
����������
�������

Citation: Cho, H.-J. Cluster Nested

Loop k-Farthest Neighbor Join

Algorithm for Spatial Networks.

ISPRS Int. J. Geo-Inf. 2022, 11, 123.

https://doi.org/10.3390/

ijgi11020123

Academic Editors: Bart Kuijpers,

Peter Revesz and Wolfgang Kainz

Received: 4 December 2021

Accepted: 30 January 2022

Published: 9 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of

Geo-Information

Article

Cluster Nested Loop k-Farthest Neighbor Join Algorithm for
Spatial Networks
Hyung-Ju Cho

Department of Software, Kyungpook National University, 2559 Gyeongsang-daero, Sangju-si 37224, Korea;
hyungju@knu.ac.kr

Abstract: This paper considers k-farthest neighbor (kFN) join queries in spatial networks where the
distance between two points is the length of the shortest path connecting them. Given a positive
integer k, a set of query points Q, and a set of data points P, the kFN join query retrieves the k data
points farthest from each query point in Q. There are many real-life applications using kFN join
queries, including artificial intelligence, computational geometry, information retrieval, and pattern
recognition. However, the solutions based on the Euclidean distance or nearest neighbor search are
not suitable for our purpose due to the difference in the problem definition. Therefore, this paper
proposes a cluster nested loop join (CNLJ) algorithm, which clusters query points (data points) into
query clusters (data clusters) and reduces the number of kFN queries required to perform the kFN
join. An empirical study was performed using real-life roadmaps to confirm the superiority and
scalability of the CNLJ algorithm compared to the conventional solutions in various conditions.

Keywords: cluster nested loop join; k-farthest neighbor join; spatial network; shared execution

1. Introduction

In this study, we investigate the efficient processing of k-farthest neighbor (kFN) join
queries in spatial networks where the distance between two points is defined by the length of
the shortest path connecting them. The kFN join combines each query point q in Q with the
k data points in P that are farthest from the query point q, given a positive integer k, a set
of query points Q, and a set of data points P. The kFN join query has real-life applications
in recommender systems, where farthest neighbors can increase the variety of recommen-
dations [1,2]. Farthest neighbor search is also an element in clustering applications [3],
complete linkage clustering [4], and nonlinear dimensionality reduction algorithms [5]. Thus,
being able to quickly process kFN join queries is an important practical concern for many
applications [6–14].

Figure 1 shows an example of the kFN join between a set Q of query points and a set P
of data points in a spatial network, where it is assumed that k = 1, Q = {q1, q2, q3}, and
P = {p1, p2, p3, p4} are given. In this paper, the kFN join is denoted as QnkFN P. In this
example, the data points farthest away from q1, q2, and q3 are p2, p2, and p3, respectively,
which can be represented by QnkFN P = {〈q1, p2〉, 〈q2, p2〉, 〈q3, p3〉}. Conversely, the query
points farthest from p1, p2, p3, and p4 are q1, q1, q3, and q1, respectively, which can be
represented by PnkFNQ = {〈p1, q1〉, 〈p2, q1〉, 〈p3, q3〉, 〈p4, q1〉}. This simply proves that
kFN joins are not commutative, i.e., QnkFN P 6= PnkFNQ. Note that this study considers
QnkFN P. The facility location problem, which determines the competitive location of a new
facility, such as garbage incinerators, crematoriums, chemical plants, supermarkets, and
police stations, is very important in real life when using the kFN join query applications.
Particularly, determining the optimal facility location is still an open problem [15,16]. Facing
such a research problem, efficiently evaluating the kFN join query is remarkably useful.
Assume that query points q1 through q3 represent unpleasant facilities such as garbage
incinerators and chemical plants, whereas data points p1 through p4 represent available

ISPRS Int. J. Geo-Inf. 2022, 11, 123. https://doi.org/10.3390/ijgi11020123 https://www.mdpi.com/journal/ijgi

https://doi.org/10.3390/ijgi11020123
https://doi.org/10.3390/ijgi11020123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com
https://orcid.org/0000-0001-7458-8888
https://doi.org/10.3390/ijgi11020123
https://www.mdpi.com/journal/ijgi
https://www.mdpi.com/article/10.3390/ijgi11020123?type=check_update&version=2

ISPRS Int. J. Geo-Inf. 2022, 11, 123 2 of 22

rental apartments. This example may consider a FN join between a set Q of unpleasant
facilities and a set P of available rental apartments, which could be “find ordered pairs of
an unpleasant facility q and available rental apartment p such that the rental apartment p is
farther from the unpleasant facility q than the other rental apartments available.” Naturally,
p2 or p3 may be the competitive apartment in terms of the distance to unpleasant facilities.

��
��

�� ��

��

��

��

data point query point

Figure 1. Example of kFN join QnkFN P, where Q = {q1, q2, q3} and P = {p1, p2, p3, p4}.

The kFN join query should repeatedly compute the distances between each pair of
data and query points, which leads to a long query processing time. A simple solution to
the kFN join query between a query set Q and a dataset P repeatedly scans all data points
in P for each query point in Q to compute the distance between each pair of query and
data points 〈q, p〉. This simple solution is unacceptable in most cases because it repeatedly
retrieves candidate data points for each query point. It may, however, be considered in
cases where query points are uniformly distributed throughout the region. However,
kFN join queries have not received adequate attention for spatial networks, despite their
importance. This paper proposes a cluster nested loop join (CNLJ) algorithm for spatial
networks to solve the problem of efficiently processing kFN join queries. Specifically, using
the spatial network connection, query points (data points) are clustered into query clusters
(data clusters). The CNLJ algorithm exploits a shared computation for query clusters to
avoid unnecessary computations of the distances between data and query points. The
CNLJ algorithm has several advantages over the traditional solution: (1) it clusters query
points (data points) using the spatial network connection for the shared computation, (2) it
quickly retrieves candidate data points at once for clustered query points, and (3) it does
not retrieve candidate data points for each query point separately. To the best of our
knowledge, this is the first attempt to study kFN join queries for spatial networks.

The primary contributions of this study are listed as follows:

• This paper presents a cluster nested loop join algorithm for quickly evaluating spatial
network kFN join queries. The CNLJ algorithm clusters query points before retrieving
candidate data points for clustered query points all at once. As a result, it does not
retrieve candidate data points for each query point multiple times.

• The CNLJ algorithm’s correctness is demonstrated through mathematical reasoning.
In addition, a theoretical analysis is provided to clarify the benefits and drawbacks of
the CNLJ algorithm concerning query point spatial compactness.

• An empirical study with various setups was conducted to demonstrate the superi-
ority and scalability of the CNLJ algorithm. The CNLJ algorithm outperforms the
conventional join algorithms by up to 50.8 times according to the results.

The remainder of this paper is organized as follows: Section 2 reviews related research
and provides some background knowledge. Section 3 describes the clustering of query
points (data points) and the computing of the maximum and minimum distances between a
border point and a data cluster. Section 4 presents the CNLJ algorithm for rapidly evaluating

ISPRS Int. J. Geo-Inf. 2022, 11, 123 3 of 22

kFN join queries in spatial networks. Section 5 presents the results of experiments using
the CNLJ and conventional join algorithms with different setups. Finally, the conclusions
of this study are discussed in Section 6.

2. Background

Section 2.1 presents related works and Section 2.2 defines the terms and notations
used in this study.

2.1. Related Work

Many studies have considered spatial queries based on the farthest neighbor (FN)
search [6–11,13,14,17–20]. Korn and Muthukrishnan [21] pioneered the concept of a reverse
farthest neighbor (RFN) query to obtain the weak influence set. Given a set of data points
P and a query point q, the RFN query retrieves a set of data points p ∈ P such that q is their
farthest neighbor among all points in P

⋃
{q}. This is the monochromatic RFN (MRFN)

query [8,9,13,14,19]. Another version of the RFN query is the bichromatic reverse farthest
neighbor (BRFN) query [10,13,14,22]. Given a set of data points P, a set of query points
Q, and a query point q in Q, the BRFN query retrieves a set of data points p in P such
that q is the farthest neighbor of p among all query points in Q. Many studies have been
conducted to process RFN queries for the Euclidean space [8,9,14,19,22] and for spatial net-
works [10,13]. Yao et al. [14] proposed progressive farthest cell and convex hull farthest cell
algorithms to answer RFN queries using an R-tree [23,24]. A solution to answer reverse kFN
queries in the Euclidean space was presented for arbitrary values of k [22]. Liu et al. [19]
proposed the concept of group RkFN query in the obstacle space and presented a query opti-
mization algorithm based on the Voronoi graph. Tran et al. [10] proposed a solution for RFN
queries and RkFN queries in road networks by using Voronoi-diagram-related attributes
and Dijkstra’s algorithm. Xu et al. [13] presented efficient algorithms based on landmarks
and hierarchical partitioning to process monochromatic and bichromatic RFN queries in
spatial networks. The approximate version of the problem, known as the c-approximate
farthest neighbor (c-AFN) search, has been actively studied due to the difficulty in de-
signing an efficient method for exact FN search in high-dimensional space [6,17,18,25].
Huang et al. [18,25] introduced a new concept of reverse locality-sensitive hashing (LSH)
family and developed reverse query-aware LSH functions. They proposed two hashing
schemes for high-dimensional c-AFN search over external memory. Liu et al. [17] devel-
oped an approximate algorithm with a theoretical guarantee for high-dimensional c-AFN
search over external memory. Curtin et al. [6] proposed an algorithm with an absolute
approximation guarantee for the FN search in the high-dimensional space. To estimate the
difficulty of the FN search problem, an information-theoretical measure of hardness was
presented [6]. Farthest dominated location (FDL) queries were proposed in [26]. An FDL
query retrieves the location s ∈ L such that the distance to its nearest dominating object
in P is maximized given a set of data points P with spatial and nonspatial attributes, a set
L of candidate locations, and a design competence vector Ψ for L. Gao et al. [7] studied
aggregate k-farthest neighbor (AkFN) queries that are defined by aggregation functions,
such as min, max, and sum, and presented the MB and BF algorithms based on the R
tree [23,24]. An AkFN query retrieves the k data points in P with the largest aggregate
distances to all query points in Q given a set of data points P and a set of query points Q.
In spatial networks, effective solutions to AkFN queries were proposed [11].

Due to the differences in the properties between the shortest path distance and the
Euclidean distance, existing solutions based on the Euclidean space cannot be used directly
to answer kFN join queries in spatial networks. The existing solutions for nearest neighbor
search [27–29] cannot readily be used to address the farthest neighbor search problems
due to the different distance properties between farness and nearness. Although the
group computation of spatial queries has received considerable attention [19,27,30–34],
group computation has not been applied to kFN join queries for spatial networks. To
efficiently process kFN join queries in spatial networks, new sophisticated algorithms must

ISPRS Int. J. Geo-Inf. 2022, 11, 123 4 of 22

be developed. First, the kFN join is a costly operation by definition. Second, farthest
neighbor search is more difficult than nearest neighbor search. Finally, designing index
structures that effectively support the FN search for spatial networks is difficult. In terms
of the space domain, query type, and data type, Table 1 compares our problem scenario to
existing studies.

Table 1. Classification of related work.

References Space Domain Query Type Data Type

[8,9,14,19] Euclidean space RkFN search Monochromatic
[14,22] Euclidean space RkFN search Bichromatic
[6,9,17,18,20,25] Euclidean space kFN search
[7] Euclidean space AkFN search
[26] Euclidean space FDL search
[13] Spatial network RkFN search Monochromatic
[10,13] Spatial network RkFN search Bichromatic
[35] Spatial network kFN search
[11] Spatial network AkFN search
This study Spatial network kFN join

2.2. Notation and Formal Problem Description

Query and data points are placed in a spatial network G and these points represent
points of interest (POIs), as shown in Figure 1. Given two points q and p, dist(q, p) is the
length of the shortest path between q and p in G. Table 2 summarizes the symbols used in
this study.

Table 2. Symbols used in this paper and their meanings.

Symbol Definition

k Number of requested FNs
Q and q A set Q of query points and query point q in Q, respectively
P and p A set P of data points and data point p in P, respectively
vlvl+1 · · · vm Vertex sequence where vl and vm are either an intersection vertex or a terminal vertex and the

other vertices, vl+1, . . ., vm−1, are intermediate vertices
qiqi+1· · · qj Query segment connecting query points qi, qi+1, · · ·, qj in a vertex sequence (in short, qiqj)
pl pl+1· · · pm Data segment connecting data points pl , pl+1, · · ·, pm in a vertex sequence (in short, pl pm)
QC and PC Set of query segments and set of data segments, respectively
Q and P Set of query clusters and set of data clusters, respectively
B(QC) and B(PC) Sets of border points of QC and PC, respectively
bq and bp Border points of QC and PC, respectively
Ω(q) Set of k data points farthest from a query point q
dist(q, p) Length of the shortest path connecting points q and p
len(qp) Length of the segment qp

Definition 1. kFN search [6–11,13,14]. Given a positive integer k, a query point q, and a set
P of data points, the query point q returns a set of k data points, denoted as Ω(q), such that
dist(q, p+) ≥ dist(q, p−) holds for ∀p+ ∈ Ω(q) and ∀p− ∈ P−Ω(q).

Definition 2. kFN join. Given a positive integer k, a set of query points Q, and a set of data points
P, the kFN join query, denoted as QnkFN P, returns ordered pairs of each query point q in Q and
a set of k data points farthest from q. For simplicity, QnkFN P is abbreviated to Q n P, which is
formally defined by Q n P = {〈q, Ω(q)〉|∀q ∈ Q}. Note that the kFN joins are not commutative,
i.e., Q n P 6=P n Q.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 5 of 22

Definition 3. Spatial network [32,33,36–38]. A weighted undirected graph G = 〈V, E, W〉 is used
to represent a spatial network, where V, E, and W represent the vertex set, edge set, and edge distance
matrix, respectively. Each edge has a non-negative weight that indicates the network distance.

Definition 4. Intersection, intermediate, and terminal vertices. Vertices can be divided into three
categories based on their degree: (1) If the degree of a vertex is larger than or equal to 3, the vertex is
referred to as an intersection vertex. (2) If the degree is 2, the vertex is an intermediate vertex. (3) If
the degree is 1, the vertex is a terminal vertex.

Definition 5. Vertex sequence, query segment, and data segment. A vertex sequence vlvl+1 · · · vm
denotes a path between two vertices, vl and vm, such that vl and vm are either an intersection vertex
or a terminal vertex, and the other vertices in the path, vl+1, . . . , vm−1, are intermediate vertices.
A query segment qiqi+1 · · · qj denotes a line segment connecting query points qi, qi+1, · · · , qj and
a data segment pl pl+1 · · · pm denotes a line segment connecting data points pl , pl+1, · · · , pm.
For simplicity, qiqj and pl pm are abbreviated to qiqi+1 · · · qj and pl pl+1 · · · pm, respectively, to
reduce confusion.

3. Clustering Points and Computing Distances

In Section 3.1, we group query points (data points) by using the spatial network
connection. We calculate the maximum and minimum distances between a border point
and a data cluster in Section 3.2.

3.1. Clustering Query and Data Points Using Spatial Network Connection

Figure 2 illustrates an example of the kFN join Q n P, where k = 2, Q = {q1, q2, q3, q4},
and P = {p1, p2, · · · , p6} are given. The example kFN join query requires that each query
point q in Q finds two data points farthest from q.

data point

query point

4

2 2

3

5

19

1 1

��

��

��

2

��

��

��

��

��

21

��

��

��

�	

�

3

5 2

2
��

25

2

3

Figure 2. Example of kFN join Q n P in a spatial network.

Figure 3 shows an example of the two-step clustering method to group nearby query
points into query clusters. A query segment is created in the first step by connecting query
points in a vertex sequence. In Figure 3a, query points q1 and q2 in a vertex sequence q1q2v2
are connected to become q1q2. Thus, three query segments q1q2, q3, and q4 are generated,
as shown in Figure 3a. In the second step, an intersection vertex is used to connect adjacent
query segments to form a query cluster. In Figure 3b, the intersection vertex q1 connects
two query segments q1q2 and q4. Similarly, q3 and q4 are linked by the intersection vertex v1.
Finally, q1q2 and q3 are linked by the intersection vertex v2. As a result, three query segments
q1q2, q3, and q4 are linked to form a query cluster {q1q2v2, q1q4v1, v1q3v2}. Note that a query
cluster is a set of query segments. Naturally, a set of query points Q = {q1, q2, q3, q4} is
converted into a set of query clusters Q = {{q1q2v2, q1q4v1, v1q3v2}}. Let us define a border
point for a query cluster QC. When a query cluster QC and its nonquery cluster G− QC

ISPRS Int. J. Geo-Inf. 2022, 11, 123 6 of 22

meet at a point, that point is referred to as the border point of QC. In this example, three
border points q1, v1, and v2 are found for QC = {q1q2v2, q1q4v1, v1q3v2}. Thus, a set of
border points of QC is represented by B(QC) = {q1, v1, v2}.

��

4

2 2

3

5

19

1
1

��

��

2

��

��

��

��
��

21

��

��

��

�	

�

3

5 2

2

��

25

2

3

4

2 2

3

5

19

1
1

��

��

��

2

��

��

��

��
��

21

��

��

��

�	

�

3

5 2

2

��

25

2

3

(a) (b)

Figure 3. Two-step clustering method to group nearby query points into query clusters: (a) converting
query points into query segments; (b) converting query segments into query clusters.

Figure 4 shows an example of a two-step clustering method to group neighboring
data points into data clusters. Notably, the query and data points are clustered using the
same two-step method. In the first step, data points p1, p2, and p3 in a vertex sequence
v1 p2v3 are connected to become a data segment p1 p2 p3. Similarly, data points p4 and p5 in
a vertex sequence p5 p4q1 are linked to form a data segment p4 p5. As a result, three data
segments p1 p2 p3, p4 p5, and p6 are generated, as illustrated in Figure 4a. In the second step,
two data segments p4 p5 and p6 are joined by an intersection vertex p5 to form a data cluster
{p4 p5, p5 p6}. As a result, a set of data points P = {p1, p2, · · · , p6} is transformed into a set
of data clusters P = {{p1 p2 p3}, {p4 p5, p5 p6}}.

4

2 2

3
19

1
1

��

��

2

��

��

��

��
��

21

��

��

��

�	

�

3

5 2

2

��

25

��

3

2

5

4

2 2

3
19

1
1

��

��

2

��

��

��

��
��

21

��

��

��

�	

�

3

5 2

2

��

25

5

��

3

2

(a) (b)

Figure 4. Two-step clustering method to group nearby data points into a data cluster: (a) converting
data points into data segments; (b) converting data segments into data clusters.

3.2. Computing Maximum and Minimum Distances from a Border Point to a Data Cluster

The maximum and minimum distances between a border point bq and a data cluster
PC are computed in this section. The minimum and maximum distances between bq and PC
are formally defined by mindist(bq, PC) = min{dist(bq, p)|p ∈ PC} and maxdist(bq, PC) =
max{dist(bq, p)|p ∈ PC}, respectively. The minimum distance between bq and PC can be
easily calculated by mindist(bq, PC) = min{dist(bq, bp)|bp ∈ B(PC)} where bp is a border

ISPRS Int. J. Geo-Inf. 2022, 11, 123 7 of 22

point of a data cluster PC. The maximum distance between bq and PC can be represented
by maxdist(bq, PC) = max{maxdist(bq, pl pm)|pl pm ∈ PC} where maxdist(bq, pl pm) is the
maximum distance between bq and a data segment pl pm in PC.

An example is used to illustrate how to compute the maximum and minimum dis-
tances between a border point bq and a data cluster PC. Note that the example kFN
join query has three border points and two data clusters, i.e., B(QC)={q1, v1, v2} and
P={{p1 p2 p3}, {p4 p5, p5 p6}}. In this section, the maximum and minimum distances be-
tween bq and PC are computed, where bq ∈ {q1, v1, v2} and PC ∈ {{p1 p2 p3}, {p4 p5, p5 p6}}.
Note that computations of maxdist(q1, {p1 p2 p3}), maxdist(q1, {p4 p5, p5 p6}), maxdist(v1,
{p1 p2 p3}), maxdist(v1, {p4 p5, p5 p6}), maxdist(v2, {p1 p2 p3}), and maxdist(v2, {p4 p5, p5 p6})
are illustrated in Figures 5, 6, 7, 8, 9 and 10, respectively.

Figure 5 illustrates the computation of maxdist(q1, {p1 p2 p3}). First, the distances from
q1 to the endpoints p1 and p3 of p1 p2 p3 evaluate to dist(q1, p1) = 24 and dist(q1, p3) = 27,
respectively. Consider a point p in p1 p2 p3. Because p lies in p1 p2 p3, whose length
is len(p1 p2 p3) = 5, the distance between q1 and p is computed by dist(q1, p) = min
{dist(q1, p1) + len(p1 p), dist(q1, p3) + len(p3 p)} = min{24+ len(p1 p), 27+ len(p3 p)}. Let
x = len(p1 p) for 0 ≤ x ≤ 5. Then, we have len(p3 p) = 5 − x because len(p1 p) +
len(p3 p) = 5. We can rewrite dist(q1, p) = min{24 + x, 27 + (5 − x)} for 0 ≤ x ≤ 5.
As shown in Figure 5, the maximum and minimum distances between q1 and {p1 p2 p3} is
maxdist(q1, {p1 p2 p3})= 28 and mindist(q1, {p1 p2 p3}) = 24, respectively. For convenience,
the star symbol (F) in Figure 5 is marked to indicate maxdist(q1, {p1 p2 p3}) = 28.

�� �� ��

1

~
~

�� 24

3 1

~
~

27 ��

28

25

Figure 5. maxdist(q1, {p1 p2 p3}) = 28 and mindist(q1, {p1 p2 p3}) = 24.

The maximum distance between a border point q1 and a data cluster {p4 p5, p5 p6}
is represented by maxdist(q1, {p4 p5, p5 p6}) = max{maxdist(q1, p4 p5), maxdist(q1, p5 p6)}.
The computations of maxdist(q1, p4 p5) and maxdist(q1, p5 p6) are illustrated in Figure 6a,b,
respectively. The distances from q1 to the endpoints p4 and p5 are dist(q1, p4) = 5
and dist(q1, p5) = 8, respectively. The maximum and minimum distances from q1 to
p4 p5 are shown in Figure 6a as maxdist(q1, p4 p5) = 8 and mindist(q1, p4 p5) = 5, respec-
tively. The distances from q1 to the endpoints p5 and p6 of p5 p6 are dist(q1, p5) = 8 and
dist(q1, p6) = 11 , respectively. The maximum and minimum distances from q1 to p5 p6 are
calculated to be maxdist(q1, p5 p6) = 11 and mindist(q1, p5 p6) = 8, respectively, as shown in
Figure 6b. Therefore, the maximum and minimum distances between q1 and {p4 p5, p5 p6}
are maxdist(q1, {p4 p5, p5 p6})= 11 and mindist(q1, {p4 p5, p5 p6})= 5, respectively.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 8 of 22

�� ��

5

~
~

~
~

��

8 ��

3

�� ��

8

~
~

~
~

��

11��

3

(a) (b)

Figure 6. maxdist(q1, {p4 p5, p5 p6}) = 11 and mindist(q1, {p4 p5, p5 p6}) = 5: (a) maxdist(q1, p4 p5) =

8 and mindist(q1, p4 p5) = 5; (b) maxdist(q1, p5 p6) = 11 and mindist(q1, p5 p6) = 8.

Figure 7 illustrates the computation of maxdist(v1, {p1 p2 p3}) and mindist(v1, {p1 p2 p3}).
The distances from v1 to the endpoints p1 and p3 of p1 p2 p3 are dist(v1, p1) = 19 and
dist(v1, p3) = 24, respectively. Thus, the maximum and minimum distances between v1 and
{p1 p2 p3} are maxdist(v1, {p1 p2 p3}) = 24 and mindist(v1, {p1 p2 p3}) = 19, respectively.

�� �� ��

1

~
~

4

~
~

24 ��

�� 19

20

Figure 7. maxdist(v1, {p1 p2 p3}) = 24 and mindist(v1, {p1 p2 p3}) = 19.

Figure 8 illustrates the computation of maxdist(v1, {p4 p5, p5 p6}) and mindist(v1,
{p4 p5, p5 p6}). The maximum distance between v1 and {p4 p5, p5 p6} is computed by
maxdist(v1, {p4 p5, p5 p6}) = max{maxdist(v1, p4 p5), maxdist(v1, p5 p6)}. The computa-
tions of maxdist(v1, p4 p5) and maxdist(v1, p5 p6) are illustrated in Figure 8a,b, respec-
tively. The distances from v1 to the endpoints p4 and p5 of p4 p5 are dist(v1, p4) = 10
and dist(v1, p5) = 9, respectively. Thus, the maximum and minimum distances be-
tween v1 and p4 p5 are maxdist(v1, p4 p5) = 11 and mindist(v1, p4 p5) = 9, respectively, as
shown in Figure 8a, where the star symbol (F) is marked to indicate maxdist(v1, p4 p5) =
11. The distances from v1 to the endpoints p5 and p6 of p5 p6 are dist(v1, p5) = 9 and
dist(v1, p6) = 12, respectively. As shown in Figure 8b, the maximum and minimum
distances between v1 and p5 p6 are maxdist(v1, p5 p6) = 12 and mindist(v1, p5 p6) = 9, re-
spectively. Thus, the maximum and minimum distances between v1 and {p4 p5, p5 p6} are
maxdist(v1, {p4 p5, p5 p6}) = 12 and mindist(v1, {p4 p5, p5 p6}) = 9, respectively.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 9 of 22

�� ��

9

~
~

~
~

��

��

3

12

�� ��

~
~

~
~

2

10 ��

1

11

9 ��

(a) (b)

Figure 8. maxdist(v1, {p4 p5, p5 p6}) = 12 and mindist(v1, {p4 p5, p5 p6}) = 9: (a) maxdist(v1, p4 p5) =

11 and mindist(v1, p4 p5) = 9; (b) maxdist(v1, p5 p6) = 12 and mindist(v1, p5 p6) = 9.

Figure 9 illustrates the computation of maxdist(v2, {p1 p2 p3}) and mindist(v2, {p1 p2 p3}).
The distances from v2 to the endpoints p1 and p3 of p1 p2 p3 are dist(v2, p1) = dist(v2, p3) =
23, respectively. Thus, the maximum and minimum distances between v2 and {p1 p2 p3}
are maxdist(v2, {p1 p2 p3}) = 25.5 and mindist(v2, {p1 p2 p3}) = 23, respectively. Note that
the star symbol (F) in Figure 9 is marked to indicate maxdist(v2, {p1 p2 p3}) = 25.5.

�� �� ��

1

~
~

2.5

~
~

23 �� 23

24

1.5

25.5

��

Figure 9. maxdist(v2, {p1 p2 p3}) = 25.5 and mindist(v2, {p1 p2 p3}) = 23.

Figure 10 illustrates the computation of maxdist(v2, {p4 p5, p5 p6}) and mindist(v2,
{p4 p5, p5 p6}). The maximum distance between v2 and {p4 p5, p5 p6} is computed by
maxdist(v2, {p4 p5, p5 p6}) = max{maxdist(v2, p4 p5), maxdist(v2, p5 p6)}. The computa-
tions of maxdist(v2, p4 p5) and maxdist(v2, p5 p6) are illustrated in Figure 10a,b, respec-
tively. The distances from v2 to the endpoints p4 and p5 of p4 p5 are dist(v2, p4) = 8 and
dist(v2, p5) = 5, respectively. Thus, the maximum and minimum distances between v2
and p4 p5 are maxdist(v2, p4 p5) = 8 and mindist(v2, p4 p5) = 5, respectively, as shown in
Figure 10a. The distances from v2 to the endpoints p5 and p6 of p5 p6 are dist(v2, p5) = 5
and dist(v2, p6) = 8, respectively. Thus, the maximum and minimum distances between
v2 and p5 p6 are maxdist(v2, p5 p6) = 8 and mindist(v2, p5 p6) = 5, respectively, as shown in
Figure 10b. Thus, the maximum and minimum distances between v2 and {p4 p5, p5 p6} are
maxdist(v2, {p4 p5, p5 p6}) = 8 and mindist(v2, {p4 p5, p5 p6}) = 5, respectively.

Table 3 summarizes the maximum and minimum distances between the border points
in B(QC) and the data clusters in P.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 10 of 22

�� ��

~
~

~
~

3

5

8 ��

��

�� ��

5

~
~

~
~

��

��

3

8

(a) (b)

Figure 10. maxdist(v2, {p4 p5, p5 p6}) = 8 and mindist(v2, {p4 p5, p5 p6}) = 5: (a) maxdist(v2, p4 p5) =

8 and mindist(v2, p4 p5) = 5; (b) maxdist(v2, p5 p6) = 8 and mindist(v2, p5 p6) = 5.

Table 3. Maximum and minimum distances between border points and data clusters.

bq {p1 p2 p3} {p4 p5, p5 p6}
q1 maxdist(q1, {p1 p2 p3}) = 28 maxdist(q1, {p4 p5, p5 p6}) = 11

mindist(q1, {p1 p2 p3}) = 24 mindist(q1, {p4 p5, p5 p6}) = 5

v1 maxdist(v1, {p1 p2 p3}) = 24 maxdist(v1, {p4 p5, p5 p6}) = 12
mindist(v1, {p1 p2 p3}) = 19 mindist(v1, {p4 p5, p5 p6}) = 9

v2 maxdist(v2, {p1 p2 p3}) = 25.5 maxdist(v2, {p4 p5, p5 p6}) = 8
mindist(v2, {p1 p2 p3}) = 23 mindist(v2, {p4 p5, p5 p6}) = 5

4. Cluster Nested Loop Join Algorithm for Spatial Networks

The CNLJ algorithm is described in Section 4.1. Section 4.2 evaluates k FNs queries at
the border points of query clusters. Finally, the example k FNs join query is evaluated in
Section 4.3.

4.1. Cluster Nested Loop Join Algorithm

The CNLJ algorithm is described in Algorithm 1, which involves two steps. The
two-step clustering method (lines 2–4), which is described in Section 3.1, is used to group
nearby query points (data points) into query clusters (data clusters) in the first step. In the
second step, the kFN join is performed for each query cluster in Q (lines 5–8). Finally, the
kFN join result Ω(Q) is returned to a query user when the kFN join is complete for each
query cluster in Q (line 9).

Algorithm 1 CNLJ(k, Q, P).
Input: k: number of FNs for q, Q: set of query points, and P: set of data points
Output: Ω(Q): Set of ordered pairs of each query point q in Q and a set of k FNs for q, i.e., Ω(Q) ={〈q, Ω(q)〉|q ∈ Q}.

1: Ω(Q)← ∅ // The result set Ω(Q) is initialized to the empty set.
2: // Step 1: Query and data points are clustered, which is presented in Section 3.1.
3: Q← two_step_clustering(Q) // Query points are grouped into query clusters.
4: P← two_step_clustering(P) // Data points are grouped into data clusters.
5: // Step 2: The kFN join is performed for each query cluster in Q, which is presented in Algorithm 2.
6: for each query cluster QC ∈ Q do
7: Ω(QC)← kFN_join(k, QC, P) // Ω(QC) ={〈q, Ω(q)〉|q ∈ QC}.
8: Ω(Q)← Ω(Q) ∪Ω(QC) // the kFN join result for QC is added to Ω(Q).
9: return Ω(Q) // Ω(Q) is returned once the kFN join for every query cluster in Q is complete.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 11 of 22

Algorithm 2 describes the kFN join algorithm for a query cluster QC. First, kFN queries
are evaluated at the border points of QC to collect the candidate data points for query
points in QC (lines 4–7), which is described in Algorithm 3. Then, each query point q in QC
retrieves the kFNs for q among the candidate data points in Ω(B(QC)) (lines 8–11), which
is detailed in Algorithm 4. Finally, the kFN join result Ω(QC) for query points in QC is
returned after each query point q in QC retrieves the kFNs for q from the candidate data
points (line 12).

Algorithm 2 kFN_join(k, QC, P).

Input: k: number of FNs for q, QC: query cluster, and P: set of data clusters
Output: Ω(QC): Set of ordered pairs of each query point q in QC and a set of k FNs for q, i.e., Ω(QC)={〈q, Ω(q)〉|q ∈ QC}

1: Ω(QC)← ∅ // The result set for query points in QC is initialized to the empty set.
2: Ω(B(QC))← ∅ // Note that Ω(B(QC)) = {

〈
bq, Ω(bq)

〉
|bq ∈ B(QC)} .

3: l ← max{dist(bqi , bqj)|bqi , bqj ∈ B(QC)} // l indicates the maximum distance between border points in QC.
4: // Step 1: kFN query is evaluated at each border point bq in QC
5: for each border point bq ∈ B(QC) do
6: Ω(bq)← f ind_candidates(k, l, bq, P) // kFN query is evaluated at bq, which is detailed in Algorithm 3.
7: Ω(B(QC))← Ω(B(QC)) ∪Ω(bq) // Ω(B(QC)) collects candidate data points for query points in QC.
8: // Step 2: Each query point q retrieves k FNs among the candidate data points in Ω(B(QC)).
9: for each query point q ∈ QC do

10: Ω(q)← retrieve_kFN(k, q, Ω(B(QC))) // Ω(B(QC)) is the set of candidate data points for q.
11: Ω(QC)← Ω(QC)∪Ω(q)
12: return Ω(QC) // Ω(QC) is returned once the kFN search is performed for each query point in QC.

Algorithm 3 describes the kFN query processing algorithm for finding candidate data
points at a border point bq for a query cluster. Note that the kFN query result for bq includes
candidate data points for query points in QC. The set of kFNs for bq, Ω(bq), is initialized
to the empty set (line 1). The third argument l indicates the maximum distance between
border points in QC, i.e., l←max{dist(bqi , bqj)|bqi , bqj ∈ B(QC)}. The sentinel distance is
initialized to sntl_dist←0 and determines whether a data point p is a candidate point for
QC. The maximum and minimum distances from bq to data clusters in P are computed,
as described in Section 3.2. The data clusters are then sorted in decreasing order of their
maximum distance to bq. Naturally, the sorted data clusters are explored sequentially.
If the maximum distance from bq to the data cluster PC to be explored next is smaller
than the sentinel distance, i.e., maxdist(bq, PC) < sntl_dist, the remaining unexplored data
clusters do not need to be considered because the data points in these data clusters can
be candidate data points for no query point in QC. Otherwise (i.e., maxdist(bq, PC) ≥
sntl_dist), each data point p in PC needs to be examined to determine whether p is a
candidate point for query points in QC. For this, dist(bq, p) is computed. If bq is inside PC,
then the distance from bq to p is simply computed using a graph search algorithm such
as Dijkstra’s algorithm [39]. Otherwise (i.e., if bq is outside PC), the distance evaluates to
dist(bq, p)←min{dist(bq, bp)+dist(bp, p)|bp ∈ B(PC)}. Note that bq is a border point of QC
and bp is a border point of PC. This is because if bq is outside PC, the shortest path from bq to
p should pass through a border point bp of PC, i.e., bq → bp → p. If dist(bq, p) ≥ sntl_dist,
then p is added to Ω(bq) as a candidate data point for QC. Redundant data points p
may be included in Ω(bq) and they should be removed from Ω(bq). Thus, each data
point p in Ω(bq) is explored to verify that p is qualified to be a candidate data point,
i.e., dist(bq, p)≥sntl_dist. If p does not satisfy the qualification, it is removed from Ω(bq).
Finally, if the maximum distance from bq to the data cluster PC is smaller than the sentinel
distance (lines 10–12) or if every data cluster is examined, the k FN query result for bq,
Ω(bq), is returned.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 12 of 22

Algorithm 3 f ind_candidates(k, l, bq, P).

Input: k: number of FNs for q, l: maximum distance between border points in QC, bq: border point of QC, and P: set of data clusters
Output: Ω(bq): Set of k FNs for bq

1: Ω(bq)← ∅ // The set of k FNs for a border point bq, Ω(bq), is initialized to the empty set.
2: sntl_dist← 0 // t = The sentinel distance sntl_dist is initialized to 0.
3: // The maximum and minimum distances from bq to data clusters in P are computed as explained in Section 3.2.
4: for each data cluster PC ∈ P do
5: compute maxdist(bq, PC) and mindist(bq, PC)

6: // The data clusters in P are sorted in decreasing order of their maximum distance to bq

7: P← sort_data_clusters(P) // P contains the sorted data clusters for bq.
8: // Data clusters are explored sequentially.
9: for each sorted data cluster PC ∈ P do

10: if maxdist(bq, PC) < sntl_dist then
11: // Note that sntl_dist is updated as shown in line 24.
12: Go to line 26 // This means that the other data clusters do not need to be explored.
13: // Each data point p in PC is sequentially explored to find k FNs for bq.
14: for each data point p ∈ PC do
15: // dist(bq, p) is computed using the following two cases. bq ∈ PC and bq /∈ PC.
16: if bq is inside PC then
17: dist(bq, p) is simply computed using a graph search algorithm such as Dijkstra’s algorithm [39]
18: else
19: dist(bq, p)←min{dist(bq, bp)+dist(bp, p)|bp ∈ B(PC)} // Note that the path from bq to p is bq → bp → p.
20: // p is added to Ω(bq) if dist(bq, p) ≥ sntl_dist.
21: if dist(bq, p) ≥ sntl_dist then
22: // Ω(bq) collects candidate data points for query points in QC.
23: Ω(bq)← Ω(bq) ∪ {p} // p is added to Ω(bq).
24: sntl_dist← dist(bq, pkth)− l // pkth is the current kth FN of bq.
25: // Redundant data points p are removed from Ω(bq) because they can be kFNs of no query point in QC
26: for each data point p ∈ Ω(bq) do
27: if dist(bq, p) < sntl_dist then
28: Ω(bq)← Ω(bq)− {p} // p is no candidate data point for QC and it is removed from Ω(bq).
29: return Ω(bq) // Ω(bq) is returned after candidate data points are collected for query points in QC.

Algorithm 4 describes that a query point q in QC retrieves k FNs for q among candidate
data points in Ω(B(QC)). First, Ω(q) is initialized to the empty set. The distance between
q and a candidate data point p is computed using the following two cases: p ∈ QC and
p /∈ QC. If p is inside QC, i.e., p ∈ QC, then the distance from q to p is simply computed
using a graph search algorithm [39]. Otherwise (i.e., p /∈ QC), the distance evaluates to
dist(q, p) ← min{dist(q, bq) + dist(bq, p)|bq ∈ B(QC)}. This is because the shortest path
from q to p should pass through a border point bq of QC, i.e., q→ bq → p. When dist(q, p)
is computed, the following two conditions are checked to determine whether the data point
p is added to Ω(q): If the cardinality of Ω(q) is smaller than k, i.e., |Ω(q)| < k, then p is
simply added to Ω(q). Furthermore, if p is farther from q than the current kth FN pkth of
q, i.e., dist(q, p) > dist(q, pkth), then p is added to Ω(q) and pkth is removed from Ω(q).
Finally, when exploration of every candidate data point is complete, the kFN query result
for q, Ω(q), is returned.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 13 of 22

Algorithm 4 retrieve_kFN(k, q, Ω(B(QC))).

Input: k: number of FNs for q, q: query point in QC, Ω(B(QC)): set of candidate data points for q
Output: Ω(q): set of k FNs for q

1: Ω(q)← ∅ // Ω(q) is initialized to the empty set.
2: // Ω(B(QC)) is the set of candidate data points for q.
3: for each candidate data point p ∈ Ω(B(QC)) do
4: if p is inside QC then
5: dist(q, p) is simply computed using a graph search algorithm like Dijkstra’s algorithm [39]
6: else
7: dist(q, p)← min{dist(q, bq) + dist(bq, p)|bq ∈ B(QC)} // note that dist(bq, p) was computed in Algorithm 3.
8: // p is added to Ω(q) if it satisfies either of the two conditions below.
9: if |Ω(q)| < k then

10: Ω(q)← Ω(q) ∪ {p}
11: else if |Ω(q)| = k and dist(q, p) > dist(q, pkth) then
12: // note that pkth is the current kth FN of q.
13: Ω(q)← Ω(q) ∪ {p} − {pkth}
14: return Ω(q)

Lemma 1 proves that a query point q in a query cluster QC can retrieve the k FNs for q
among candidate data points in Ω(B(QC)).

Lemma 1. Each query point q in a query cluster QC can retrieve the k FNs for q among candidate
data points in Ω(B(QC)).

Proof. Lemma 1 is proved by contradiction. For this, assume that there is a qualified data
point p in Ω(q) and that p does not belong to Ω(B(QC)), i.e., p ∈ Ω(q) and p /∈ Ω(B(QC)).
The qualified data point p is farther from q than the kth FN pkth of border point bq of
QC, which means that dist(q, p) > dist(q, pkth). According to Algorithm 3, it holds that
dist(q, bq) ≤ l and dist(bq, pkth) − dist(bq, p) > l, where l = max{dist(bqi , bqj)|bqi , bqj ∈
B(QC)}. Thus, the distance from q to p via bq is smaller than the distance from bq
to pkth, i.e., dist(q, bq) + dist(bq, p) < dist(bq, pkth). This is because dist(q, bq) ≤ l and
dist(bq, pkth) > dist(bq, p) + l are given. Clearly, dist(q, bq) + dist(bq, p) < dist(bq, pkth)
implies that dist(q, p) < dist(q, pkth). This leads to a contradiction to the assumption that
dist(q, p) > dist(q, pkth). Therefore, each query point q in a query cluster QC can retrieve
the k FNs for q among candidate data points in Ω(B(QC)).

The CNLJ and nonclustering join algorithms for spatial networks have different time
complexities, as shown in Table 4. Notably, the CNLJ algorithm is orthogonal to the kFN
query processing algorithms, which can easily be incorporated into the CNLJ algorithm.
The simple solution for finding k FNs for a single query point is used in this analysis
for simplicity. The time complexity of the kFN query processing is O(|E|+|V| · log|V| +
|P| · log|P|). The CNLJ algorithm evaluates at most M·

∣∣Q∣∣ kFN queries, where M is the
maximum number of border points of a query cluster QC, i.e., M = max{

∣∣B(QC)
∣∣ | QC ∈

Q}. The nonclustering join algorithm simply evaluates |Q| kFN queries because kFN
queries for query points should be evaluated sequentially. Thus, the time complexities of
the CNLJ and nonclustering join algorithms are O(|Q|·(|E|+|V| · log|V| + |P| · log|P|))
and O(|Q|·(|E|+|V| · log|V| + |P| · log|P|)), respectively. The theoretical results imply
that the CNLJ algorithm runs faster than the nonclustering join algorithm, particularly
when |Q|� |Q|, i.e., the query points are densely clustered. In addition, the results imply
that the CNLJ algorithm exhibits similar performance to the nonclustering join algorithm
when |Q| ∼= |Q|, i.e., the query points are not clustered.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 14 of 22

Table 4. Comparison of time complexities of the CNLJ and nonclustering join algorithms.

CNLJ Algorithm Nonclustering Join Algorithm

Number of kFN queries to be evaluated M·|Q| |Q|
Time complexity to evaluate the kFN search O(|E|+|V|log|V| + |P|log|P|) O(|E|+|V|log|V| + |P|log|P|)
Time complexity to evaluate the kFN join O(|Q|·(|E|+|V|log|V| + |P|log|P|)) O(|Q|·(|E|+|V|log|V| + |P|log|P|))

4.2. Evaluating kFN Queries at Border Points

The CNLJ algorithm evaluates kFN queries at the border points of query clusters
QC. For the example kFN join query, the CNLJ algorithm evaluates kFN queries at border
points q1, v1, and v2, rather than query points q1, q2, q3, and q4. First, the kFN query
is evaluated at a border point q1. The maximum and minimum distances between q1
and each data cluster in P are computed, and the data clusters are sorted in descending
order based on their maximum distance to q1. As shown in Figure 11, the two data
clusters {p1 p2 p3} and {p4 p5, p5 p6} are arranged using their maximum distance to q1 as
follows: P={{p1 p2 p3}, {p4 p5, p5 p6}}. This is because maxdist(q1, {p1 p2 p3}) = 28 and
maxdist(q1, {p4 p5, p5 p6}) = 11, as described in Table 3. The border point q1 investigates
{p1 p2 p3} followed by {p4 p5, p5 p6}. Following an exploration of {p1 p2 p3}, q1 selects p2
and p3 as the two FNs because dist(q1, p1) = 24, dist(q1, p2) = 25, and dist(q1, p3) = 27
are computed, as shown in Figure 5. The sentinel distance for q1 is sntl_dist = 20. This
is because the maximum distance l between the border points in QC is l = dist(q1, v1) =
5, whereas the distance from q1 to its second FN p2 is dist(q1, p2) = 25. Thus, a set
of candidate data points for query points in QC is Ω(q1)={p1, p2, p3}. This is because
dist(q1, p1) ≥ sntl_dist, dist(q1, p2) ≥ sntl_dist, and dist(q1, p3) ≥ sntl_dist. Clearly, q1
no longer examines the other data cluster {p4 p5, p5 p6}. This is because sntl_dist is larger
than maxdist(q1, {p4 p5, p5 p6}) where maxdist(q1, {p4 p5, p5 p6}) = 11, as shown in Table 3.
Finally, a set of candidate data points for query points in QC is Ω(q1)={p1, p2, p3}.

1 3 5 7 9 11 13 15

d
a
ta

 c
lu

s
te

rs
 i

n

�

�����������������

��	�
������, �
���������

distance to �

17 19 21 23 25 27 29

����_����

Figure 11. Arranging data clusters in decreasing order of their maximum distance to q1.

At the other border points v1 and v2, we can similarly evaluate kFN queries. Two FNs
of v1 are p2 and p3, as illustrated in Figures 7 and 8. Thus, a set of candidate data points at
v1 is Ω(v1)={p1, p2, p3} because the sentinel distance for v1 is sntl_dist(v1) = 15. Similarly,
two FNs of v2 are p1 and p2, as illustrated in Figures 9 and 10. Thus, a set of candidate data
points at v2 is Ω(v2)={p1, p2, p3} because the sentinel distance for v2 is sntl_dist(v2) = 18.
Table 5 summarizes sets of candidate data points for border points q1, v1, and v2 and their
sentinel distance.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 15 of 22

Table 5. Results of kFN queries at q1, v1, and v2 and their sentinel distances.

bq dist(bq, p) sntl_dist(bq) Ω(bq)

q1 dist(q1, p1) = 24 sntl_dist(q1) = 20 Ω(q1) = {p1, p2, p3}
dist(q1, p2) = 25
dist(q1, p3) = 27

v1 dist(v1, p1) = 19 sntl_dist(v1) = 15 Ω(v1) = {p1, p2, p3}
dist(v1, p2) = 20
dist(v1, p3) = 24

v2 dist(v2, p1) = 23 sntl_dist(v2) = 18 Ω(v2) = {p1, p2, p3}
dist(v2, p2) = 24
dist(v2, p3) = 23

4.3. Evaluating an Example kFN Join Query

The CNLJ algorithm retrieves k FNs for each query point in QC among the candi-
date data points in Ω(B(QC)). This example kFN join query requires two FNs for each
query point, i.e., k = 2, and the set of candidate data points is Ω(B(QC))={p1, p2, p3}.
Each of q1, q2, q3, and q4 retrieves its two FNs among candidate data points p1, p2, and
p3. Two FNs of q1 are first determined, two FNs of q2 are next determined, and so on.
Let us find two FNs for q1 among the candidate data points p1, p2, and p3. The dis-
tances from q1 to p1, p2, and p3 should be computed using the fact that the shortest path
from q1 to a candidate data point should pass through a border point bq. As a result,
the length of the shortest path from q1 to p1 is equal to dist(q1, p1) = min{dist(q1, bq) +
dist(bq, p1)

∣∣ bq ∈ {q1, v1, v2 }} = min{dist(q1, q1) + dist(q1, p1), dist(q1, v1) + dist(v1, p1),
dist(q1, v2) + dist(v2, p1)} = min{24, 24, 27} = 24. The distance from q1 to p2 evaluates to
dist(q1, p2) = min{dist(q1, bq) + dist(bq, p2)

∣∣ bq ∈ {q1, v1, v2 }} = 25. The distance from
q1 to p3 evaluates to dist(q1, p3) = min{dist(q1, bq) + dist(bq, p3)

∣∣ bq ∈ {q1, v1, v2 }} = 27.
Thus, p2 and p3 are two FNs for q1 whose result set is Ω(q1) = {p2, p3}. Next, two FNs
for q2 are retrieved among candidate data points p1, p2, and p3. For this, the distances
from q2 to p1, p2, and p3 should be computed. As shown in Table 6, the distances from
q2 to p1, p2, and p3 evaluate to dist(q2, p1) = 25, dist(q2, p2) = 26, and dist(q2, p3) = 25,
respectively. Thus, p1 and p2 are two FNs for q2, whose result set is Ω(q2) = {p1, p2}.
Similarly, two FNs for q3 and q4 can be retrieved among candidate data points p1, p2,
and p3. Table 6 computes the distance from a query point q to a candidate data point
p and retrieves two FNs for q among candidate data points where q ∈ {q1, q2, q3, q4}
and p ∈ {p1, p2, p3}. Finally, the kFN join result is the union set of the kFN query
results for query points in Q as follows: Ω(Q) = Ω(q1) ∪ Ω(q2) ∪ Ω(q3) ∪ Ω(q4) =
{〈q1, {p2, p3}〉, 〈q2, {p1, p2}〉, 〈q3, {p2, p3}〉, 〈q4, {p2, p3}〉}.

Table 6. Retrieval of two FNs for query points among candidate data points.

q dist(q, p) Ω(q)

q1 dist(q1, p1) = 24 Ω(q1) = {p2, p3}
dist(q1, p2) = 25
dist(q1, p3) = 27

q2 dist(q2, p1) = 25 Ω(q2) = {p1, p2} or
dist(q2, p2) = 26 Ω(q2) = {p2, p3}
dist(q2, p3) = 25

q3 dist(q3, p1) = 21 Ω(q3) = {p2, p3}
dist(q3, p2) = 22
dist(q3, p3) = 25

q4 dist(q4, p1) = 21 Ω(q4) = {p2, p3}
dist(q4, p2) = 22
dist(q4, p3) = 26

ISPRS Int. J. Geo-Inf. 2022, 11, 123 16 of 22

5. Performance Evaluation

The CNLJ algorithm and its competitors are compared empirically in this section under
a variety of conditions. Section 5.1 describes the experimental conditions, and Section 5.2
reports the results of the experiment.

5.1. Experimental Settings

Table 7 describes two real-world roadmaps [40] that were used in the experiments.
These real-world roadmaps have different sizes and are part of the United States’ road
network. For convenience, the data universe was normalized to a unit square of the plane.
The query and data points were generated to mimic the highly skewed distributions of
POIs in the real world. Firstly, the centroids c1, c2, · · ·, cm were randomly chosen inside the
data universe, where m indicates the total number of centroids and varies between 1 and
10. The query and data points around each centroid displayed a normal distribution, with
the mean indicating the centroid and the standard deviation set to σ = 10−2. Table 8 shows
the experimental parameters settings. We varied a single parameter within the range in
each experiment while maintaining the other parameters at the bold default values.

Table 7. Real-world roadmaps [40].

Name Description Vertices Edges Vertex Sequences

NA Highways in North America (NA) 175,813 179,179 12,416
SJ City streets in San Joaquin (SJ), California 18,263 23,874 20,040

Table 8. Experimental parameter settings.

Parameter Range

Number of query points (|Q|) 1, 2, 3, 4, 5, 7, 10 (×103)
Number of data points (|P|) 1, 2, 3, 4, 5, 7, 10 (×103)
Number of FNs required (k) 1, 2, 4, 8, 16
Distribution of query and data points Centroid distribution
Number of centroids for query points in Q (|CQ|) 1, 3, 5, 7, 10
Number of centroids for data points in P (|CP|) 1, 3, 5, 7, 10
The standard deviation for normal distribution (σ) 10−2

Roadmap NA, SJ

The baseline algorithm, which is a nonclustering join algorithm for sequentially com-
puting the k FNs of each query point in Q, was used as a benchmark for evaluating the
CNLJ algorithm. We implemented and evaluated two versions of our proposed solution,
i.e., CNLJNV and CNLJOPT. The naive version called CNLJNV of the CNLJ algorithm groups
query points into query segments, as illustrated in Figure 3a. Thus, CNLJNV evaluates
at most two kFN queries for a query segment. The optimized version called CNLJOPT of
the CNLJ algorithm groups query points into query clusters using the two-step clustering
method, as illustrated in Figure 3b. Note that the source codes for empirical evaluation of
this study can be accessed via the GitHub site at https://github.com/Hyung-Ju-Cho/ (ac-
cessed on 8 February 2021). In the Microsoft Visual Studio 2019 development environment,
all join algorithms were implemented in C++. All of the algorithms’ common subroutines
were reused for similar tasks. Experiments were conducted on a desktop computer running
the Windows 10 operating system with 32 GB RAM and an 8-core processor (i9-9900) at
3.1 GHz. As in several existing studies [36,41] for online map services, this empirical
study assumes that all of the algorithms’ indexing structures remain in the main memory
to evaluate kFN join queries quickly. The average time required to answer kFN join queries
was calculated through repeated experiments using kFN join queries. Finally, we computed
the network distance between two points quickly using the TNR method [42]. This is

https://github.com/Hyung-Ju-Cho/

ISPRS Int. J. Geo-Inf. 2022, 11, 123 17 of 22

because the TNR method is easy to implement and demonstrates performance comparable
to the other shortest distance algorithms [38,41,43–45].

5.2. Experimental Results

The proposed CNLJOPT, CNLJNV, and baseline algorithms in the NA roadmap are
compared in Figure 12. Each chart shows the kFN join query processing time and the
number of kFN queries required to evaluate the kFN join query. The numbers of kFN
queries required by the CNLJOPT, CNLJNV, and baseline algorithms to answer the kFN
join query are shown in parentheses in Figures 12–14. Note that the CNLJOPT algorithm
evaluates kFN queries at border points of query clusters, the CNLJNV algorithm evaluates
kFN queries at end points of query segments, and the baseline algorithm evaluates kFN
queries at query points. As a result, the baseline algorithm evaluates the same number
of kFN queries as the number |Q| of query points in Q. Figure 12a shows the query
processing times of the CNLJOPT, CNLJNV, and baseline algorithms when the number of
the query points changes between 1000 and 5000, i.e., 1000 ≤ |Q| ≤ 5000. In all cases in
|Q|, the CNLJOPT algorithm is faster than the CNLJNV and baseline algorithms. When
|Q| = 5000, the CNLJOPT, CNLJNV, and baseline algorithms evaluate 281, 471, and 5000
kFN queries, respectively, and thus the CNLJOPT algorithm is 1.2 and 36.7 times faster than
the CNLJNV and baseline algorithms, respectively. Figure 12b shows the query processing
times when the number of data points changes from 1000 to 5000, i.e., 1000 ≤ |P| ≤ 5000.
Regardless of the |P| value, the CNLJOPT, CNLJNV, and baseline algorithms evaluate 58,
96, and 1000 kFN queries, respectively. Thus, when |P| = 3000, the CNLJOPT algorithm
outperforms the CNLJNV and baseline algorithms by 1.2 and 15.6 times, respectively.
Figure 12c shows the query processing times when the number of FNs required changes
between 1 and 16, i.e., 1 ≤ k ≤ 16. For all cases in k, the CNLJOPT algorithm outperforms
the CNLJNV and baseline algorithms by 1.2 and 13.4 times, respectively. The CNLJOPT,
CNLJNV, and baseline algorithms’ query processing times are not affected by the k value.
This is because the kFN query evaluation computes the distances from a query point to
data clusters, regardless of the k value, and then sorts the data clusters using the distances
to the query point. Figure 12d shows the query processing times when the number of
centroids for query points in Q changes between 1 and 10, i.e., 1 ≤ |CQ| ≤ 10. As the
|CQ| value increases, the difference between the query processing times of all algorithms
decreases. The CNLJOPT algorithm is 13.3, 1.3, 1.6, 1.7, and 1.1 times faster than the baseline
algorithm when |CQ| =1, 3, 5, 7, and 10, respectively. The reason is that as the |CQ| value
increases, the query points are widely dispersed and the number of query clusters increases,
slowing down the CNLJOPT algorithm’s query processing time. Figure 12e shows the query
processing times when the number of centroids for data points in P changes between 1
and 10, i.e., 1 ≤ |CP| ≤ 10. The kFN query processing time increases with the |CP| value.
This is because as the |CP| value increases, the data points are widely dispersed and the
number of data clusters to be examined by the kFN queries also increases. To summarize,
the CNLJOPT algorithm outperforms the CNLJNV and baseline algorithms in all the cases.
This confirms that the CNLJOPT algorithm benefits from clustering of nearby query points
and quickly retrieving candidate data points at once for those query points.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 18 of 22

CNLJOPT CNLJNV BaselineCNLJOPT CNLJNV Baseline

(58)

(85)

(128) (212)

(281)

(1K)

(2K)

(3K) (4K)

(5K)

(96)

(140)

(218) (356)

(471)
(58)

(1K)

(1K)

(1K)
(1K)

(1K)

(96)

|Q| |P|

CNLJOPT CNLJNV Baseline

(58) (58) (58) (58) (58)

(96) (96) (96) (96) (96)

(1K) (1K) (1K) (1K) (1K)

k

CNLJOPT CNLJNV Baseline

(58)

(1K)

(96) (608)

(449)

(c)

|CQ|

(d)

(a) (b)

CNLJOPT CNLJNV Baseline

(58)

(96)

(1K)

|CP|

(e)

(58)

(58)

(58)

(58) (96)

(96)

(96)

(96)

(1K)
(1K)

(1K)
(1K)

(638)

(478) (608)

(460)

(782)

(620)

(1K)(1K)(1K)(1K)

(58)
(58) (58) (58)

(96)
(96)(96)(96)

Figure 12. Comparison of kFN join query processing times for the NA roadmap: (a) 103 ≤ |Q| ≤
5× 103; (b) 103 ≤ |P| ≤ 5× 103; (c) 1 ≤ k ≤ 16; (d) 1 ≤

∣∣CQ
∣∣ ≤ 10; (e) 1 ≤ |CP| ≤ 10.

In the SJ roadmap, Figure 13 compares the performance of the CNLJOPT, CNLJNV,
and baseline algorithms. Note that the experimental results using the SJ roadmap exhibit
similar performance patterns to those using the NA roadmap. Figure 13a shows the query
processing times when 1000 ≤ |Q| ≤ 5000. The CNLJOPT algorithm is 1.2 and 6.0 times
faster than the CNLJNV and baseline algorithms when |Q| = 5000, respectively. Figure 13b
shows the query processing times when 1000 ≤ |P| ≤ 5000. The CNLJOPT algorithm is 1.2
and 4.5 times faster than the CNLJNV and baseline algorithms when |P| = 4000, respectively.
The |P| value increases the query processing times of all algorithms. Figure 13c shows the
query processing times when 1 ≤ k ≤ 16. The CNLJOPT algorithm is 1.2 and 3.5 times
faster than the CNLJNV and baseline algorithms, respectively. The query processing times
are nearly constant regardless of the k value. Figure 13d shows the query processing times
when 1 ≤ |CQ| ≤ 10. The CNLJOPT algorithm is 3.5, 2.4, 1.8, 1.4, and 1.4 times faster than
the baseline algorithm when |CQ| = 1, 3, 5, 7, and 10, respectively. The distribution of query
points has an impact on the query processing time of the CNLJOPT algorithm, as shown by
this result. The query processing time of the CNLJOPT algorithm increases with the number
of query clusters because the query points are widely dispersed. Figure 13e shows the
query processing times when 1 ≤ |CP| ≤ 10. The CNLJOPT algorithm is 2.8, 4.0, 3.5, 2.9,
and 3.0 times faster than the baseline algorithm when |CP| = 1, 3, 5, 7, and 10, respectively.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 19 of 22

CNLJOPT CNLJNV Baseline

(209)
(348)

(386) (577)

(587)

(1K)

(2K)

(3K) (4K)

(5K)

(314)
(477)

(594) (867)

(906)

|Q|

(a)

CNLJOPT CNLJNV Baseline

|P|

(209)

(209) (209)

(209)
(209)

(1K)

(1K)
(1K)

(1K)
(1K)

(314)

(314)
(314)

(314)
(314)

(b)

CNLJOPT CNLJNV Baseline

(209) (209) (209) (209) (209)

(314) (314) (314) (314) (314)

(1K) (1K) (1K) (1K) (1K)

k

(c)

CNLJOPT CNLJNV Baseline

(209)

(279)

(682)

(522)

(1K)

(1K)

(1K)

(1K) (1K)

(314)

(380)

(470)

(343)

(666)

(536)

|CQ|

CNLJOPT CNLJNV Baseline

(209)

(209) (209)

(209) (209)

(314)(314)

(314)(314)

(314)

(1K)(1K)

(1K)(1K)

(1K)

|CP|

(e)

(d)

Figure 13. Comparison of kFN join query processing times for the SJ roadmap: (a) 103 ≤ |Q| ≤ 5× 103;
(b) 103 ≤ |P| ≤ 5× 103; (c) 1 ≤ k ≤ 16; (d) 1 ≤

∣∣CQ
∣∣ ≤ 10; (e) 1 ≤ |CP| ≤ 10.

Figure 14 compares the performance of the CNLJOPT, CNLJNV, and baseline algo-
rithms while the numbers of query and data points change between 1000 and 10,000, i.e.,
1000 ≤ |Q| ≤ 10,000 and 1000 ≤ |P| ≤ 10,000, to verify the scalability of the CNLJOPT
algorithm. As shown in Figure 14a,c, the CNLJOPT algorithm runs faster than the CNLJNV
and baseline algorithms for all cases in |Q|. The performance difference between them
typically increases with |Q|. Specifically, when |Q| = 10,000, the CNLJOPT algorithm runs
36.6 and 5.3 times faster than the baseline algorithm for NA and SJ roadmaps, respectively.
As shown in Figure 14b,d, the CNLJOPT algorithm runs faster than the CNLJNV and baseline
algorithms for all cases in |P|. Specifically, when |P| = 10,000, the CNLJOPT algorithm runs
6.4 and 3.0 times faster than the baseline algorithm for NA and SJ roadmaps, respectively.
The experimental results confirm that the CNLJOPT algorithm scales better with both |Q|
and |P| than the CNLJNV and baseline algorithms.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 20 of 22

CNLJOPT CNLJNV Baseline

|Q|

(1K)

(2K)

(3K)
(4K)

(5K)

(7K)
(10K)

(96)

(140)

(218) (356)

(471)

(220)

(732)

(58)

(85)

(128) (212)

(281)

(128)

(413)

CNLJOPT CNLJNV Baseline

(58)

(58)

(58)

(58)

(58)

(58)

(58)

(96)

(96)

(96)

(96)

(96)

(96)

(96)

|P|

(1K)

(1K)

(1K)
(1K)

(1K)

(1K)
(1K)

(a) (b)

CNLJOPT CNLJNV Baseline

|Q|

(209)
(348)

(386) (577)

(587)

(1K)
(2K)

(3K) (4K)

(5K)

(314)
(477)

(594) (867)

(906)

(7K)
(10K)

(836)
(1135)

(1273)
(1810)

(c)

CNLJOPT CNLJNV Baseline

|P|
(209)

(314)

(209)
(209)

(209)
(209)

(209)
(209)

(314)

(314)
(314)

(314)
(314)

(314)

(1K)(1K)

(1K)
(1K)

(1K)
(1K)

(1K)

(d)

Figure 14. Scalability test: (a) 103 ≤ |Q| ≤ 104 for NA; (b) 103 ≤ |P| ≤ 104 for NA; (c) 103 ≤ |Q| ≤ 104

for SJ; (d) 103 ≤ |P| ≤ 104 for SJ.

6. Discussion and Conclusions

The kFN join query retrieves a pair of each query point in Q with its k FNs in P,
given a positive integer k, a set of query points Q, and a set of data points P. The kFN join
query has various real-life applications including recommender systems and computational
geometry [6–14]. In particular, efficient processing of kFN join queries can aid in selecting
a facility’s location that is farthest away from unpleasant facilities such as garbage incinera-
tors, crematoriums, and chemical plants. A cluster nested loop join (CNLJ) algorithm was
constructed in this study to efficiently answer kFN join queries for spatial networks. To the
best of our knowledge, this is the first attempt to study kFN join queries in spatial networks.
The CNLJ algorithm converts query points (data points) into query clusters (data clusters).
It then retrieves candidate data points for clustered query points all at once, eliminating the
need to search for candidate data points for each query point separately. Using real-life
roadmaps in various conditions, the query processing times of the CNLJ and conventional
join algorithms were empirically compared. The experimental results demonstrated that
the CNLJ algorithm runs up to 50.8 times faster than the conventional join algorithms
and that the CNLJ algorithm also better scales with the numbers of both data and query
points than the conventional join algorithms. Unfortunately, the CNLJ algorithm shows
similar performance to the conventional join algorithms, particularly when query points
are uniformly located in the region. We intend to apply the proposed solution to various
fields in the future. When the dataset does not fit in the main memory, we will first create
index structures on the external memory. Second, we will conduct an empirical study to
simulate real-life scenarios using real datasets. Third, we will improve the CNLJ algorithm
for the efficient processing of kFN joins over query points that are uniformly scattered in
the region.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2020R1I1A3052713).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

ISPRS Int. J. Geo-Inf. 2022, 11, 123 21 of 22

Acknowledgments: We thank the anonymous reviewers for their very useful comments and suggestions.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Said, A.; Kille, B.; Jain, B.J.; Albayrak, S. Increasing diversity through furthest neighbor-based recommendation. In Proceedings of

the International Workshop on Diversity in Document Retrieval, Seattle, WA, USA, 12 February 2012; pp. 1–4.
2. Said, A.; Fields, B.; Jain, B.J.; Albayrak, S. User-centric evaluation of a k-furthest neighbor collaborative filtering recommender

algorithm. In Proceedings of the International Conference on Computer Supported Cooperative Work and Social Computing, San
Antonio, TX, USA, 23–27 February 2013; pp. 1399–1408.

3. Veenman, C.J.; Reinders, M.J.T.; Backer, E. A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24,
1273–1280. [CrossRef]

4. Defays, D. An efficient algorithm for a complete link method. Comput. J. 1977, 20, 364–366. [CrossRef]
5. Vasiloglou, N.; Gray, A.G.; Anderson, D.V. Scalable semidefinite manifold learning. In Proceedings of the IEEE Workshop on

Machine Learning for Signal Processing, Cancun, Mexico, 16–19 October 2008; pp. 368–373.
6. Curtin, R.R.; Echauz, J.; Gardner, A.B. Exploiting the structure of furthest neighbor search for fast approximate results. Inf. Syst.

2019, 80, 124–135. [CrossRef]
7. Gao, Y.; Shou, L.; Chen, K.; Chen, G. Aggregate farthest-neighbor queries over spatial data. In Proceedings of the International

Conference on Database Systems for Advanced Applications, Hong Kong, China, 22–25 April 2011; pp. 149–163.
8. Liu, J.; Chen, H.; Furuse, K.; Kitagawa, H. An efficient algorithm for arbitrary reverse furthest neighbor queries. In Proceedings of

the Asia-Pacific Web Conference on Web Technologies and Applications, Kunming, China, 11–13 April 2012; pp. 60–72.
9. Liu, W.; Yuan, Y. New ideas for FN/RFN queries based nearest Voronoi diagram. In Proceedings of the International Conference

on Bio-Inspired Computing: Theories and Applications, Huangshan, China, 12–14 July 2013; pp. 917–927.
10. Tran, Q.T.; Taniar, D.; Safar, M. Reverse k nearest neighbor and reverse farthest neighbor search on spatial networks. Trans.

Large-Scale Data-Knowl.-Cent. Syst. 2009, 1, 353–372.
11. Wang, H.; Zheng, K.; Su, H.; Wang, J.; Sadiq, S.W.; Zhou, X. Efficient aggregate farthest neighbour query processing on road

networks. In Proceedings of the Australasian Database Conference on Databases Theory and Applications, Brisbane, Australia,
14–16 July 2014; pp. 13–25.

12. Xiao, Y.; Liu, B.; Hao, Z.; Cao, L. A k-farthest-neighbor-based approach for support vector data description. Appl. Intell. 2014, 41,
196–211. [CrossRef]

13. Xu, X.-J.; Bao, J.-S.; Yao, B.; Zhou, J.-Y.; Tang, F.-L.; Guo, M.-Y.; Xu, J.-Q. Reverse furthest neighbors query in road networks. J.
Comput. Sci. Technol. 2017, 32, 155–167. [CrossRef]

14. Yao, B.; Li, F.; Kumar, P. Reverse furthest neighbors in spatial databases. In Proceedings of the International Conference on Data
Engineering, Shanghai, China, 29 March–2 April 2009; pp. 664–675.

15. Dutta, B.; Karmakar, A.; Roy, S. Optimal facility location problem on polyhedral terrains using descending paths. Theor. Comput.
Sci. 2020, 847, 68–75. [CrossRef]

16. Gao, X.; Park, C.; Chen, X.; Xie, E.; Huang, G.; Zhang, D. Globally optimal facility locations for continuous-space facility location
problems. Appl. Sci. 2021, 11, 7321. [CrossRef]

17. Liu, W.; Wang, H.; Zhang, Y.; Qin, L.; Zhang, W. I/O efficient algorithm for c-approximate furthest neighbor search in high-
dimensional space. In Proceedings of the International Conference on Database Systems for Advanced Applications, Jeju, Korea,
24–27 September 2020; pp. 221–236.

18. Huang, Q.; Feng, J.; Fang, Q.; Ng, W. Two efficient hashing schemes for high-dimensional furthest neighbor search. IEEE Trans.
Knowl. Data Eng. 2017, 29, 2772–2785. [CrossRef]

19. Liu, Y.; Gong, X.; Kong, D.; Hao, T.; Yan, X. A Voronoi-based group reverse k farthest neighbor query method in the obstacle
space. IEEE Access 2020, 8, 50659–50673. [CrossRef]

20. Pagh, R.; Silvestri, F.; Sivertsen, J.; Skala, M. Approximate furthest neighbor in high dimensions. In Proceedings of the International
Conference on Similarity Search and Applications, Glasgow, UK, 12–14 October 2015; pp. 3–14.

21. Korn, F.; Muthukrishnan, S. Influence sets based on reverse nearest neighbor queries. In Proceedings of the International
Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; pp. 201–212.

22. Wang, S.; Cheema, M.A.; Lin, X.; Zhang, Y.; Liu, D. Efficiently computing reverse k furthest neighbors. In Proceedings of the
International Conference on Data Engineering, Helsinki, Finland, 16–20 May 2016; pp. 1110–1121.

23. Beckmann, N.; Kriegel, H.-P.; Schneider, R.; Seeger, B. The R*-tree: An efficient and robust access method for points and rectangles.
In Proceedings of the International Conference on Management of Data, Atlantic City, NJ, USA, 23–25 May 1990; pp. 322–331.

24. Guttman, A. R-trees: A dynamic index structure for spatial searching. In Proceedings of the International Conference on
Management of Data, Boston, MA, USA, 18–21 June 1984; pp. 47–57.

25. Huang, Q.; Feng, J.; Fang, Q. Reverse query-aware locality-sensitive hashing for high-dimensional furthest neighbor search. In
Proceedings of the International Conference on Data Engineering, San Diego, CA, USA, 19–22 April 2017; pp. 167–170.

26. Lu, H.; Yiu, M.L. On computing farthest dominated locations. IEEE Trans. Knowl. Data Eng. 2011, 23, 928–941. [CrossRef]

http://doi.org/10.1109/TPAMI.2002.1033218
http://dx.doi.org/10.1093/comjnl/20.4.364
http://dx.doi.org/10.1016/j.is.2017.12.010
http://dx.doi.org/10.1007/s10489-013-0502-0
http://dx.doi.org/10.1007/s11390-017-1711-5
http://dx.doi.org/10.1016/j.tcs.2020.09.037
http://dx.doi.org/10.3390/app11167321
http://dx.doi.org/10.1109/TKDE.2017.2752156
http://dx.doi.org/10.1109/ACCESS.2020.2979739
http://dx.doi.org/10.1109/TKDE.2010.45

ISPRS Int. J. Geo-Inf. 2022, 11, 123 22 of 22

27. Cho, H.-J. Efficient shared execution processing of k-nearest neighbor joins in road networks. Mob. Inf. Syst. 2018, 2018, 55–66.
[CrossRef]

28. He, D.; Wang, S.; Zhou, X.; Cheng, R. GLAD: A grid and labeling framework with scheduling for conflict-aware knn Queries.
IEEE Trans. Knowl. Data Eng. 2021, 33, 1554–1566. [CrossRef]

29. Yang, R.; Niu, B. Continuous k nearest neighbor queries over large-scale spatial-textual data streams. ISPRS Int. J. Geo-Inf. 2020,
9, 11. [CrossRef]

30. Cho, H.-J.; Attique, M. Group processing of multiple k-farthest neighbor queries in road networks. IEEE Access 2020, 8, 110959–110973.
[CrossRef]

31. Reza, R.M.; Ali, M.E.; Hashem, T. Group processing of simultaneous shortest path queries in road networks. In Proceedings of
the International Conference on Mobile Data Management, Pittsburgh, PA, USA, 15–18 June 2015; pp. 128–133.

32. Zhang, M.; Li, L.; Hua, W.; Zhou, X. Efficient batch processing of shortest path queries in road networks. In Proceedings of the
International Conference on Mobile Data Management, Hong Kong, China, 10–13 June 2019; pp. 100–105.

33. Zhang, M.; Li, L.; Hua, W.; Zhou, X. Batch processing of shortest path queries in road networks. In Proceedings of the Australasian
Database Conference on Databases Theory and Applications, Sydney, Australia, 29 January–1 February 2019; pp. 3–16.

34. Reza, R.M.; Ali, M.E.; Cheema, M.A. The optimal route and stops for a group of users in a road network. In Proceedings of the
International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 7–10 November 2017;
pp. 1–10.

35. Kim, T.; Cho, H.-J.; Hong, H.J.; Nam, H.; Cho, H.; Do, G.Y.; Jeon, P. Efficient processing of k-farthest neighbor queries for road
networks. J. Korea Soc. Comput. Inf. 2019, 24, 79–89.

36. Abeywickrama, T.; Cheema, M.A.; Taniar, D. k-nearest neighbors on road networks: A journey in experimentation and in-memory
implementation. In Proceedings of the International Conference on Very Large Data Bases, New Delhi, India, 5–9 September 2016;
pp. 492–503.

37. Lee, K.C.K.; Lee, W.-C.; Zheng, B.; Tian, Y. ROAD: A new spatial object search framework for road networks. IEEE Trans. Knowl.
Data Eng. 2012, 24, 547–560. [CrossRef]

38. Zhong, R.; Li, G.; Tan, K.-L.; Zhou, L.; Gong, Z. G-tree: An efficient and scalable index for spatial search on road networks. IEEE
Trans. Knowl. Data Eng. 2015, 27, 2175–2189. [CrossRef]

39. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 3rd ed.; MIT Press and McGraw-Hill: Cambridge,
MA, USA, 2009; pp. 643–683.

40. Real Datasets for Spatial Databases. Available online: https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm (accessed on
4 October 2021).

41. Wu, L.; Xiao, X.; Deng, D.; Cong, G.; Zhu, A.D.; Zhou, S. Shortest path and distance queries on road networks: An experimental
evaluation. In Proceedings of the International Conference on Very Large Data Bases, Istanbul, Turkey, 27–31 August 2012;
pp. 406–417.

42. Bast, H.; Funke, S.; Matijevic, D. Ultrafast shortest-path queries via transit nodes. In Proceedings of the International Workshop
on Shortest Path Problem, Piscataway, NJ, USA, 13–14 November 2006; pp. 175–192.

43. Geisberger, R.; Sanders, P.; Schultes, D.; Delling, D. Contraction hierarchies: Faster and simpler hierarchical routing in road
networks. In Proceedings of the International Workshop on Experimental Algorithms, Cape Cod, MA, USA, 30 May–2 June 2008;
pp. 319–333.

44. Li, Z.; Chen, L.; Wang, Y. G*-tree: An efficient spatial index on road networks. In Proceedings of the International Conference on
Data Engineering, Macao, China, 8–11 April 2019; pp. 268–279.

45. Samet, H.; Sankaranarayanan, J.; Alborzi, H. Scalable network distance browsing in spatial databases. In Proceedings of the
International Conference on Management of Data, Vancouver, BC, Canada, 9–12 June 2008; pp. 43–54.

http://dx.doi.org/10.1155/2018/1243289
http://dx.doi.org/10.1109/TKDE.2019.2942585
http://dx.doi.org/10.3390/ijgi9110694
http://dx.doi.org/10.1109/ACCESS.2020.3002263
http://dx.doi.org/10.1109/TKDE.2010.243
http://dx.doi.org/10.1109/TKDE.2015.2399306
https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm

	Introduction
	Background
	Related Work
	Notation and Formal Problem Description

	Clustering Points and Computing Distances
	Clustering Query and Data Points Using Spatial Network Connection
	Computing Maximum and Minimum Distances from a Border Point to a Data Cluster

	Cluster Nested Loop Join Algorithm for Spatial Networks
	Cluster Nested Loop Join Algorithm
	Evaluating kFN Queries at Border Points
	Evaluating an Example kFN Join Query

	Performance Evaluation
	Experimental Settings
	Experimental Results

	Discussion and Conclusions
	References

