dif-

ference equation is:

pi(k + 1) = pi(k) + Aidi(k) (2)

To verify the accuracy of our system models, we stimu-

late the servers with pseudo-random digital white-noise in-

puts [14] to change the CPU frequency every five seconds in

a random fashion. We then compare the actual power con-

sumption with the values predicted by our model. Figure 3

shows that the predicted output by Model 1 is adequately

close to the actual power output of Server 1. The predicted

output of a second-order model is just slightly better than

that of the first-order model by only having a 3.8% variation

difference. We use the first-order model (2) in this paper to

simplify the controller design.

Based on (2), we now consider the total power consump-

tion of all servers in a cluster. Their power consumptions

can be modeled in the matrix form:

p(k + 1) = p(k) + Ad(k) (3)

where, p(k) =







p1(k)
...

pN(k)






,

A =







A1 0 0

0
. . . 0

0 0 AN






,d(k) =







d1(k)
...

dN (k)






.

The total power consumption, tp(k + 1), is the summation

of the power consumed by each individual server.

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

60

80

100

120

0 50 100 150 200

Time (s)

P
o

w
e

r
(W

)

Actual output Model output

2nd order output

Figure 3. Comparison between predicted power

output and actual power output

tp(k + 1) = tp(k) +
[

A1 . . . AN

]







d1(k)
...

dN (k)






(4)

Note that each Ai is the estimated system parameter re-

sulted from system identification using a typical workload

(i.e., Linpack). The actual value of Ai in a real system

may change for different workloads and is unknown at de-

sign time. However, in Section 4.2, we show that a system

controlled by the controller designed with the estimated pa-

rameters can remain stable as long as the variation of Ai is

within an allowed range.

4 Control Design and Analysis

We apply the Model Predictive Control (MPC) theory

[15] to design the controller based on the system model

(4). MPC is an advanced control technique that can deal

with coupled MIMO control problems with constraints on

the plant and the actuators. This characteristic makes MPC

well suited for power control in server clusters.

4.1 MPC Controller Design

A model predictive controller optimizes a cost func-

tion defined over a time interval in the future. The con-

troller uses the system model to predict the control behav-

ior over P sampling periods, called the prediction hori-

zon. The control objective is to select an input trajectory

that minimizes the cost function while satisfying the con-

straints. An input trajectory includes the control inputs in

the following M sampling periods, d(k), d(k + 1|k), . . .
d(k + M − 1|k), where M is called the control horizon.

The notation x(k + i|k) means that the value of variable

x at time (k + i)T depends on the conditions at time kT .

Once the input trajectory is computed, only the first ele-

ment d(k) is applied as the control input to the system. At

the end of the next sampling period, the prediction horizon

slides one sampling period and the input is computed again

based on the feedback tp(k) from the power monitor. Note

that it is important to re-compute the control input because

the original prediction may be incorrect due to uncertainties

and inaccuracies in the system model used by the controller.

MPC enables us to combine performance prediction, opti-

mization, constraint satisfaction, and feedback control into

a single algorithm.

The controller includes a least squares solver, a cost

function, a reference trajectory, and a system model. At the

end of every sampling period, the controller computes the

control input d(k) that minimizes the following cost func-

tion under constraints.

V (k) =

P
∑

i=1

‖tp(k + i|k) − ref(k + i|k)‖2
Q(i) +

M−1
∑

i=0

‖d(k + i|k) + f(k + i|k) − Fmax‖
2
R(i) (5)

where P is the prediction horizon, and M is the control

horizon. Q(i) is the tracking error weight, and R(i) is the

control penalty weight vector. The first term in the cost

function represents the tracking error, i.e., the difference

between the total power tp(k + i|k) and a reference trajec-

tory ref(k + i|k). The reference trajectory defines an ideal

trajectory along which the total power tp(k + i|k) should

change from the current value tp(k) to the set point Ps (i.e.,

power budget of the cluster). Our controller is designed to

track the following exponential reference trajectory so that

the closed-loop system behaves like a linear system.

ref(k + i|k) = Ps − e
−

T
Tref

i
(Ps − tp(k)) (6)

where Tref is the time constant that specifies the speed of

system response. A smaller Tref causes the system to con-

verge faster to the set point but may lead to larger over-

shoot. By minimizing the tracking error, the closed-loop

system will converge to the power set point Ps if the system

is stable. The second term in the cost function (5) repre-

sents the control penalty. The control penalty term causes

the controller to optimize system performance by mini-

mizing the difference between the highest frequency lev-

els, Fmax and the new frequency levels, f(k + i + 1|k) =
d(k + i|k) + f(k + i|k) along the control horizon. The

control weight vector, R(i), can be tuned to represent pref-

erence among servers. For example, a higher weight may

be assigned to a server if it has heavier or more important

workload so that the controller can give preference to in-

creasing its frequency level. As a result, the overall system

performance can be optimized.

This control problem is subject to three constraints. First,

the CPU frequency of each server should be within an

allowed range (e.g., Intel Xeon processor only has eight

states). Second, two or more servers that run the same ap-

plication service may have the same frequency level. Third,

the total power consumption should not be higher than the

desired power constraint. The three constraints are modeled

as:

Fmin,j ≤ dj(k) + fj(k) ≤ Fmax,j (1 ≤ j ≤ N)

di(k) + fi(k) = dj(k) + fj(k)

tp(k) ≤ Ps

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

Based on the above analysis, cluster-level power man-

agement has been modeled as a constrained MIMO optimal

control problem. The controller must minimize the cost

function (5) under the three constraints. This constrained

optimization problem can be easily transformed to a stan-

dard constrained least-squares problem [15]. The transfor-

mation is not shown due to space limitations, but can be

found in an extended version of this paper [16]. The con-

troller uses a standard least-squares solver to solve the opti-

mization problem on-line. In our system, we implement the

controller based on the lsqlin solver in Matlab. lsqlin

uses an active set method similar to that described in [6].

The computational complexity of lsqlin is polynomial in

the number of servers and the control and prediction hori-

zons.

4.2 Stability Analysis

A fundamental benefit of the control-theoretic approach

is that it gives us theoretical confidence for system stability,

even when the system model (i.e., system parameter Ai)

may change for different workloads. We say that a system

is stable if the total power tp(k) converges to the desired set

point Ps, that is, limk→∞ tp (k) = Ps. Our MPC controller

solves a finite horizon optimal tracking problem. Based on

optimal control theory [17], the control decision is a linear

function of the current power value, the power set point of

the cluster, and the previous decisions for CPU frequency

levels.

We now outline the general process for analyzing the

stability of a server cluster when the actual system model

is different from the model resulted from system identifi-

cation (i.e., with different Ai). First, given a specific sys-

tem, we derive the control inputs d(k) that minimize the

cost function based on the estimated system model (4) with

estimated parameters A. The control inputs represent the

control decision based on the estimated system model. Sec-

ond, we construct the actual system model by assuming the

actual parameter A′

i = giAi, where gi represents the un-

known system gain. The stability analysis of the actual sys-

tem needs to consider a composite system consisting of the

dynamics of the original system and the controller. Third,

we then derive the closed-loop system model by substitut-

ing the control inputs derived in the first step into the ac-

tual system model. Finally, we analyze the stability of the

closed-loop system by computing all the poles of the closed-

loop system. According to control theory, if all poles locate

inside the unit circle in the complex space and the DC gain

matrix from the control to the state is the identity matrix,

the state of the system, i.e., the total power consumption,

will converge to the set point. The allowed variation range

of gi can be established by computing the values of gi that

cause the poles to move across the unit circle.

The detailed steps and a complete stability proof for the

example cluster used in our experiments can be found in an

extended version of this paper [16]. Our results show that

the system can remain stable as long as the variation of Ai

is within an allowed range. In addition, a Matlab program

is developed by us to perform the above stability analysis

procedure automatically. In our stability analysis, we as-

sume the constrained optimization problem is feasible, i.e.,

there exists a set of CPU frequency levels within the ac-

ceptable ranges that can make the total power consumption

equal to its set point. If the problem is infeasible, no con-

trol algorithm can guarantee the set point through CPU fre-

quency adaptation. In that case, the system may need to

integrate with other adaptation mechanisms (e.g., disk or

memory throttling). The integration of multiple adaptation

mechanisms is part of our future work.

5 System Implementation

Our testbed includes a cluster composed of 4 Linux

servers to run workloads and a Linux desktop machine to

run the controller. The four servers are equipped with

2.4GHz AMD Athlon 64 3800+ processors with 1GB RAM

and 512KB L2 Cache. The controller machine is a Dell Op-

tiPlex GX520 with 3.00GHz Intel Pentium D Processor and

1GB RAM. All the machines are connected via an internal

switch. The 4 servers run openSUSE Linux 10.2 with ker-

nel 2.6.18 while the controller machine runs SUSE Linux

10.1 with kernel 2.6.16.

We now introduce the implementation details of each

component in our power control loop.

Power Monitor: The power consumption of each server

in the cluster is measured with a WattsUp Pro power me-

ter [18] by plugging the server into the power meter, which

is then connected to a standard 120-volt AC wall outlet.

The WattsUp power meter has an accuracy of ±1.5% of the

measured value. To access power data, the data port of each

power meter is connected to a serial port of the controller

machine. A system file is then generated for power read-

ing in Linux systems. The power meter samples power data

every 1 second and responds to requests by writing all new

readings after last request to the system file. The controller

then reads the power data from the system file and conducts

the control computation.

Utilization Monitor: The utilization monitor uses the

/proc/stat file in Linux to estimate the CPU utilization in

each control period. The /proc/stat file records the number

of jiffies (usually 10ms in Linux) when the CPU is in user

mode, user mode with low priority (nice), system mode, and

when used by the idle task, since the system starts. At the

end of each sampling period, the utilization monitor reads

the counters, and estimates the CPU utilization as 1 minus

the number of jiffies used by the idle task in the last sam-

pling period divided by the total number of jiffies in the

same period. We note that the same technique is used by a

network performance benchmark, NetPerf [19].

Controller: The controller is implemented as a multi-

thread process. The main thread uses a timer to periodically

invoke the control algorithm presented in Section 4, while

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

the child thread employs the select function to get CPU

utilizations from all the servers in the cluster. Every time

the periodic timer fires, the controller requests a new power

reading and the utilizations of all the servers in the last con-

trol period, and then invokes a Matlab program to execute

the control algorithm presented in Section 4. As the outputs

of the control algorithm, new CPU frequency levels are cal-

culated and sent to the CPU frequency modulator on each

server to enforce in the next control period.

CPU Frequency Modulator: We use AMD’s

Cool’n’Quiet technology [20] to enforce the new CPU

frequency. AMD Athlon 64 3800+ microprocessor has

5 discrete CPU frequency levels and can be extended

to have 8 levels. We use 5 levels in this paper. To

change CPU frequency, one needs to install the cpufreq
package and then use root privilege to write the new

frequency level into the system file /sys/devices/sys-

tem/cpu/cpu0/cpufreq/scaling setspeed. A BIOS routine

periodically checks this file and resets the CPU frequency

accordingly. The average overhead (i.e., transition latency)

for the BIOS to change frequency in AMD Athlon pro-

cessors is about 100µs according to the AMD white paper

report [20].

Since the new CPU frequency level periodically received

from the controller is a floating-point (fractional) value, the

modulator code must locally resolve this to a series of dis-

crete frequency values to approximate the fractional value.

For example, to approximate 3.2 during a control period,

the modulator would output the sequence 3, 3, 3, 3, 4, 3,

3, 3, 3, 4, etc on a smaller timescale. To do this, we im-

plement a first-order delta-sigma modulator [4], which is

commonly used in analog-to-digital signal conversion. The

detailed algorithm of the first-order delta-sigma modulator

can be found in [4]. Clearly, when the sequence has more

numbers during a control period, the approximation will be

better but the actuation overhead may become higher. In

this paper, we choose to use 50 discrete values to approxi-

mate the fractional frequency level, which leads to a subin-

terval of 100ms during an example control period of 5s. As

a result, the effect of actuation overhead on system perfor-

mance is no more than 0.1% (100µs/100ms) even in the

worst case when the frequency needs to be changed in ev-

ery subinterval. This amount of overhead is acceptable to

most computer systems.

6 Empirical Results

In this section, we present the experimental results con-

ducted on the testbed introduced in Section 5. We first in-

troduce two state-of-the-art baselines: a MIMO ad hoc con-

troller and a single-input-single-output (SISO) controller.

We then discuss the benchmark used in our experiments and

the experimental set-up. We then compare our MPC MIMO

controller against the two baselines, in terms of control ac-

curacy and application performance.

6.1 Baselines, Benchmark and Set-up

We use two state-of-the-art controllers, referred to as

Ad Hoc and SISO, as baselines in our experiments. Ad

Hoc is a heuristic-based controller designed for cluster-level

power control, which is adapted (with minor changes) from

the preemptive control algorithm presented in a recent pa-

per [12]. Ad Hoc represents a typical industry solution to

power control of a server cluster. We compare our con-

troller against Ad Hoc to show that a well-designed ad hoc

controller may still fail to have accurate power control and

thus lead to degraded application performance. The control

scheme of Ad Hoc is briefly summarized as follows.

1. Start with the processors of all servers throttled to the

lowest frequency level;

2. In each control period, (i) if the total power consump-

tion is lower than the set point, choose the server with

the highest CPU utilization to increase its frequency

level by one; or (ii) if the power reading is above the

set point, choose the server with the lowest CPU uti-

lization to decrease its frequency level by one; (iii) in

steps i and ii, if all servers have the same CPU utiliza-

tion, choose a server in a round-robin fashion.

3. Repeat step 2 until system stops.

A fundamental difference between Ad Hoc and our MPC

controller is that Ad Hoc simply raises or lowers the clock

frequency level by one step, depending on whether the mea-

sured power is lower or higher than the power set point. In

contrast, MPC computes a fractional frequency level based

on well-established control theory and uses the frequency

modulator to approximate this output with a series of dis-

crete frequency levels.

The second baseline, SISO, is a control-theoretic con-

troller designed to control the power consumption of a sin-

gle server, which is also presented in a recent paper [4].

In contrast to our MPC controller, SISO is a proportional

(P) controller designed based on the system model of a sin-

gle server (2). With SISO, a separate controller is used on

each server to control its power independently from other

servers. The power budget of each server is calculated by

evenly dividing the total budget of the cluster by the num-

ber of servers in the cluster, because it is impossible to pre-

dict which server would have more workload and thus need

more power at runtime. We use SISO as our baseline to

show that a controller designed for a single server cannot

be easily extended to control a server cluster where multi-

ple servers are coupled together due to the common power

budget. A fundamental advantage of our MPC controller

is that MPC explicitly incorporates the interprocessor cou-

pling in a cluster into its MIMO model and controller de-

sign, so that power can be shifted among servers to improve

overall system performance.

In our experiments, we first use the High Performance

Computing Linpack Benchmark (HPL) (V1.0a) [21] which

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

is the workload used for system identification. To demon-

strate that our control algorithm can effectively control a

system running a different workload, we then run the ex-

periments using SPEC CPU2006 (V1.0). HPL is a software

package that solves a (random) dense linear system in dou-

ble precision (64 bits) arithmetic. The problem size of HPL

is configured to be 10, 000×10, 000 and the block size is set

as 64 in all experiments unless otherwise noted. Other spe-

cific configuration parameters for the HPL benchmarks are

available in an extended version of this paper [16]. SPEC

CPU2006 is configured with one user thread and recorded

as performance ratio, i.e., the relative speed of the server

to finish each benchmark (compared to a reference Sun

UltraSparc II machine at 296MHz). CPU2006 is divided

into CINT2006 and CFP2006 which consist of integer and

floating-point benchmarks, respectively. The reported result

is the average of all benchmarks in each category.

The MPC controller parameters used in all experiments

include the prediction horizon as 8 and the control horizon

as 2. The time constant Tref/Ts used in (6) is set as 2 to

avoid overshoot while having a relatively short settling time.

Since the shortest period for our power meter to sample

power is 1 second, the control period T for all controllers

is set to 5 seconds to eliminate instantaneous reading errors

by having an averaged value. While 5 seconds may seem to

be a long time for a power controller to respond to power

budget violation, our control algorithm can achieve much

faster response time when it runs on high-end server clus-

ters equipped with high-precision power monitor that can

sample power in a much shorter period. In such a cluster

where all servers share a common power supply, the control

period should be derived to make sure that the settling time

of the controller is shorter than the designed time interval

that the power supply can sustain a power overload [4].

6.2 Comparison to Ad Hoc

In this subsection, we compare our MPC controller

against the first baseline, Ad Hoc.

6.2.1 Control Accuracy

In this experiment, we run the HPL benchmark on all the

four servers. The power set point is 350 W. Since all servers

have a CPU utilization of 100% when running HPL, Ad Hoc

chooses servers to change frequency level in a round-robin

fashion. Figure 4 shows that Ad Hoc starts with all pro-

cessors throttled to the lowest frequency level. Since the

power is lower than the set point at the beginning of the run,

Ad Hoc responds by stepping up the frequency level of one

server at a time, until the power is higher than the set point

at time 15s. Afterwards, Ad Hoc oscillates between two

frequency levels once for each server in a round-robin way,

because the set point power is between the two power con-

sumption levels at two adjacent frequency levels for every

server. As a result, the power consumption never settles to

the set point and has a steady-state error of −3.8 W.

300

320

340

360

380

0 100 200 300 400
Time (s)

P
o

w
e
r

(W
)

Ad Hoc Set Point Average

Figure 4. A typical run of Ad Hoc

300

320

340

360

380

0 100 200 300 400
Time (s)

P
o

w
e
r

(W
)

MPC Set Point

 Figure 5. A typical run of the MPC controller

Figure 5 shows a typical run of our MPC controller. In

contrast to Ad Hoc, MPC accurately achieves the desired

power set point by having a floating-point (fractional) fre-

quency level from the MPC controller, and then using the

frequency modulator to generate a series of discrete fre-

quency levels on a finer timescale to approximate the frac-

tional level. One may think that Ad Hoc could be improved

by also using a series of discrete levels to change the CPU

frequency every 100ms. However, Ad Hoc would still have

the same steady-state error because, without a fractional fre-

quency level based on control theory, it can only oscillate

between two frequency levels of each server. In addition, it

is actually infeasible to run Ad Hoc every 100ms in practice,

because Ad Hoc needs to measure the actual power con-

sumption and then step up or down by one frequency level.

We acknowledge that MPC controller may have slightly

higher actuation overhead than Ad Hoc by having a finer

actuation timescale. However, as discussed in Section 5,

the overhead is usually ignorable in most systems.

Figure 6 shows the result of running both MPC and Ad

Hoc under a series of power set points from 340 W to 380

W. Each data point is the average of the steady-state power

levels of three independent runs. The steady-state power

level of each run is the averaged power level in the steady

state of the controller, which is calculated by eliminating the

340 350 360 370 380
330

340

350

360

370

380

Power set point (W)

P
o

w
e

r
(W

)

Ad Hoc

Safe Ad Hoc

MPC

Set point

Figure 6. Comparison of steady state errors

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

300

320

340

360

380

0 100 200 300 400
Time (s)

P
o

w
e
r

(W
)

Ad Hoc Set Point Average

Figure 7. A typical run of Safe Ad Hoc

transient power values at the beginning of the run. The MPC

controller is able to meet the set point with a precision less

than 1 W. However, Ad Hoc shows steady-state error that

is often above the set point. For example, when set point

is 340 W, Ad Hoc has the maximum positive steady-state

error as 5.3 W above the set point.

Since Ad Hoc has steady state error, it is inappropriate

to use Ad Hoc in a real system because a positive steady-

state error (i.e., average power is above the set point) may

cause the power supply to have overload and then likely fail-

ure. One may think that Ad Hoc could be easily modified

to eliminate its positive steady-state error by having a safety

margin. To do this, we can get the steady-state error of each

single run of Ad Hoc. We then get the maximum positive

steady-state errors of the three runs for each set point and

then the maximum errors for all set points from 340 W to

380 W. By doing that, we get a safety margin of 5.545 W

and we re-run the experiments for Ad Hoc with its power

budget deducted this margin. This modified Ad Hoc policy

is referred to as Safe Ad Hoc. We note that a similar base-

line called Improved Ad Hoc has been used in [4]. Figure 7

shows Safe Ad Hoc runs at or below the set point most of

the time. Note that at time 165s, Safe Ad Hoc still violates

the power constraint once. This is because the safety mar-

gin is calculated based on the steady-state errors which are

averaged values. Please note that Safe Ad Hoc is actually

infeasible in practice because it is hard to have such a priori

knowledge about the safety margin before spending a lot of

time measuring this margin at runtime. However, we use

Safe Ad Hoc as a baseline that can achieve the best possible

performance in an ad hoc way and yet does not violate the

power constraint.

6.2.2 Application Performance

In this subsection, we investigate the impact of cluster-

level power control on the performance of the HPL bench-

mark. We use Safe Ad Hoc (with the safety margin of

5.545 W) instead of Ad Hoc because Ad Hoc would vio-

late the power constraint and thus may not be suitable for a

real system. Figure 8 plots the benchmark performance (ag-

gregated value of all the four servers) of Safe Ad Hoc and

MPC. MPC has better performance than Safe Ad Hoc for all

five set points from 340 W to 380 W, with a maximum per-

formance improvement of 6.1% at 370 W. This is because

MPC can accurately achieve the set-point power while Safe

Ad Hoc stays below the set point most of the time. As a

0

500

1000

1500

2000

340 350 360 370 380
Power set point (W)

P
e
rf

o
rm

a
n

c
e
 (

M
fl

o
p

s
)

MPC Safe Ad Hoc

 Figure 8. Application performance comparison

300

320

340

360

380

400

340 350 360 370 380
Power set point (W)

P
o

w
e
r

(W
)

MPC Set Point Safe Ad Hoc

Figure 9. Power consumption using SPEC

result, the performance of Safe Ad Hoc is worse than that

of MPC. Please note again that it is actually impossible in

practice for Safe Ad Hoc to have such a tight safety margin

resulted from extensive experiments in this paper. In a real

system, Ad Hoc is commonly configured with a large safety

margin and thus would result in much worse performance.

6.2.3 Results using SPEC CPU2006

To demonstrate the effectiveness of MPC with different

workloads, we compare MPC with Safe Ad Hoc using

SPEC CPU2006. All parameters for both MPC and Safe

Ad Hoc remain the same. Figure 9 shows that the power

consumption of the cluster under MPC is very close to the

set point. The small gaps are caused by the short idle inter-

vals between the runs of different benchmarks in CPU2006.

In contrast, Safe Ad Hoc wastes the power budget because

it uses the safety margin to ensure that power consumption

always stays below the budget. As a result, MPC achieves

better application performance (i.e., the relative CPU speed

compared to the reference machine used by SPEC) than

Safe Ad Hoc for both CINT and CFP, as shown in Figure

10. More results using SPEC CPU2006 are available in an

extended version of this paper [16].

6.3 Comparison to SISO

In this set of experiments, we leave the first server idling

and run the HPL benchmark only on the other three servers.

15

20

25

30

340 350 360 370 380

Power set point (W)

P
e
rf

o
rm

a
n

c
e
 r

a
ti

o

MPC - CINT Safe Ad Hoc - CINT MPC - CFP Safe Ad Hoc - CFP

Figure 10. Application performance using SPEC

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

300

320

340

360

380

0 100 200 300 400
Time (s)

P
o

w
e

r
(W

)

SISO Set Point

Figure 11. A typical run of SISO

60

70

80

90

100

0 100 200 300 400
Time (s)

P
o

w
e
r

(W
)

Server 1 Server 2
Server 3 Server 4
Set Point

Figure 12. Power consumption of each server un-
der SISO

The power set point is set to 360 W. Under the SISO control

policy, each server evenly gets 90 W as its local power bud-

get. Figure 11 shows that SISO has steady-state errors. This

is because the idle server (Server 1) cannot use up its power

budget of 90 W even when it is running at the highest CPU

frequency level, as shown in Figure 12. On the other hand,

the three busy servers (Server 2 to 4) cannot get enough

power so that they can only run at degraded frequency lev-

els.

Figure 13 shows the HPL performance data of MPC and

SISO in this experiment. MPC has better performance be-

cause its total power consumption can exactly reach the de-

sired power budget. In contrast, SISO policy has worse

performance because some power budget is wasted by the

idle server due to the even distribution of total budget. The

maximum performance improvement of MPC is 15.3% at

360 W. Hence, it is clearly important for different servers in

a cluster to share power resource because they commonly

have non-uniform workloads. Even though it might be pos-

sible for the SISO control policy to have a cluster-level su-

pervisor to dynamically adjust power budget among differ-

ent SISO controllers at runtime, doing so in practice usually

involves negotiation between the supervisor and the local

controllers and thus cause undesired long response time. In

addition, it may also cause each local controller to have con-

stantly varying set point and thus may affect the stability of

the whole cluster.

0

300

600

900

1200

1500

340 350 360 370 380
Power set point (W)

P
e
rf

o
rm

a
n

c
e
 (

M
fl

o
p

s
)

MPC SISO

Figure 13. Application performance comparison
with SISO

7 Related Work

Power consumption is one of the most important design

constraints for high-density servers. Much of the prior work

has attempted to reduce power consumption by improving

the energy-efficiency of individual server components [22].

There has been some work on system-level power and ther-

mal management. Zeng et al. [23] and Lu et al. [24] have

developed strategies to reduce server power consumption.

Fan et al. [25] investigate the aggregate power usage charac-

teristics of a large number of servers at the datacenter level.

Felter et al. [6] use open-loop control to shift power be-

tween processor and memory to maintain a server power

budget. Brooks et al. [26] use ad-hoc control to limit pro-

cessor temperature so cheaper heat-sinks can be used. In

sharp contrast to their work, which relies on heuristic-based

control schemes, we adopt a rigorous design methodology

that features a control-theoretic framework for systemati-

cally developing control strategies with analytic assurance

of control accuracy and system stability [10].

Control-theoretic approaches have been applied to a

number of computing systems. A survey of feedback per-

formance control in various computing systems is presented

in [27]. Feedback control scheduling algorithms have been

developed for operating systems [28] and real-time systems

[29]. Control techniques have also been applied to data ser-

vice and storage systems [30], networks [31], and Internet

servers [10]. Decentralized control algorithms have also

been developed to control large-scale distributed systems

[29].

Several research projects [3, 8] have successfully ap-

plied control theory to explicitly control power or thermal

of computing servers. Lefurgy et al. [4] have shown that

control-theoretic solution outperforms a commonly used

heuristic-based solution by having more accurate power

control and less overhead. However, most current work

focuses on controlling the power consumption of a sin-

gle server independently. Much less work has been done

at the chassis level where multiple blade servers run the

same software service and share common power supplies.

Ranganathan et al. [12] propose a negotiation-based al-

gorithm to allocate power budget to different servers in a

chassis for better performance. Femal et al. [32] present

another algorithm based on linear programming. In con-

trast to their work, we propose a control-theoretic solution

based on the MPC MIMO control theory for optimal system

performance at the chassis level by sharing power budget.

Some prior work has been proposed to use power as a

tool for application-level performance requirements. For

example, Zhu et al. [33] have developed a feedback control

scheduling algorithm using dynamic voltage scaling (DVS).

Sharma et al. [34] effectively apply control theory to control

application-level quality of service requirements. Chen et

al. [35] also present a feedback controller to manage the re-

sponse time in a server cluster. Although they all use control

theory to manage power consumption, power is only used

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

as a knob to control application-level service metrics. As

a result, they do not provide any absolute guarantee to the

power consumption of a computing system. In this project,

we explicitly control the power consumption to adhere to a

given constraint.

8 Conclusions

In this paper, we presented a cluster-level power con-

troller that shifts power among servers based on their per-

formance needs, while controlling the total power of the

cluster to stay at or below a constraint imposed by the ca-

pacity of its power supplies. Our controller features a multi-

input-multi-output system model and a rigorous controller

design based on the model predictive control theory. Em-

pirical results using standard benchmarks demonstrate that

our controller outperforms two state-of-the-art controllers,

by having better application performance and more accu-

rate power control.

Acknowledgements

We would like to thank Charles Lefurgy and Malcolm

Ware at the IBM Austin Research Laboratory for their in-

sightful discussions, and anonymous reviewers for their

valuable comments. This work is funded in part by NSF

under Grant No. CNS-0720663.

References

[1] R. Bianchini and R. Rajamony, “Power and energy management for

server systems,” IEEE Computer, vol. 37, no. 11, pp. 68–74, 2004.

[2] C. Patel, C. Bash, R. Sharma, M. Beitelmal, and R. Friedrich, “Smart

cooling of data centers,” in Proceedings of the ASME Interpack,

Maui, Hawaii, July 2003.

[3] R. J. Minerick, V. W. Freeh, and P. M. Kogge, “Dynamic power man-

agement using feedback,” in Proceedings of the Workshop on Com-

pilers and Operating Systems for Low Power (COLP), Sep. 2002.

[4] C. Lefurgy, X. Wang, and M. Ware, “Server-level power control,” in

Proceedings of the 4th IEEE International Conference on Autonomic

Computing (ICAC), 2007.

[5] V. Delaluz, M. T. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,

and M. J. Irwin, “DRAM energy management using software and

hardware directed power mode control.” in HPCA, 2001.

[6] W. Felter, K. Rajamani, T. Keller, and C. Rusu, “A performance-
conserving approach for reducing peak power consumption in server

systems,” in ICS, 2005.

[7] S. Gurumurthi, A. Sivasubramaniam, M. Kandemir, and H. Franke,

“DRPM: dynamic speed control for power management in server

class disks,” in ISCA, 2003.

[8] K. Skadron, T. Abdelzaher, and M. R. Stan, “Control-theoretic tech-

niques and thermal-RC modeling for accurate and localized dynamic

thermal management,” in HPCA, Washington, DC, USA, 2002.

[9] Q. Wu, P. Juang, M. Martonosi, L.-S. Peh, and D. W. Clark, “For-
mal control techniques for power-performance management.” IEEE

Micro, vol. 25, no. 5, 2005.

[10] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback

Control of Computing Systems. John Wiley & Sons, 2004.

[11] Y. Diao, J. L. Hellerstein, S. Parekh, H. Shaikh, and M. Surendra,

“Controlling quality of service in multi-tier web applications,” in

ICDCS, 2006.

[12] P. Ranganathan, P. Leech, D. Irwin, and J. S. Chase, “Ensemble-level

power management for dense blade servers.” in Proceedings of the

International Symposium on Computer Architecture (ISCA), 2006.

[13] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. Mc-

Dowell, and R. Rajamony, “The case for power management in web

servers,” Power Aware Computing, 2002.

[14] G. F. Franklin, J. D. Powell, and M. Workman, Digital Control of

Dynamic Systems, 3rd edition. Addition-Wesley, 1997.

[15] J. M. Maciejowski, Predictive Control with Constraints. Prentice

Hall, 2002.

[16] X. Wang and M. Chen, “Feedback Multi-Server Power Con-

trol in a Computing Cluster, Tech Report, Electrical En-

gineering and Computer Science, University of Tennessee,”

http://www.ece.utk.edu/∼xwang/papers/power-tr.pdf, 2007.

[17] F. L. Lewis and V. L. Syrmos, Optimal Control, Second Edition.

John Wiley & Sons, Inc., 1995.

[18] Electronic Educational Devices Inc., “Watts Up Pro Power Meter,”

http://www.wattsupmeters.com.

[19] Netperf: A Network Performance Benchmark, Information Networks
Division, Hewlett-Packard, Cupertino, CA, Mar. 1993, edition B.

[20] AMD, White Paper Publication 26094: BIOS and Kernel Devel-

oper’s Guide for AMD Athlon 64 and AMD Opteron Processors, Re-

vision 3.30, Advanced Micro Devices, Inc., Feb. 2006.

[21] Innovative Computing Laboratory, University of Tennessee,

“HPL - A Portable Implementation of the High-Performance

Linpack Benchmark for Distributed-Memory Computers,”

http://www.netlib.org/benchmark/hpl/.

[22] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.

Keller, “Energy management for commercial servers,” IEEE Com-

puter, vol. 36, no. 12, 2003.

[23] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat, “ECOSystem:

managing energy as a first class operating system resource,” in ASP-

LOS X, 2002.

[24] Y.-H. Lu, L. Benini, and G. D. Micheli, “Operating-system directed

power reduction,” in ISLPED, 2000.

[25] X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a

warehouse-sized computer,” in ISCA, 2007.

[26] D. Brooks and M. Martonosi, “Dynamic thermal management for

high-performance microprocessors.” in HPCA, 2001.

[27] T. F. Abdelzaher, J. Stankovic, C. Lu, R. Zhang, and Y. Lu, “Feed-

back performance control in software services,” IEEE Control Sys-

tems, vol. 23, no. 3, June 2003.

[28] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu, and
J. Walpole, “A feedback-driven proportion allocator for real-rate

scheduling,” in OSDI, 1999.

[29] X. Wang, D. Jia, C. Lu, and X. Koutsoukos, “DEUCON: Decentral-

ized end-to-end utilization control for distributed real-time systems,”
IEEE Transactions on Parallel and Distributed Systems, vol. 18,

no. 7, 2007.

[30] M. Karlsson, C. T. Karamanolis, and X. Zhu, “Triage: Performance

differentiation for storage systems using adaptive control.” ACM

Transactions on Storage, vol. 1, no. 4, pp. 457–480, 2005.

[31] S. Keshav, “A control-theoretic approach to flow control.” in Pro-

ceedings of ACM SIGCOMM, 1991.

[32] M. E. Femal and V. W. Freeh, “Boosting data center performance

through non-uniform power allocation.” in ICAC, 2005.

[33] Y. Zhu and F. Mueller, “Feedback EDF scheduling exploiting dy-
namic voltage scaling,” in IEEE RTAS, 2004.

[34] V. Sharma, A. Thomas, T. Abdelzaher, K. Skadron, and Z. Lu,

“Power-aware QoS management in web servers,” in IEEE Real-Time

Systems Symposium (RTSS), 2003.

[35] Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, Q. Wang, and

N. Gautam, “Managing server energy and operational costs in host-

ing centers,” in ACM SIGMETRICS, 2005.

The 14th IEEE International Symposium on High-Performance Computer Architecture (HPCA 2008)

