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Abstract. Matrix mutation appears in the definition of cluster algebras of
Fomin and Zelevinsky. We give a representation theoretic interpretation of
matrix mutation, using tilting theory in cluster categories of hereditary alge-
bras. Using this, we obtain a representation theoretic interpretation of cluster
mutation in case of acyclic cluster algebras.

Introduction

This paper was motivated by the interplay between the recent development of
the theory of cluster algebras defined by Fomin and Zelevinsky in [FZ1] (see [Z] for
an introduction) and the subsequent theory of cluster categories and cluster-tilted
algebras [BMRRT, BMR]. Our main results can be considered to be interpretations
within cluster categories of important concepts in the theory of cluster algebras.

Cluster algebras were introduced in order to explain the connection between
the canonical basis of a quantised enveloping algebra as defined by Kashiwara and
Lusztig and total positivity for algebraic groups. It was also expected that cluster
algebras should model the classical and quantised coordinate rings of varieties asso-
ciated to algebraic groups — see [BFZ] for an example of this phenomenon (double
Bruhat cells). Cluster algebras have been used to define generalisations of the
Stasheff polytopes (associahedra) to other Dynkin types [CFZ, FZ3]; consequently
there are likely to be interesting links with operad theory. They have been used to
provide the solution [FZ3] of a conjecture of Zamolodchikov concerning Y -systems,
a class of functional relations important in the theory of the thermodynamic Bethe
Ansatz, as well as solution [FZ4] of various recurrence problems involving Lau-
rent polynomials, including a conjecture of Gale and Robinson on the integrality of
generalised Somos sequences. Here the remarkable Laurent properties of the dis-
tinguished generators of a cluster algebra play an important role. Cluster algebras
have also been related to Poisson geometry [GSV1], Teichmüller spaces [GSV2],
positive spaces and stacks [FG], dual braid monoids [BES], ad-nilpotent ideals of
a Borel subalgebra of a simple Lie algebra [P] as well as representation theory, see
amongst others [BMRRT, BMR, CC, CCS1, CCS2, MRZ].

A cluster algebra (without coefficients) is defined via a choice of free generating
set x = {x1, . . . , xn} in the field F of rational polynomials over Q and a skew-
symmetrizable integer matrix B indexed by the elements of x. The pair (x, B),
called a seed, determines the cluster algebra as a subring of F . More specifically,
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for each i = 1, . . . , n, a new seed µi(x, B) = (x′, B′) is obtained by replacing xi

in x by xi
′ ∈ F , where xi

′ is obtained by a so-called exchange multiplication rule
and B′ is obtained from B by applying so-called matrix mutation at row/column
i. Mutation in any direction is also defined for the new seed, and by iterating
this process one obtains a countable (sometimes finite) number of seeds. For a seed
(x, B), the set x is called a cluster, and the elements in x are called cluster variables.
The desired subring of F is by definition generated by the cluster variables.

It is an interesting problem to try to find a categorical/ module theoretical setting
with a nice interpretation of the concepts of clusters and cluster variables, and of
the matrix mutation and multiplication exchange rule for cluster variables. For
the case of acyclic cluster variables so-called cluster categories were introduced as
a candidate for such a model [BMRRT]. Skew-symmetric matrices are in one-one
correspondence with finite quivers with no loops or cycles of length two, and the
corresponding cluster algebra is called acyclic if there is a seed (x, B) such that
B corresponds to a quiver Q without oriented cycles. There is then, for a field
K, an associated finite dimensional path algebra KQ. The corresponding cluster
category C is defined in [BMRRT] as a certain quotient of the bounded derived
category of KQ, which is shown to be canonically triangulated by [K]. In [BMRRT]
(cluster-)tilting theory is developed in C, with emphasis on connections to cluster
algebras. The analogs of clusters are (cluster-)tilting objects, and the analogs of
cluster variables are exceptional objects. In case Q is a Dynkin quiver, it was shown
in [BMRRT] that there is a one-one correspondence between cluster variables and
exceptional objects in C (in this case all indecomposables are exceptional) which
takes clusters to tilting objects. This was conjectured to hold more generally.

In this paper we show that also the matrix mutation for cluster algebras has
a nice interpretation within cluster categories, in terms of the associated cluster-
tilted algebras, investigated in [BMR]. Cluster-tilted algebras are endomorphism
algebras of tilting objects in cluster categories. It follows from our results that
the quivers of the cluster-tilted algebras arising from a given cluster category are
exactly the quivers corresponding to the exchange matrices of the associated cluster
algebra. This has further applications to cluster algebras (see [BR]). Another main
result of this paper is an interpretation within cluster categories of the exchange
multiplication rule of an (acyclic) cluster algebra. So, together with the results
from [BMRRT], all the major ingredients involved in the construction of acyclic
cluster algebras have now been interpreted in the cluster category.

Tilting theory for hereditary algebras has been a central topic within representa-
tion theory since the early eighties. This involves the study of tilted algebras, and
various generalisations. An important motivation for this theory was to compare
the representation theory of hereditary algebras with the representation theory of
other homologically more complex algebras. The main result of [BMR] is also in
this spirit, showing a close connection between the representation theory of cluster-
tilted algebras and hereditary algebras. It is the hope of the authors that our
“dictionary” also can be used to obtain further developments in the representa-
tion theory of finite dimensional algebras. Also new links between this field and
other fields of mathematics can be expected, having in mind the influence of cluster
algebras on other areas.
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In [CCS1] an alternative description of the cluster category is given for type A.
The cluster category was also the motivation for a Hall-algebra type definition of a
cluster algebra of finite type [CC, CK].

The paper is organised as follows. In section 1 we give some preliminaries, allow-
ing us to state the main result more precisely. Most of the necessary background
on cluster algebras is however postponed until later (section 6), since most of the
paper does not involve cluster algebras. In section 2 we prove the following: If Γ
is cluster-tilted, then so is Γ/ΓeΓ for an idempotent e in Γ. This is an essential
ingredient in the proof of the main result, and also an interesting fact in itself. In
section 3 some consequences of this are given. In section 4 we prepare for the proof
of our main result. This involves studying cluster-tilted algebras of rank 3, and a
crucial result of Kerner [Ke] on hereditary algebras. The main result is proved in
section 5, while section 6 deals with the connection to cluster algebras, including
necessary background.

The results of this paper have been presented at conferences in Uppsala (June
2004), Mexico (August 2004) and Northeastern University (October 2004).

The first named author spent most of 2004 at the University of Leicester, and
would like to thank the Department of Mathematics, and especially Robert J.
Marsh, for their kind hospitality. We would like to thank the referee for pointing
out an error in an earlier version of this paper and Bernhard Keller and Otto Kerner
for helpful comments and conversations.

1. Preliminaries

1.1. Finite-dimensional algebras. In this section let Λ be a finite dimensional
K-algebra, where K is a field. Then 1Λ = e1+e2+· · ·+en, where all ei are primitive
idempotents. We always assume that Λ is basic, that is, Λei 6≃ Λej when i 6= j.
There are then (up to isomorphism) n indecomposable projective Λ-modules, given
by Λei, and n simple modules, given by Λei/ r ei, where r is the Jacobson radical
of Λ.

If K is an algebraically closed field, then there is a finite quiver Q, such that Λ is
isomorphic to KQ/I, where KQ is the path-algebra, and I is an admissible ideal,
that is there is some m, such that rm ⊆ I ⊆ r2. We call Q the quiver of Λ. In case
Λ is hereditary, the ideal I is 0. For the rest of this paper, except in Section 2, we
always assume that K is algebraically closed.

The category mod Λ of finite dimensional left Λ-modules is an abelian category
having almost split sequences. In case Λ is hereditary there is a translation functor
τ , which is defined on all modules with no projective (non-zero) direct summands.

The bounded derived category of Λ, denoted Db(mod Λ), is a triangulated cat-
egory, with suspension given by the shift-functor [1], which is an autoequivalence.
We denote its inverse by [−1]. In this paper, we only consider derived categories
of hereditary algebras H . They have an especially nice structure, since the inde-
composable objects are given by shifts of indecomposable modules. In this case we
also have a translation functor τ : Db(mod H) → Db(mod H), extending the functor
mentioned above. We have almost split triangles A → B → C → in Db(mod H),
where τC = A, for each indecomposable C in Db(mod H). We also have the for-
mula HomD(X, τY ) ≃ D Ext1D(Y, X), see [H]. Here D denotes the ordinary duality
for finite-dimensional algebras. Let H be a hereditary finite-dimensional algebra.
Then a module T in modH is called a tilting module if Ext1H(T, T ) = 0 and T has,
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up to isomorphism, n indecomposable direct summands. The endomorphism ring
EndH(T )op is called a tilted algebra.

See [ARS] and [R] for further information on the representation theory of finite
dimensional algebras and almost split sequences.

1.2. Approximations. Let E be an additive category, and X a full subcategory.
Let E be an object in E . If there is an object X in X , and a map f : X → E,
such that for every object X ′ in X and every map g : X ′ → E, there is a map
h : X ′ → X , such that g = fh, then f is called a right X -approximation [AS]. The
approximation map f : X → E is called minimal if no non-zero direct summand
of X is mapped to 0. The concept of (minimal) left X -approximations is defined
dually. If there is a field K, such that HomE(X, Y ) is finite dimensional over K, for
all X, Y ∈ E , and if X = addM for an object M in E , then (minimal) left and right
X -approximations always exist. Here, for an object M in any additive category, we
let addM denote the smallest full additive subcategory closed under direct sums
and containing M .

1.3. Cluster categories and cluster-tilted algebras. We remind the reader of
the basic definitions and results from [BMRRT]. Let H be a hereditary algebra,
and let D = Db(mod H) be the bounded derived category.

The cluster category is defined as the orbit category CH = D /F , where F =
τ−1[1]. The objects of CH are the same as the objects of D, but maps are given by

HomC(X, Y ) = ∐i HomD(X, F iY ).

Let Q : D → C be the canonical functor. We often denote Q(X) by X̂, and use the

same notation for maps. Let X̂ be an indecomposable object in the cluster-category.
We call mod H ∨ addH [1] = modH ∨ H [1] the standard domain.

There is (up to isomorphism) a unique object X in modH ∨H [1] ⊆ D such that

Q(X) = X̂.

Assume X1, X2 are indecomposable in the standard domain, then a map f̂ : X̂1 →

X̂2, can uniquely be written as a sum of maps f̂1 + f̂2 + · · ·+ f̂r, such that fi is in

HomD(X1, F
diX2), for integers di. In this case di is called the degree of f̂i.

The following summarises properties about cluster categories that will be freely
used later.

Theorem 1.1. Let H be a hereditary algebra, and CH the cluster category of H.
Then

(a) CH is a Krull-Schmidt category and Q preserves indecomposable objects;
(b) CH is triangulated and Q is exact;
(c) CH has AR-triangles and Q preserves AR-triangles.

Proof. (b) is due to Keller [K], while (a) and (c) are proved in [BMRRT]. �

Let us now fix a hereditary algebra H , and assume it has, up to isomorphism,
n simple modules. A cluster tilting object (or for short; tilting object) in the
cluster category is an object T with Ext1C(T, T ) = 0, and with n non-isomorphic
indecomposable direct summands. Two tilting objects T and T ′ are said to be
equivalent if and only if addT = addT ′. We only consider tilting objects up to
equivalence, and therefore we always assume that if T = ∐iTi is a tilting object,
with each Ti indecomposable, then Ti 6≃ Tj for i 6= j.
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There is a natural embedding of the module category into the bounded derived
category, which extends to an embedding of the module category into C. This
embedding is in general not full. It was shown in [BMRRT] that the image of
a tilting module in modH is a tilting object in CH . It was also shown that if
we choose a tilting object T in CH , then there is a hereditary algebra H ′ and an
equivalence Db(H ′) → Db(H), such that T is the image of a tilting module, under
the embedding of modH ′ into CH′ ≃ CH .

If T ∐X is a tilting object, and X is indecomposable, then T is called an almost
complete tilting object.

The following was shown in [BMRRT].

Theorem 1.2. Let T be an almost complete tilting object in CH . Then there are
exactly two complements M and M∗. There are uniquely defined non-split triangles

M∗ → B → M →,

and

M → B′ → M∗ → .

The maps B → M and B′ → M∗ are minimal right addT -approximations, and the
maps M∗ → B and M → B′ are minimal left addT -approximations.

The endomorphism ring EndC(T )op of a tilting object in C is called a cluster-
tilted algebra. Using the notation of Theorem 1.2, we want to compare the quivers
of the endomorphism rings Γ = EndC(T ∐ M)op and Γ′ = EndC(T ∐ M∗)op.

1.4. Matrix mutation. Let X = (xij) be an n × n-skew-symmetric matrix with
integer entries. Choose k ∈ {1, 2, . . . , n} and define a new matrix µk(X) = X ′ =
(x′

ij) by

x′
ij =

{
−xij if k = i or k = j,

xij +
|xik|xkj+xik|xkj|

2
otherwise.

The matrix µk(X) = X ′ is called the mutation of X in direction k, and one can
show that

- µk(X) is skew-symmetric, and
- µk(µk(X)) = X .

Matrix mutation appears in the definition of cluster algebras by Fomin and
Zelevinsky [FZ1].

1.5. Main result. At this point, we have the necessary notation to state the main
result of this paper. There are no loops in the quiver of a cluster-tilted algebra
[BMRRT], and we also later show that there are no (oriented) cycles of length two.
It follows that one can assign to Γ a skew-symmetric integer matrix XΓ. Actually,
there is a 1–1 correspondence between the skew-symmetric integer matrices and
quivers with no loops and no cycles of length two. Fixing an ordering of the
vertices of the quiver, this 1–1 correspondence determines mutations µk also on
finite quivers (with no loops and no cycles of length 2). The following will be
proved in Section 5. The notation is as earlier in this section, especially the field
K is algebraically closed.

Theorem 1.3. Let T be an almost complete tilting object with complements M and
M∗ and let Γ = EndC(T ∐M)op and Γ′ = EndC(T ∐M∗)op. Let k be the vertex of
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Γ corresponding to M . Then the quivers QΓ and QΓ′ , or equivalently the matrices
XΓ = (xij) and XΓ′ = (x′

ij), are related by the formulas

x′
ij =

{
−xij if k = i or k = j,

xij +
|xik|xkj+xik|xkj|

2
otherwise.

This is the central result from which the connections with cluster algebras men-
tioned in the introduction follow. An independent proof of Theorem 1.3 in the case
of finite representation type is given by Caldero, Chapoton and Schiffler [CCS2].

2. Factors of cluster-tilted algebras

In this section, our main result is that for any cluster-tilted algebra Γ, and
any primitive idempotent e, the factor-algebra Γ/ΓeΓ is in a natural way also a
cluster-tilted algebra. This will give us a powerful reduction-technique, which is
of independent interest, and which we use in the proof of our main result in this
paper.

Suppose that Γ is the endomorphism algebra of a tilting object T in the cluster
category corresponding to a hereditary algebra H . The main idea of the proof is
to show that if we localise Db(mod H) at the smallest thick subcategory containing
a fixed indecomposable summand M of T , then we obtain a category triangle-
equivalent to the derived category of a hereditary algebra H ′. The factor-algebra
Γ/ΓeΓ (where e is the primitive idempotent of Γ corresponding to M) is then
shown to be isomorphic to the endomorphism algebra of a tilting object in the
cluster category corresponding to H ′.

2.1. Localisation of triangulated categories. We review the basics of localisa-
tion in triangulated categories. Let T be a triangulated category. A subcategory
M of T is called a thick subcategory of T if it is a full triangulated subcategory of
T closed under taking direct summands.

When M is a thick subcategory of T , one can form a new triangulated category
TM = T /M, and there is a canonical exact functor LM : T → TM. See [Ric] and
[V] for details.

For every M ′ in M, we have LM(M ′) = 0, and LM is universal with respect to
this property. We also have the following.

Lemma 2.1. Assume T is a triangulated category, and M is a thick subcategory of
T . Then, for any map f in T we have LM(f) = 0 if and only if f factors through
an object in M.

We will need the following result of Verdier [V, Ch. 2, 5-3],[V2]:

Proposition 2.2. Let T be a triangulated category with thick subcategory M, and
let TM be the quotient category with quotient functor LM : T → TM. Fix an object
Y of T . Then every morphism from an object of M to Y is zero if and only if for
every object X of T the canonical map

HomT (X, Y ) → HomTM
(LM(X), LM(Y ))

is an isomorphism.

In particular, we note that this implies that LM is fully faithful on the full
subcategory of T with objects given by those objects of T which have only zero
morphisms from objects of M.
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2.2. Equivalences of module categories. Let H be a hereditary algebra and
M an indecomposable H-module with Ext1H(M, M) = 0. Then there is (up to
isomorphism) a unique module E with the following properties:

B1) E is a complement of M (that is, E ∐ M is a tilting module).
B2) For any module X in modH , we have that Ext1H(M, X) = 0 implies also

Ext1H(E, X) = 0.

This is due to Bongartz [B], and the module E is sometimes called the Bongartz-
complement of M . For a module X in modH , we denote by X⊥ the full subcategory
of mod H with objects Y satisfying Ext1H(X, Y ) = 0. If T is a tilting module,
then it is well-known that T⊥ = Fac T , where FacT is the full subcategory of all
modules that are factors of objects in addT . Note that B2) can be reformulated as
M⊥ = (M ∐ E)⊥.

The following result can be found in [H] and [HRS].

Proposition 2.3. (a) Assume M is an indecomposable non-projective H-module
with Ext1H(M, M) = 0, and let E be the complement as above. Then the
endomorphism ring H ′ = EndH(E)op is hereditary, and HomH(M, E) = 0.

(b) Let U denote the full subcategory of mod H with objects X satisfying

HomH(M, X) = 0 = Ext1H(M, X).

Then U is an exact subcategory of mod H and the functor HomH(E,−)
from mod H to mod H ′ restricts to an exact equivalence between U and
mod H ′.

We note that the above result does not hold in general in the case when M is
projective. For example, consider the quiver of type A3 with vertices 1, 2 and 3 and
arrows from 1 to 2 and 2 to 3. Let M = P2. Then E = P1⊕P3 and EndH(E)op has
three indecomposable objects while U has only two. The only other complement
of M is E′ = P1 ⊕ (P2/P3). Then HomH(E′, P3) = 0 although P3 lies in U and is
non-zero. So also in this case the functor HomH(E′, ) from U to mod EndH(E′)op

is not an equivalence. However, we will need the following result which is along
similar lines for the case when M is projective.

Lemma 2.4. Let M be an indecomposable projective H-module with corresponding
idempotent eM ∈ H. Let H ′ = H/HeMH.

(a) We have TorH
1 (H ′, U) = 0, for any object U in U , where U is as defined

above.
(b) We have that U is an exact subcategory of modH and the functor H ′⊗H −

from mod H to mod H ′ restricts to an exact equivalence between U and
mod H ′.

Proof. We have that U is an exact subcategory of mod H as in Proposition 2.3. It
is easy to see that the functor H ′ ⊗H − is an equivalence between U and modH ′.
To see that it is exact, we consider the following projective resolution of H ′ as a
right H-module:

0 → HeMH → H → H ′ → 0.

Applying −⊗H U to this sequence, where U is an object in U , we obtain (part of)
the long exact sequence:

TorH
1 (H, U) → TorH

1 (H ′, U) → HeMH ⊗H U → H ⊗H U → H ′ ⊗H U → 0.
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Since H is projective, TorH
1 (H, U) = 0. We also have

HeMH ⊗H U = H ⊗H HeMU = 0

since eMU = 0. It follows that TorH
1 (H ′, U) = 0 and hence that H ′ ⊗H − is an

exact functor on U . �

2.3. Localising with respect to an exceptional module. Fix a hereditary
algebra H , and an indecomposable module M in modH , with Ext1H(M, M) = 0.

Lemma 2.5. Let M = add{M [i]}i∈Z. Then M is a thick subcategory in Db(mod H).

Proof. Straightforward from the fact that any map between indecomposable objects
in M is either zero or an isomorphism. �

Let D = Db(mod H), let DM be the category obtained from D by localising with
respect to M, and let LM : D → DM be the localisation functor. Note that U is
the full subcategory of modH consisting of modules X with HomD(M, X [i]) = 0
for all i.

Theorem 2.6. Let H be a hereditary algebra with n simple modules up to isomor-
phism. Let M be an indecomposable H-module with Ext1H(M, M) = 0, and let M
denote the thick subcategory generated by M . Then DM is equivalent to the derived
category of a hereditary algebra with n − 1 simple modules (up to isomorphism).

To prove this we show that DM is equivalent to the subcategoryD0 = add{X [i] ∈
D | X ∈ U , i ∈ Z} of D, and that D0 is equivalent to the derived category of a
hereditary algebra with n − 1 simple modules. This is the content of the following

three propositions. We usually denote the object LM(X) by X̃.

Proposition 2.7. In the setting of Theorem 2.6, the localisation functor LM in-
duces an equivalence D0 → DM.

Proof. First note that by Proposition 2.2 we have that LM : D0 → DM is fully

faithful. Any object in DM is of the form LM(X) for some object X in D. Let X̃
be an arbitrary object in DM (where X is in D). Then consider the minimal right
M-approximation MX → X , and the induced triangle MX → X → X0 →. It is

clear that X̃ = X̃0. We claim that X0 is in D0, that is HomD(M, X0[i]) = 0 for all
i. To see this, consider the long exact sequence obtained by applying HomD(M, )
to the triangle MX → X → X0 →. For any i, the map HomD(M, MX [i]) →
HomD(M, X [i]) is an epimorphism, since MX → X is a right M-approximation.
The map is injective since any element in HomD(M, MX [i]) is either zero or an
isomorphism. Thus, X0 is in D0. This completes the proof that LM induces an
equivalence D0 → DM. �

The next result is an extension of Proposition 2.3 to the setting of derived cate-
gories.

Proposition 2.8. In the setting of Theorem 2.6, assume M is non-projective. Let
E be the Bongartz-complement of M , and let H ′ = EndH(E)op. Then RHom(E, )
induces an equivalence D0 → D′ = Db(mod H ′).

Proof. Recall that U ⊂ M⊥ = (M∐E)⊥. This implies that for X ∈ U , we have that
RHom(E, X) is concentrated in degree zero with zero-term HomH(E, X). Since
HomH(E, ) is a dense functor from U to mod H ′, and RHom(E, ) commutes with
[1], it follows that RHom(E, ) restricted to D0 is dense.
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Assume X, Y are indecomposable objects in the same degree in D0. By the
above it now follows directly from Proposition 2.3 that

HomD(X, Y ) ≃ HomD′(RHom(E, X), RHom(E, Y )).

We also need to show that HomD(X, Y [1]) ≃ HomD′(RHom(E, X), RHom(E, Y [1])).
For this note that by Proposition 2.3, the equivalence HomH(E, ) : U → mod H ′

is exact, and that the embedding U →֒ mod H is exact. This implies that

HomD(X, Y [1]) ≃HomU (X, Y [1])

≃HomD′(HomH(E, X), HomH(E, Y )[1])

≃HomD′(RHom(E, X), RHom(E, Y )[1])

≃HomD′(RHom(E, X), RHom(E, Y [1])).

Thus the restriction of RHom(E, ) to D0 is fully faithful. This completes the
proof. �

Proposition 2.9. In the setting of Theorem 2.6, assume M is projective. Assume
M ≃ HeM for the primitive idempotent eM in H and let H ′ = H/HeMH. Then
L(H ′ ⊗H −) induces an equivalence D0 → D′ = Db(mod H ′).

Proof. First recall from Lemma 2.4 that TorH
1 (H ′, U) = 0 for any U in U . This

means that the image L(H ′ ⊗H U) is just H ′ ⊗H U concentrated in degree 0.
It now follows that L(H ′ ⊗H −) restricted to D0 is dense, by using that the

functor H ′ ⊗H − : U → mod H ′ is dense and that L(H ′ ⊗H −) commutes with [1].
Assume X, Y are indecomposable objects in the same degree in D0. It follows

from Lemma 2.4 that

HomD(X, Y ) ≃ HomD′(L(H ′ ⊗H X), L(H ′ ⊗H Y )).

We need also to show that

HomD(X, Y [1]) ≃ HomD′(L(H ′ ⊗H X), L(H ′ ⊗H Y [1])).

For this recall that the embedding of U into modH is exact, and that H ′ ⊗H − is
exact on U by Lemma 2.4. Thus it follows that:

HomD(X, Y [1]) ≃HomU (X, Y [1])

≃HomD′(H ′ ⊗H X, H ′ ⊗H Y [1])

≃HomD′(L(H ′ ⊗H X), L(H ′ ⊗H Y )[1])

≃HomD′(L(H ′ ⊗H X), L(H ′ ⊗H Y [1])).

This shows that the functor is fully faithful and finishes the proof. �

For the remainder of this section, we view the induced equivalence between DM

and D′ as an identification.

2.4. The factor construction. As before, let M be an indecomposable H-module
with Ext1H(M, M) = 0, where H is hereditary, and let E be the Bongartz comple-
ment of M . We investigate the image of an arbitrary complement T of M under

the functor LM. For an object X in D, we use the notation X̃ = LM(X), as before.

Note that LM(T ) = LM(T ) = T̃ .

Lemma 2.10. Let the notation be as above.
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(a) LM(T ) = T̃ is in mod H ′ ∨ H ′[1].

(b) HomD′(T̃ , T̃ [1]) = 0.

Proof. (a) Let f : M ′ → T be a minimal right M-approximation, and consider the
induced triangle:

(1) M ′ f
→ T

g
→ UT →

in D. Since HomD(M [−1], T ) = 0, we have that M ′ is in addM . It is clear that

T̃ ≃ ŨT . Now, as in the proof of Proposition 2.7, we get that UT is in D0. Here it
is clear that UT = U1 ∐ U2[1], where U1 = Coker f and U2 = Ker f are in U . It is

clear that Ũ1 and Ũ2 are H ′-modules. We only need to show that Ũ2 is projective.
For an arbitrary U in U , we have that Ext1H(U2, U) = 0, since Ext1H(M, U) = 0
and U2 is a submodule of M ′. Using that U is an exact subcategory of mod H , and

that the equivalence U → mod H ′ is also exact, it follows that Ũ2 is projective in

mod H ′. Hence T̃ ≃ ŨT is in mod H ′ ∨ H ′[1].
(b) Using again the triangle (1) we obtain the long exact sequence

HomD(T , T [1]) → HomD(T , UT [1]) → HomD(T , M ′[2]).

Hence, HomD(T , UT [1]) = 0. Now, by Proposition 2.2, it follows that

HomD′(T̃ , ŨT [1]) = 0 since UT [1] is in D0, and hence HomD′(T̃ , T̃ [1]) = 0. �

Denote as before by F the functor τ−1[1] : D → D. When it is not clear which
derived category D we are dealing with, we will denote this functor by FD and the
functor τ−1 by τ−1

D .

Lemma 2.11. Let H be a hereditary algebra, and let X be an object in D such that
X is in mod H ∨ H [1]. Then HomD(X, X [1]) = 0 if and only if Ext1CH

(X, X) = 0.

Proof. Assume X is in mod H ∨ H [1], and let X̂ be the image of X in the cluster

category CH of H . Then Ext1C(X̂, X̂) ≃ HomD(X, X [1])∐D HomD(X, X [1]). This
follows from HomD(X, F−1X [1]) = HomD(X, τX) ≃ D HomD(X, X [1]) and the
easily checked fact that HomD(X, F iX [1]) = 0, whenever i 6∈ {−1, 0}. �

Combining these lemmas, and using that a tilting H-module induces a tilting
object in the cluster category [BMRRT, 3.3], we obtain the following.

Proposition 2.12. Let T = M ∐ T be a tilting H-module as before. Then the

image T̂ of T̃ in the cluster category CH′ is a tilting object.

Proof. By Lemmas 2.10 and 2.11 we have that Ext1CH′
(T̂ , T̂ ) = 0, and that T̃ is in

mod H ′ ∨H ′[1]. It follows from Lemma 2.1 that T̃a is non-zero when Ta is a direct
summand in T . Thus, it suffices to show the following: For two indecomposable non-

isomorphic direct summands Ta and Tb of T , we have T̃a 6≃ T̃b. We first show that for

any map α : T̃a → T̃b, there is a map β : Ta → Tb such that LM(β) = β̃ = α. Maps
in D′ from Ta to Tb can be viewed as certain equivalence classes of pairs (α1, α2) of
maps in D, where X is some object in D, the map α1 : X → Ta is a map, which when
completed to a triangle X → Ta → M ′ → in D, has M ′ in M, and α2 : X → Tb

is a map in D. Since M̃ = 0, we can assume that M does not occur as a direct
summand of X . Hence, M ′ must be in addM , since HomD(Ta, M [1]) = 0. Then
there is an exact sequence HomD(Ta, Tb) → HomD(X, Tb) → HomD(M ′, Tb[1]) = 0.
Thus, there is some β : Ta → Tb such that α2 = β ◦ α1. It is easily seen that the
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map in D′, represented by the pair (idTa
, β) is equivalent to (α1, α2). But the pair

(idTa
, β) represents β̃, by the definition of the localisation functor, and we have

β̃ = α.

Now assume β̃ is an isomorphism. Then the corresponding triangle Ta → Tb →
M ′′ → in D has M ′′ in M. It is clear that M ′′ actually is in addM , since otherwise
some M [i] would be a direct summand of Ta. This means that M ′′ = 0, since
HomD(M, Ta[1]) = 0. Hence β is an isomorphism. �

We can now complete the main result of this section. Let e be the idempotent
in Γ, such that Γe ≃ HomC(T, M).

Theorem 2.13. With the above notation, there is a natural isomorphism Γ/ΓeΓ ≃

EndCH′ (T̂ )op.

The remainder of this section will be devoted to proving this theorem. Since the

cluster category is defined using the functor F = τ−1[1], we need to compare ˜τ−1
D (X)

and τ−1
D′ X̃ for an indecomposable object X in D. In general τ̃−1

D X 6≃ τ−1
D′ X̃ , but

with extra conditions on X , sufficient for our purposes, everything behaves nicely.
We do not include our proof of the next lemma, since it has been generalised by
Keller, with a simpler proof [K]. Note that the existence of minimal left almost
split maps is equivalent to the existence of a left Serre functor G by [RV], and that
G = τ−1[−1].

Lemma 2.14. Let X be an indecomposable object in D0 ⊂ D. Then X̃ is inde-

composable and τ̃−1
D X ≃ τ−1

D′ X̃.

Let Tx be an indecomposable direct summand in T , not isomorphic to M . Let
Mx → Tx be a minimal right addM -approximation, and consider as before the
induced triangle

Mx → Tx → Ux →

in D, where we know that Ux is in D0 by the proof of Proposition 2.7. Thus, by
applying the above lemma to each of the indecomposable direct summands of Ux,

we obtain τ̃−1
D Ux ≃ τ−1

D′ Ũx, and thus F̃DUx ≃ FD′ Ũx. It is also clear that Ũx ≃ T̃x.
Now, pick two (not necessarily different) indecomposable direct summands Ta

and Tb of T . Construct the triangle

Mb → Tb → Ub →,

as above, and apply F to it, to obtain the triangle

FMb → FTb → FUb → .

Apply HomD(Ta, ) to this triangle, to obtain the long exact sequence

(2) HomD(Ta, FMb) → HomD(Ta, FTb) →

HomD(Ta, FUb) → HomD(Ta, FMb[1]).

The last term vanishes, since Ta and Mb are modules. Since Mb → Tb is a minimal
right addM -approximation, it follows that FMb → FTb is a minimal right addFM -
approximation. We have that HomD(Ta, FUb) ≃ HomD(Ta, FTb)/(FM), where for
an object Z we use the notation Hom(X, Y )/(Z) to denote the Hom-space modulo
maps factoring through an object in addZ.
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We claim there is an exact sequence

HomD(Ta, FMb)/(M) → HomD(Ta, FTb)/(M) → HomD(Ta, FUb)/(M) → 0

induced from the exact sequence (2). For this it is sufficient to show that the
kernel of the second map is contained in the image of the first. So let α ∈
HomD(Ta, FTb)/(M), and assume there is a commutative diagram

Ta
α //

β1

!!DD
DD

DD
DD

FTb
// FUb

M ′

<<xxxxxxxx

for some M ′ in addM . Since HomD(M, FMb[1]) = 0, there is β2 : M ′ → FTb,

such that M ′ β2

→ FTb → FUb = M ′ → FUb. In HomD(Ta, FTb)/(M) we have
α = α − β2β1. By using the long exact sequence (2), we obtain that α = α − β2β1

factors through FMb → FTb, so the sequence is exact. It follows from this that
HomD(Ta, FTb)/(M ∐ FM) ≃ HomD(Ta, FUb)/(M).

Let f : M1 → FUb be a minimal right M-approximation, and complete to a

triangle M1
f
→ FUb → (FUb)

′. Applying HomD(Ta, ), we get an exact sequence

HomD(Ta, M1) → HomD(Ta, FUb) → HomD(Ta, (FUb)
′) → HomD(Ta, M1[1]).

Since Ub is in degree 0 or 1, then FUb is in degree 1,2 or 3, so M1 is in degree 0,1,2
or 3. Hence the indecomposable direct summands of M1[1] are in degree at least 1,
so that HomD(Ta, M1[1]) = 0. Since a map h : Ta → FUb factors through an object
in M if and only if it factors through the minimal right M-approximation of FUb,
we get the isomorphism

HomD(Ta, FDUb)/(M) ≃ HomD(Ta, (FDUb)
′).

We get that this is isomorphic to HomD′(T̃a, F̃DUb), since (FDUb)
′ is in D0. By

Lemma 2.14 this is isomorphic to HomD′(T̃a, FD′ T̃b). We thus obtain that

HomD(Ta, FDTb)/(M ∐ FM) ≃ HomD′(T̃a, FD′ T̃b).

We have HomD(Ta, Tb)/(M ∐ FM) ≃ HomD(Ta, Tb)/(M). Consider again the

triangle Mb
fb→ Tb → Ub in D, where fb : Mb → Tb is a minimal right M-approximation.

Applying HomD(Ta, ) gives an exact sequence

HomD(Ta, Mb) → HomD(Ta, Tb) → HomD(Ta, Ub) → HomD(Ta, Mb[1]).

Since Mb is a module, we have HomD(Ta, Mb[1]) = 0, and hence

HomD(Ta, Tb)/(M) ≃ HomD(Ta, Ub), which is isomorphic to HomD′(T̃a, Ũb) by
Proposition 2.2. We obtain that:

HomD(Ta, Tb)/(M ∐ FM) ≃ HomD′(T̃a, T̃b).

Therefore Γ/ΓeΓ = HomD(T, T )∐HomD(T, FT )/(M ∐ FM) ≃ HomD′(T̃ , T̃ )∐

HomD′(T̃ , FD′ T̃ ) as vector spaces. It is straightforward to check that the map is
also a ring map. Theorem 2.13 is proved.
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2.5. Comparison with tilted algebras. We give an example showing that a
result similar to Theorem 2.13 does not hold for tilted algebras. We would like to
thank Dieter Happel for providing us with this example. There is a tilting module
for the path algebra of a Dynkin quiver of type D5, such that the corresponding
tilted algebra Λ has the quiver

3
γ

��>
>>

>>
>>

1
α // 2

β

@@�������

δ ��>
>>

>>
>>

5

4

ǫ

@@�������

with relations αβ = βγ − δǫ = 0. If we let e4 be the primitive idempotent cor-
responding to vertex 4, then Λ/Λe4Λ is not tilted, since it has global dimension
three.

It is well-known that the endomorphism-ring of a partial tilting module is a
tilted algebra. However, a similar result does not hold for cluster-tilted algebras.
An example of this is the path algebra of an oriented 4-cycle, modulo the cube of
its radical. This is a cluster-tilted algebra of type D4.

3. Cluster-tilted algebras of rank at most 2

In this section we apply the main result of the previous section to show that
(oriented) cycles in the quiver of a cluster-tilted algebra have length at least three.
For the rest of the paper, the field K is assumed to be algebraically closed. Let
T1 ∐T2 ∐· · · ∐Tn be a tilting object in the cluster category C. We denote by δk(T )
the tilting object T ′ obtained by exchanging Ti with the second complement of
T1 ∐ · · · ∐ Ti−1 ∐ Ti+1 ∐ · · · ∐ Tn. Let Γ = EndC(T )op and Γ′ = EndC(T ′)op be the
corresponding cluster-tilted algebras. Passing from Γ to Γ′ depends on the choice
of tilting object T . But we still write δk(Γ) = Γ′, when either it is clear from the
context which tilting object T gives rise to Γ, or when this it is irrelevant. We also
say that Γ′ is obtained from Γ by mutation at k.

From [BMRRT] we know that all tilting objects in CH can be obtained from
performing a finite number of operations δk to H , where H is the hereditary algebra
considered as a tilting object in CH .

If k is a source or a sink in the quiver of a hereditary algebra, then mutation at
k coincides with so-called APR-tilting [APR] (see [BMR]), and the quiver of the
mutated algebra δk(H) is obtained by reversing all arrows ending or starting in k.

Lemma 3.1. The cluster-tilted algebras of rank at most 2 are hereditary.

Proof. This follows from the fact that any cluster-tilted algebra can be obtained by
starting with a hereditary algebra, and performing a finite number of mutations.
If we start with a hereditary algebra H of rank at most 2, the algebra obtained by
mutating at one of the vertices is isomorphic to H . �

Proposition 3.2. The quiver of a cluster-tilted algebra has no loops and no cycles
of length 2.

Proof. This follows directly from combining Lemma 3.1 with Theorem 2.13. �
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Note that the assertion of no loops was proven in [BMRRT, Cor. 6.15], while the
second assertion was first proven by Gordana Todorov in case of finite representation
type.

4. Cluster-tilted algebras of rank 3

In this section we specialize to connected hereditary algebras of rank 3, and
the cluster-tilted algebras obtained from them. We describe the possible quivers,
and give some information on the relation-spaces. Later, this will be used to show
our main result for algebras of rank 3. In the proof of our main theorem, we use
Theorem 2.13 to reduce to the case of rank 3. For hereditary algebras of finite
representation type, there is up to derived equivalence only one connected algebra
of rank 3, and thus up to equivalence only one cluster category C. In this case the
technically involved results of this section reduce to just checking one case: The
only cluster-tilted algebra of rank 3 which is not hereditary is given by a quiver
which is a cycle of length 3, and with the relations that the composition of any two
arrows is zero.

4.1. The quivers. We consider quivers of the form

1

.

��>
>>

>>
>>

.

r
��>

>>
>>

>>

.
t //
. // 3

2

.

@@�������
.

s

@@�������

where r > 0, s > 0 and t ≥ 0 denote the number of arrows as indicated in the above
figure. For short, we denote such a quiver by Qrst.

Up to derived equivalence, all connected finite dimensional hereditary algebras
of rank 3 have a quiver given as above. We first note that factors of path-algebras
of such quivers by non-zero admissible ideals are never cluster-tilted. We omit our
original proof of this fact since it is a consequence of the more general (recently
proven) fact from [KR] that any cluster-tilted algebra is either hereditary or of
infinite global dimension. Hence, since Qrst has no oriented cycles, it follows that
if it is the quiver of a cluster-tilted algebra, there can be no proper relations. So
we have the following.

Lemma 4.1. If Γ is a cluster-tilted algebra with quiver of type Qrst, then Γ is
hereditary.

This has the following consequence.

Corollary 4.2. The quiver of a non-hereditary connected cluster-tilted algebra of
rank 3 is of the form

1

.

��>
>>

>>
>>

.

r
��>

>>
>>

>>

3.oo .
too

2

.

@@�������
.

s

@@�������

with r, s, t > 0.

Proof. Combine Lemma 4.1 with Propostion 3.2. �

In view of this we refer to the cluster-tilted algebras of rank 3 which are non-
hereditary as cyclic cluster-tilted algebras.
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4.2. The relations. We first show that relations are homogeneous.

Proposition 4.3. Let Γ be a cluster-tilted algebra of rank 3 with Jacobson radical
r. Then r6 = 0, and the relations are homogeneous.

Proof. Without loss of generality we can assume that there is a tilting module
T = X ∐ Y ∐ Z for a hereditary algebra H , such that Γ = EndCH

(T )op.
Using Corollary 4.2 it is clear that we can assume that the quiver of Γ has the

form

1

.

��>
>>

>>
>>

.

r
��>

>>
>>

>>

3.oo .
too

2

.

@@�������
.

s

@@�������

with r, s, t > 0.
Let Λ = EndH(T )op be the corresponding tilted algebra. There are no cycles in

the quiver of a tilted algebra. We can therefore assume that there is a sink in the
quiver of Λ, and we assume that this vertex corresponds to Z, that is, HomH(Z, X∐

Y ) = 0. We assume X, Y, Z correspond to the vertices 1, 2, 3, respectively. If ĥ is
a non-zero map in Irradd T (Z, X), it must be of degree 1, that is, the lifting h is
in HomD(Z, FX). Since this holds for all maps in IrraddT (Z, X), any composition
of 6 arrows will correspond to a map of degree ≥ 2 from an indecomposable to
itself, and therefore must be the zero-map. This follows from the fact that for any
indecomposable module M , we have HomD(M, F 2M) = 0. This gives r6 = 0.

We can assume that at least one of the arrows (irreducible maps) X → Y and
at least one of the arrows Y → Z are of degree 0. Otherwise, the tilted algebra Λ
would not be connected.

Now let ĝ be a map in Irradd T (Y, Z). We want to show that it must be of degree
0. Since X ∐ Y is an almost complete tilting object in CH , there are exactly two
complements. Denote as usual the second one by Z∗. The complement Z∗ is either
the image of a module or the image of an object of the form I[−1] for an injective
indecomposable module I. Furthermore, there is a triangle in C

(3) Z∗ → Y u → Z →,

for some u ≥ 0, which can be lifted to a triangle

F iZ∗

(
α1

α2

)
→ Y u1 ∐ (F−1Y )u2 → Z →

in D for some integer i and with u = u1 + u2. We need to show that u2 = 0. It is
sufficient to show that the map α2 = 0. We have u1 6= 0, and thus by minimality
α1 6= 0. It is clear that if also α2 6= 0, then i = 0 or i = −1.

Assume first Z∗ ≃ I[−1], then

HomD(I[−1], F−1Y ) = HomD(I, τY ) = 0,

so i = 0 gives α2 = 0. On the other hand, it is clear that i = −1 gives α1 = 0.
Assume now that Z∗ is the image of a module. Then there is an exact sequence

of modules

0 → Z∗ → Y v → Z → 0,

and since dimk HomC(Z, Z∗[1]) = 1 (by [BMRRT]), it follows that the triangle (3)
is induced by this sequence, and thus u1 = v and u2 = 0.
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Now we show that all the irreducible maps X → Y in CH are of degree 0. For
this, consider the almost complete tilting object X ∐ Z in CH , with complements
Y and Y ∗. Consider the triangle

Y ∗ → Xw → Y →,

and the preimage in D,

F iY ∗

(
β1

β2

)
→ Xw1 ∐ (F−1X)w2 → Y → .

We need to show that w2 = 0. The case where Y ∗ ≃ I[−1] is completely similar
as for irreducible maps Y → Z. In case Y ∗ is the image of a module, it is now more
complicated since we have two possibilities. Either there is an exact sequence in
mod H of the form

0 → Y ∗ → Xa → Y → 0,

or there is an exact sequence of the form

0 → Y → Zb → Y ∗ → 0.

If we are in the first case, we can use the same argument as for irreducible maps Y →
Z. If we are in the second case, note that HomH(Y ∗, X) = 0, since HomH(Z, X) =
0. Thus, either β1 = 0 or β2 = 0 in our triangle. This completes the proof that all
irreducible maps X → Y are induced by module maps, and thus are of degree 0.

Given that r6 = 0, the only possibility for a non-homogeneous relation must
involve maps in r2 \ r3 and maps in r5. But, by our description of irreducible maps,
this is not possible, because it would involve a relation between maps of different
degrees. �

Fix a cyclic cluster-tilted algebra of rank 3, and fix a vertex k. Let α be an arrow
ending in k, and β an arrow starting in k. If βα = 0, as an element of the algebra,
for any choice of α and β, then we call k a zero vertex.

Proposition 4.4. Let Γ be a cyclic cluster-tilted algebra, and fix a vertex k. Then
k is a zero-vertex if and only if δk(Γ) is hereditary.

Proof. We assume the quiver of Γ is

1

.

��>
>>

>>
>>

.

r
��>

>>
>>

>>

3.oo .
too

2

.

@@�������
.

s

@@�������

Let Γ = EndC(T )op, and let Ti be the direct summand of T corresponding to the
vertex i. Assume that 2 is a zero-vertex. Then it is clear that HomC(T1, T3) = 0,
so the quiver of δ2(Γ) must be

1 3

.
��~~

~~
~~

~~

.

r
��~~

~~
~~

~~

.
t′oo
.oo

2∗

.

__@@@@@@@@
.

s

__@@@@@@@@

with t′ ≥ 0. Now δ2(Γ) is hereditary, by Lemma 4.1.
Conversely, assume δk(Γ) is hereditary. The quiver of δk(Γ) must be as above,

with t′ ≥ 0. This means HomC(T1, T3) = 0, so 2 is a zero-vertex. �
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4.3. Kerner’s Theorem. The following result by Kerner [Ke] turns out to be
crucial for the proof of the main theorem of this section. There is a more general
version of this theorem in [Ke]. We include a proof, for the convenience of the
reader. This proof is also due to Kerner, and we thank him for providing us with
it.

Theorem 4.5. Let X, Y be regular indecomposable modules over a wild hereditary
algebra H of rank 3. If HomH(X, τY ) = 0, then also HomH(X, τ−1Y ) = 0.

Proof. We first prove the following.

Lemma 4.6. Let U be an indecomposable regular module over a wild hereditary
algebra of rank 3. Then HomH(U, τ2U) 6= 0.

Proof. Assume first Ext1H(U, U) 6= 0. By the AR-formula, then also HomH(U, τU) 6=
0. Assume now HomH(U, τ2U) = 0. Then also Ext1H(τU, U) = 0 and, by the
Happel-Ringel lemma [HR], a non-zero map f : U → τU is either surjective or
injective. In either case, g = τ(f) ◦ f : U → τ2U is non-zero. This contradicts
HomH(U, τ2U) = 0.

Now assume Ext1H(U, U) = 0. Then by [Ho], U is quasi-simple. Thus, there is
an almost split sequence 0 → τU → V → U → 0, where V is indecomposable, and
by [Ke2] we have EndH(V ) ≃ K, while Ext1H(V, V ) 6= 0. Applying HomH(U, ) to
the almost split sequence, we obtain the exact sequence

HomH(U, τU) → HomH(U, V ) → HomH(U, U) → Ext1H(U, τU)

Since HomH(U, U) → Ext1H(U, τU) is an isomorphism and HomH(U, τU) = 0, we
have that also HomH(U, V ) = 0. The long exact sequence obtained by applying
HomH( , τU) to the almost split sequence, gives HomH(V, τU) = 0. Now, this gives
HomH(V, τ2U) 6= 0, since there is an exact sequence

0 → HomH(V, τ2U) → HomH(V, τV ) → HomH(V, τU)

and the last term is zero. There is also the long exact sequence

0 → HomH(U, τ2U) → HomH(V, τ2U) → HomH(τU, τ2U)

where the last term is zero. This proves HomH(U, τ2U) 6= 0. �

Let us now complete the proof of the theorem. Let X, Y be regular indecompos-
able modules. It suffices to show that HomH(X, Y ) 6= 0 implies HomH(X, τ2Y ) 6= 0.
Let z : X → Y be a non-zero map. Then we can assume there is an indecomposable

regular module U , such that z factors as X
p
→ U

i
→ Y , where p is surjective and i

is injective. Also τ2i : τ2U → τ2Y is injective. By Lemma 4.6, there is a non-zero
map f : U → τ2U . The composition τ2i ◦ f ◦ p is non-zero. This completes the
proof of the theorem. �

4.4. The dimensions of relation-spaces. Let H be a connected hereditary al-
gebra of rank 3. The following notation is used for the rest of this section. Let T
be an almost complete tilting object with complements M and M∗, and assume
there are triangles as in Theorem 1.2. Let T = T ∐ M and T ′ = T ∐ M∗ and let
Γ = EndC(T )op and Γ′ = EndC(T ′)op. By now, we know that the quiver of Γ is
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either

1

.

��>
>>

>>
>>

.

r
��>

>>
>>

>>

3.oo .
too

2

.

@@�������
.

s

@@�������

with r, s, t > 0 or the quiver Qrst

1

.

��>
>>

>>
>>

.

r
��>

>>
>>

>>

.
t //
. // 3

2

.

@@�������
.

s

@@�������

with r, s > 0 and t ≥ 0. We let M correspond to vertex 2. Then T = TB ∐ TB′

where TB corresponds to the vertex 1 and TB′ to 3. It is then clear that B = (TB)r

and B′ = (TB′)s. We label the vertices with the corresponding modules, then the
arrows represent irreducible maps in addT .

We let I denote the ideal such that Γ ≃ KQ/I. In case Γ is cyclic, we say that
Γ is balanced at the vertex 2 if

dim((Irr(TB, M) ⊗ Irr(M, TB′) ∩ I) = t.

We will show that any vertex of a cyclic cluster-tilted algebra is either balanced
or a zero-vertex. We first discuss the algebras obtained by mutating hereditary
algebras.

Lemma 4.7. Let H be a hereditary algebra with quiver Qrst where r, s > 0 and
t ≥ 0. Then the following hold.

(a) The cluster-tilted algebra Γ′ = δ2(H) is balanced at the vertices 1 and 3.
(b) The new vertex 2∗ is a zero-vertex.
(c) The quiver of Γ′ is

1 .
t+rs //

. // 3

.
��~~

~~
~~

~~

.

s
��~~

~~
~~

~~

2∗

.

__@@@@@@@@
.

r

__@@@@@@@@

Proof. Part (b) and (c) follow directly from Lemma 4.1 and Proposition 4.4. Let
Pi be the indecomposable projective H-module corresponding to vertex i, and Si

the simple H-module Pi/ rPi. Then P3 = S3 is simple. Consider P1 ∐ P3 as an
almost complete tilting object. There is an exact sequence

0 → P2 → (P1)
s → P ∗

2 → 0,

such that the induced triangle in C is the exchange-triangle of Theorem
1.2. Let T ′ = P1 ∐ P ∗

2 ∐ P3. Using the definition of τ , one can show
that S2 = τP ∗

2 , and thus HomD(P ∗
2 , P1) = 0. Since 2∗ is a zero-vertex,

IrraddT ′(P3, P1) = HomH(P3, P1), with dimension rs + t. We want to compute
IrraddT ′(P ∗

2 , P3) ⊗ Irradd T ′(P3, P1) = HomC(P ∗
2 , P1) ≃ HomD(F−1P ∗

2 , P1). We
have HomD(F−1P ∗

2 , P1) = HomD(τP ∗
2 [−1], P1) = Ext1H(S2, P1). There is an exact

sequence

0 → (P3)
r → P2 → S2 → 0.
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Apply HomH( , P1) to it, to obtain the long exact sequence

0 → HomH(S2, P1) → HomH(P2, P1) → HomH((P3)
r, P1) → Ext1H(S2, P1) → 0.

Since dimHomH(P2, P1) = s, and dimHomH((P3)
r, P1) = (rs + t)r, we have

dim(Irradd T ′(P ∗
2 , P3)⊗Irradd T ′(P3, P1)) = r(rs+t)−s, thus dim(Irradd T ′(P ∗

2 , P3)⊗
IrraddT ′(P3, P1) ∩ I) = s, and Γ′ is balanced at 3.

Now apply HomH(P3, ) to the exact sequence 0 → P2 → (P1)
s → P ∗

2 → 0 to
obtain the exact sequence

0 → HomH(P3, P2) → HomH(P3, P
s
1 ) → HomH(P3, P

∗
2 ) → 0.

Since dim HomH(P3, P2) = r and dimHomH(P3, P
s
1 ) = (rs + t)s, we have

dim(Irradd T ′(P3, P1) ⊗ IrraddT ′(P1, P
∗
2 )) = dimHomC(P3, P

∗
2 ) = (rs + t)s − r.

This means dim(Irradd T ′(P3, P1) ⊗ Irradd T ′(P1, P
∗
2 ) ∩ I) = r, and Γ′ is balanced

also at 1. �

Proposition 4.8. Let Γ be a non-hereditary cluster-tilted algebra with quiver
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(a) If Γ is balanced at the vertex 2, then Γ′ = δ2(Γ) is non-hereditary, and thus
cyclic, with quiver

1 .
rs−t //

. // 3

.
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It is balanced at the new vertex 2∗. Each of the other vertices of Γ′ is either
balanced or a zero-vertex.

(b) If Γ has a zero-vertex at 2, then δ2(Γ) is hereditary with quiver

1 3

.
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r
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.
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.oo

2∗

.
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.

s
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Proof. Part (b) follows from Propositions 4.3 and 4.4.
To prove part (a), we adopt our earlier notation and conventions. Especially,

Γ = EndC(TB ∐ TB′ ∐ M)op, and we have the quiver

TB

.

!!B
BB

BB
BB

B

.

r
!!B

BB
BB

BB
B

TB′.oo .
too

M

.

=={{{{{{{{
.

s

=={{{{{{{{
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The quiver of the mutated algebra δ2(Γ) = EndC(TB ∐ TB′ ∐ M∗)op is

TB
.
t′ //
. // TB′

.

||zz
zz

zz
zz

.

s
||zz

zz
zz

zz

M∗

.

aaDDDDDDDD
.

r

aaDDDDDDDD

Using that Γ is balanced at 2, and Proposition 4.3, it follows that t′ = rs− t. Also
by assumption, M does not correspond to a zero-vertex, so there is at least one
non-zero composition TB → M → TB′ . Therefore rs − t > 0.

We have dim(Irradd T ′(TB′ , M∗) ⊗ Irradd T ′(M∗, TB)) = dim IrraddT (TB′ , TB) +
dim(Irradd T (TB′ , M)⊗Irradd T (M, TB)) = t+0. Therefore dim(Irradd T ′(TB′ , M∗)⊗
IrraddT ′(M∗, TB) ∩ I) = rs − t, so Γ′ is balanced at 2∗.

We now proceed to show that for each of the vertices 1 and 3, Γ′ is either
balanced, or a zero-vertex. We assume TB′ is not a zero-vertex in Γ′.

The tilted algebra Λ = EndH(TB ∐ TB′ ∐ M)op has a unique sink. There is
an induced total ordering on the triple TB, TB′ , M , where the last element in the
ordering corresponds to the sink. Also, by considering the preimage of M∗ in the
standard domain of D, the ordering can be extended to the quadruple B′, M∗, B,
M . Note that we get the following four possible orderings

- (M, TB′ , M∗, TB)
- (TB′ , M∗, TB, M)
- (M∗, TB, M, TB′)
- (TB, M, TB′ , M∗).

First we show the claim for the vertex corresponding to TB′ .

Lemma 4.9. Assume that TB′ does not correspond to a zero-vertex in Γ′ and that
M∗ is before TB in the above ordering. Then HomD(TB, τ−1M∗) = 0.

Proof. Since δ2(Γ) is not hereditary, we have HomH(M∗, TB) 6= 0. Assume now
that HomH(TB, τ−1M∗) 6= 0. Assume first that TB is regular, then M∗ is also
regular. In case H is tame, then there are at most two exceptional modules which
are regular. This follows from the fact that H has three simples. But in case there
are two exceptional modules which are regular, there is an extension between them.
This gives a contradiction. In case H is wild we can apply Kerner’s Theorem, which
says that HomH(TB, τM∗) 6= 0. We have a contradiction, since HomH(TB, τM∗) ≃
D Ext1H(M∗, TB) = 0.

If B is a preprojective or a preinjective module, then HomH(M∗, TB) 6= 0 and
HomH(TB, τ−1M∗) 6= 0 implies that the map M∗ → TB is irreducible in the
module-category. Thus M∗ ∐ TB can be complemented to a tilting module with
hereditary endomorphism ring. We have seen that the mutated algebra δ2(Γ) is by
assumption not hereditary. This means that TB′ must correspond to a zero-vertex,
so we have a contradiction to HomH(B, τ−1M∗) 6= 0 also for TB being preprojective
or preinjective. �

Now, let M → B′ → M∗ → be the usual triangle. We recall that T = TB ∐ TB′ .

Let H̃om(TB, M) = Irradd T (TB, M), let H̃om(TB, B′) = Irradd T (TB, B′) and let

H̃om(TB, M∗) = Irradd T ′(TB, M∗). Then we claim that there is an exact sequence

(4) 0 → H̃om(TB, M)
α
→ H̃om(TB, B′) → H̃om(TB, M∗) → 0.
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It is clear from Proposition 4.3, and the fact that

HomD(TB, M) → HomD(TB, B′) → HomD(TB, M∗) → 0

is exact, that we only need to show that the map α is a monomorphism. We first
assume M∗ is a module. To prove the claim for this case, we consider the four
orderings on the quadruple {M, B′, M∗, B}. For each case we show that a map in
IrraddT (TB, M) cannot factor via M∗[−1] in C.

(M, TB′ , M∗, TB) : In this case, a map in IrraddT (TB, M) is of degree 1. Assume
the lifting is f : τTB[−1] → M . There is a non-split exact sequence 0 → M →
B′ → M∗ → 0. We have dimHomC(M∗, M [1]) = 1, by [BMRRT], and therefore
HomD(FM∗, M [1]) = HomD(τ−1M∗, M) = 0. Therefore, if f : TB → M factors
through M∗[−1] in C, there must be a map g : τTB[−1] → M in D, such that there
is a commutative diagram

τTB[−1]

f

��

g

yyssssssssss

M∗[−1] // M

By Lemma 4.9, we have that HomD(τTB , M∗) = HomD(TB, τ−1M∗) = 0, and thus
we obtain f = 0.

(TB′ , M∗, TB, M) or (M∗, TB, M, TB′) : In these cases, a map in Irradd T (TB, M) is
of degree 0. Assume the lifting of it is f : TB → M . The preimage of M∗ in D is a
module in these cases, so a factorisation of f must be of the form

TB

f

��

g

{{vv
vv

vv
vv

v

τ−1M∗ // M

Lemma 4.9 gives f = 0.

(TB, M, TB′, M∗) : In this case the preimage of M∗ in D is either a module or
P [1], for an indecomposable projective H-module P . In both cases, a map in
IrraddT (TB, M) is a map of degree 0. Assume the lifting is f : TB → M . In
the first case there is a non-split exact sequence 0 → M → B′ → M∗ → 0.
Therefore, since dimHomC(M∗, M [1]) = 1, we have HomD(τ−1M∗, M) = 0. Since
HomD(TB, M∗[−1]) = 0, we must have f = 0, if f factors as below

TB

f

��

g

{{ww
ww

ww
ww

w

M∗[−1] // M.

Assume M∗ ≃ P [1], with P projective. If HomD(TB, P ) 6= 0, then TB is also
projective. Therefore HomD(TB, P [1]) = 0, and thus HomC(TB, M∗) = 0, which
means that TB′ is a zero-vertex in Γ′, a contradiction. Then HomD(TB, P ) = 0, but
this means that f : TB → M factors through M∗[−1] ≃ P only for f = 0. Thus,
the map α is a monomorphism, and the sequence (4) is exact.
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Thus, dim H̃om(TB, M∗) = dim H̃om(TB, B′)−dim H̃om(TB, M) = t′s− r. This
means that dim(Irradd T ′(TB, TB′) ⊗ Irradd T ′(TB′ , M∗) ∩ I) = r, so Γ′ is balanced
at the vertex 3, corresponding to TB′ .

We now show that Γ′ is balanced at the vertex 1, corresponding to TB, or 1 is
a zero-vertex. Assume it is not a zero-vertex. We have the dual version of Lemma
4.9.

Lemma 4.10. Assume that TB does not correspond to a zero-vertex and that M∗

is before TB in the above ordering. Then HomD(M∗, τTB′) = 0.

Proof. Similar to the proof of Lemma 4.9. �

Now, consider the triangle

M∗ → B → M → .

We need to show that there is an exact sequence

(5) 0 → H̃om(M, TB′) → H̃om(B, TB′) → H̃om(M∗, TB′) → 0,

where H̃om(M, TB′) = Irradd T (M, TB′), while H̃om(B, TB′) = Irradd T (B, TB′) and

H̃om(M∗, TB′) = Irradd T ′(M∗, TB′). The proof of this is parallel to the proof for
the sequence (4), and therefore omitted. Using the exact sequence (5), one obtains
that Γ′ is balanced at the vertex 1. �

We summarise the results of this section.

Theorem 4.11. Let Γ be a cluster-tilted algebra of rank 3.

(a) Γ is either hereditary, or it is cyclic.
(b) If Γ is cyclic, then each vertex of Γ is either balanced or a zero-vertex.
(c) Let k be a vertex of Γ, let δk(Γ) be the mutation in direction k, and let k∗

be the new vertex of δk(Γ). Then there are the following possible cases:

I. Both Γ and δk(Γ) are hereditary.
II. Γ is hereditary, while δk(Γ) is cyclic with a zero-vertex at k∗,

III. Γ is cyclic with a zero-vertex at k, and δk(Γ) is hereditary, or

IV. Γ is cyclic and balanced at k, and δk(Γ) is cyclic and balanced at k∗.

Proof. This follows directly from the previous results in this section, and the fact
that all cluster-tilted algebras can be obtained by starting with a hereditary algebra,
and then performing a finite number of mutations [BMRRT], [BMR]. �

The above Theorem is very easily verified for algebras of finite type, as indicated
in the introduction of this section.

5. Mutation

As mentioned in the introduction, in view of Proposition 3.2 it is possible to
assign to a cluster-tilted algebra Γ a skew-symmetric matrix XΓ = (xij). More
precisely, if there is at least one arrow from i to j in the quiver of the endomorphism-
algebra Γ, let xij be the number of arrows from i to j. If there are no arrows between
i and j, let xij = 0. Let xij = −xji otherwise.

Now let T be an almost complete tilting object with complements M and M∗.
Let T = T∐M , let T ′ = T∐M∗, let Γ = EndC(T )op and let Γ′ = EndC(T ′)op. Then
we want to show that the quivers of Γ and Γ′ are related by the cluster-mutation



CLUSTER MUTATION VIA QUIVER REPRESENTATIONS 23

formula. We use the results of Section 4 to show this for cluster-tilted algebras of
rank 3, and Theorem 2.13 to extend to the general case. There is an independent
proof of this for finite representation type in [CCS2].

Theorem 5.1. Let H be a hereditary algebra, and let T , M, M∗, Γ and Γ′ be as
above. Then the quivers of Γ and Γ′, or equivalently the matrices XΓ and XΓ′ , are
related by the cluster mutation formula.

Proof. First, assume H has rank 3. In case H is not connected, the claim is easily
checked. Assume H is connected. Fix k, the vertex where we mutate. By Theorem
1.2, it is clear that x′

ik = −xik for i = 1, 2, 3, and that x′
kj = −xkj for j = 1, 2, 3.

Now assume i 6= k and j 6= k. By Theorem 4.11, there are four possible cases.

Case I: This happens if and only if k is a source or a sink. In this case it is clear
that either xik = 0 or xkj = 0. For i 6= k and j 6= k, it is clear that xij = x′

ij ,
since in this case mutation at k is the same as so-called APR-tilting at k. Thus the
formula holds.

Case II: Since k is now not a source or a sink, we can assume Γ is the path algebra
of
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where r > 0 and s > 0 and t ≥ 0 and with k = 2. Then, by Lemma 4.7, the quiver
of δ2(Γ) is
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with t′ = rs + t. So x′
13 = t′ = rs + t, and

x13 +
|x12|x23 + x12|x23|

2
= t +

rs + rs

2
= t + rs.

Case III: We assume that the quiver of Γ is
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By Proposition 4.8, the quiver of Γ′ is
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with t′ = t − rs. That is x′
13 = t − rs, and

x13 +
|x12|x23 + x12|x23|

2
= t +

|−r|(−s) + (−r)|−s|

2
= t − rs,

and the formula holds.
Case IV: We assume the quiver of Γ is the same as in case III. Now the quiver of
Γ′ is
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where t′ = rs − t. That is x′
13 = −t′ = t − rs, while

x13 +
|x12|x23 + x12|x23|

2
= t +

|−r|(−s) + (−r)|−s|

2
= t − rs,

thus the formula holds true also in this case.
Now, assume that H has arbitrary rank. Fix k, the vertex where we mutate. By

Theorem 1.2, it is clear that x′
ik = −xik for any value of i, and that x′

kj = −xkj

for any value of j. Assume now that k 6= i and k 6= j. Let ei, ej , ek be the
primitive idempotents in Γ corresponding to the vertices i, j, k of the quiver of
Γ. Assume 1Γ = f + ei + ej + ek. and let Γred = Γ/ΓfΓ. Let ei, ej, e

∗
k be

the primitive idempotents corresponding to the vertices i, j, k∗ of the quiver of Γ′.
Assume 1Γ′ = f ′ + ei + ej + ek∗ . and let Γ′

red = Γ′/Γ′f ′Γ′. It is clear that the
number of arrows from i to j in the quiver of Γred is xij and the number of arrows
from i to j in the quiver of Γ′

red is x′
ij . So, by the first part of the proof, xij and

x′
ij are related by the matrix mutation formula. �

There are some nice direct consequences of this. For the first one, one uses
in addition to Theorem 5.1 that the tilting graph (see [BMRRT, Section 3]) is
connected, [BMRRT, Prop. 3.5].

Corollary 5.2. Let Q be a finite quiver with no oriented cycles. Then a quiver Q′

can be obtained from Q by repeated mutation if and only if Q′ is the quiver of a
cluster-tilted algebra EndC(T )op for some tilting object T in C = CKQ.

We thank A. Seven for pointing out to us the following direct consequence of
Theorem 2.13, and Corollary 5.2.

Corollary 5.3. Let Q be a finite acyclic quiver. Then all full subquivers of Q are
also acyclic.

6. Connections to cluster algebras

Our main motivation for studying matrix mutation for quivers/matrices associ-
ated with tilting objects in cluster categories is the connection to cluster algebras.
In this section we explain how Theorem 5.1 gives such a connection. In order to
formulate our result we first need to give a short introduction to a special type of
cluster algebras [FZ1], relevant to our setting [BFZ]. See also [FZ2] for an overview
of the theory of cluster algebras.

Let F = Q(u1, . . . , un) be the field of rational functions in indeterminates
u1, . . . , un, let x = {x1, . . . , xn} ⊂ F be a transcendence basis over Q, and B = (bij)
an n×n skew-symmetric integer matrix. A pair (x, B) is called a seed. The cluster
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algebra associated to the seed (x, B) is by definition a certain subring A(x, B) of F ,
as we shall describe. Given such a seed (x, B) and some i, with 1 ≤ i ≤ n, define a
new element of x′

i of F by

xix
′
i =

∏

j;bji>0

xbji +
∏

j;bji<0

x−bji .

We say that xi, x
′
i form an exchange pair. We obtain a new transcendence basis

x′ = {x1, . . . , xn}∪{x′
i}\{xi} of F . Then define a new matrix B′ = (b′ij) associated

with B by

b′ij =

{
−bij if k = i or k = j,

bij +
|bik|bkj+bik|bkj |

2
otherwise.

The pair (x′, B′) is called the mutation of the seed (x, B) in direction i, written
µi(x, B) = (x′, B′). Let S be the set of seeds obtained by iterated mutations of
(x, B) (in all possible directions). The set of cluster variables is by definition the
union of all transcendence bases appearing in all the seeds in S, and the cluster
algebra A(x, B) is the subring of F generated by the cluster variables. The tran-
scendence bases appearing in the seeds are called clusters.

As mentioned earlier, there is a 1–1 correspondence between finite quivers with
no loops and no oriented cycle of length two and skew-symmetric integer matrices
(up to reordering the columns). The vertices of the quiver of a matrix B = (bij) are
1, . . . , n, and there are bij arrows from i to j if bij > 0. The cluster algebra is said
to be acyclic if there is some seed where the quiver associated with the matrix has
no oriented cycles [BFZ]. We take the corresponding seed as an initial seed. In this
case, let H = KQ be the hereditary path algebra associated with an initial seed
(x, B). Let C = CH be the corresponding cluster category, and let T be a tilting
object in C. Similar to the above we can associate with T a tilting seed (T, QT ),
where QT is the quiver of the endomorphism algebra EndC(T )op. Let T1, . . . , Tn be
the non-isomorphic indecomposable direct summands of T . Fix i, and let as before
δi(T ) = T ′ be the tilting object of C obtained by exchanging Ti with T ∗

i (using our
earlier notation from Theorem 1.2). Define mutation of (T, QT ) in direction i to be
given by δi(T, QT ) = (T ′, QT ′).

We now want to associate tilting seeds with seeds for acyclic cluster algebras. We
first associate (H [1], QH) with a fixed initial seed (x, B), where Q is the quiver for B
and H = KQ. Let (x′, B′) be some seed. We then have (x′, B′) = µit

· · ·µi1(x, B)
for some ordered sequence (i1, . . . it). There are in general several such sequences,
and we choose one of minimal length. Associated with (x, B) is the sequence
of length 0, that is the empty set ∅. We define α((x, B), ∅) = (H [1], QH), and
α((x′, B′), (i1, . . . , it)) = δit

· · · δi1(H [1], QH) = (T ′, QT ′). Fix an ordering on the
cluster variables in the cluster x = {x1, . . . xn} of the chosen initial seed and choose
a corresponding indexing for the Hi in H = H1 ∐ · · · ∐ Hn, so that we have a
correspondence between xi and Hi. This induces a correspondence between the
cluster variables x′

i in the cluster x′ and the indecomposable direct summands T ′
i

in T ′, which we also denote by α. We do not know in general if the definition of α
only depends on the seed (x′, B′).

We can now formulate the connection between cluster algebras and tilting in
cluster categories implied by our main result.

Theorem 6.1. Let the notation be as above, with (x, B) an initial seed for an
acyclic cluster algebra, and (T ′, QT ′) a tilting seed corresponding to a seed (x′, B′),
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via the correspondence α, inducing a correspondence x′
i ↔ T ′

i for x′
i ∈ x′ and T ′

i an
indecomposable direct summand of T ′.

(a) For any i ∈ {1, . . . , n} we have a commutative diagram

((x′, B′)(i1, . . . , it))

µi

��

α // (T ′, QT ′)

δi

��
((x′′, B′′)(i1, . . . , it, i))

α // (T ′′, QT ′′)

where x′′ is the cluster obtained from x′ by replacing x′
i ∈ x′ by x′′

i , and T ′′ is
the tilting object in C obtained by exchanging the indecomposable summand
T ′

i by T ′′
i where T ′ = T ∐ T ′

i and T ′′ = T ∐ T ′′
i are non-isomorphic tilting

objects.
(b) Identifying x′

i with T ′
i and x′′

i with T ′′
i , the multiplication rule for x′

ix
′′
i is

given by

T ′
iT

′′
i =

∏
(T ′

j)
aj +

∏
(T ′

k)ck

where aj and ck are determined by the minimal respectively right and left

addT -approximations ∐(T ′
j)

aj → T ′
i and T ′

i → ∐(T ′
k)ck .

Proof. (a): This follows by induction, using Theorem 5.1, where δi is interpreted
as given by a mutation rule like µi.
(b) Let T ′

i be the direct summand of T ′ corresponding to x′
i. By (a), QT ′ is the

quiver of B′, and the monomials M1 and M2 are given by the entries of the matrix
B′, hence by the arrows in the quiver QT ′ . In particular, the arrows entering and
leaving i, are given by the minimal right and minimal left addT -approximations of
T ′

i . �

Note that with the appropriate formulation, this solves Conjecture 9.3 in [BMRRT].
For algebras of finite type we know from [BMRRT] that the map α gives a

one-one correspondence between the seeds and tilting seeds, in particular it does
not depend on the the t-tuple (i1, . . . , it). In fact, we have in this case a 1–1
correspondence between cluster variables and indecomposable objects of C, inducing
a 1–1 correspondence between clusters and tilting objects.

Two cluster variables xi and x∗
i are said to form an exchange pair if there are n−1

cluster variables {y1, . . . , yn−1} such that {xi, y1, . . . , yn−1} and {x∗
i , y1, . . . , yn−1}

are clusters. Similarly we have exchange pairs with respect to tilting objects. If α
identifies xi and x∗

i with Ti and T ∗
i , respectively, we then have the following.

Theorem 6.2. For a cluster algebra of finite type, let α be the above correspondence
between seeds and tilting seeds, and between cluster variables and indecomposable
objects in the cluster category.

(a) For any i ∈ {1, . . . , n} we have a commutative diagram

(x′, B′)

µi

��

α // (T ′, QT ′)

δi

��
(x′′, B′′)

α // (T ′′, QT ′′)
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(b) Identify the cluster variables with the indecomposable objects in C via α.
We have

TiT
∗
i =

∏
(Tj)

aj +
∏

(T ∗
k )ck

for an exchange pair Ti and T ∗
i where the aj and ck appear in the unique

non-split triangles

T ∗
i → ∐T

aj

j → Ti →,

and

Ti → ∐T ck

k → T ∗
i →

in C.
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