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ABSTRACT

Cluster number counts can be used to test dark energy models. We investigate dark energy
candidates which are coupled to dark matter. We analyse the cluster number counts depen-
dence on the amount of dark matter coupled to dark energy. Furthermore, we study how dark
energy inhomogeneities affect cluster abundances. It is shown that increasing the coupling re-
duces significantly the cluster number counts, and that dark energy inhomogeneities increases
cluster abundances. Wiggles in cluster number counts are shown to be a specific signature of
coupled dark energy models. Future observations could possibly detect such oscillations and
discriminate among the different dark energy models.

Key words: galaxies: clusters: general – cosmology: theory – dark matter – large-scale struc-
ture of Universe.

1 I N T RO D U C T I O N

Observational measurements from supernovae (Perlmutter et al.
1999; Riess et al. 2001, 2004), cosmic microwave background radi-
ation (Spergel et al. 2003) and large-scale structures (Zehavi et al.
2002) strongly indicate the existence of a dark energy component
which corresponds to ∼70 per cent of our Universe energy budget
and is responsible for its current acceleration. The most popular
candidates to dark energy are the vacuum energy, also dubbed the
cosmological constant (Carroll, Press & Turner 1992), and scalar
fields also known as cosmon or quintessence (Ratra & Peebles
1988a; Wetterich 2001, 2002). The cosmological constant is spa-
tially homogeneous and its equation of state is always a constant.
Scalar fields have a time-varying equation of state and are spa-
tially inhomogeneous (Steinhardt, Wang & Zlatev 1999; Steinhardt
2003). Different dark energy candidates have distinctive astrophys-
ical and cosmological imprints. The later are mainly dependent on
the time evolution of the equation of state (see e.g. Zlatev, Wang &
Steinhardt 1999; Schuecker et al. 2003; Doran, Karwan & Wetterich
2005; Jassal, Bagla & Padmanabhan 2005) and the behaviour of its
perturbations (see e.g. Ferreira & Joyce 1998; Wang & Steinhardt
1998; Ma et al. 1999).

The redshift dependence of cluster number counts is a promising
tool to discriminate among different dark energy models. Several
authors (see e.g. Multamaki, Manera & Gaztanaga 2003; Solevi
et al 2006) have already use it to investigate both non-coupled
quintessence models: SUGRA (Brax & Martin 1999), RP (Ratra
& Peebles 1988b) and non-standard cosmologies: Cardassian mod-
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els (Freese & Lewis 2002) and DGP models (Dvali, Gabadadze
& Porrati 2000). Other groups have also used cluster number
counts together with other observables to show how future galaxy
cluster surveys would constrain cosmological parameters like the
amount of dark energy today or the equation of state parameter
(Le Delliou 2006; Wang et al. 2004; Lima & Hu 2004; Haiman
Mohr & Holder 2000; Horellou & Berge 2005). The possible ef-
fects of dark energy inhomogeneities on cluster abundances was
investigated by Nunes, da Silva & Aghanim (2006) for minimally
coupled dark energy models. However, so far no one has ever tested
dark energy models coupled to dark matter using cluster number
counts.

Scalar field candidates to dark energy coupled to dark matter
are strongly motivated by extradimensional particle physics mod-
els. A general feature of these theories is that the size of the ex-
tradimensions is intimately related to a scalar field. The later is
coupled to all, or a selection of matter fields (Damour, Gibbons
& Gundlach 1990), depending on the high energy physics model
(Carroll et al. 1992; Carroll 1998; Bertolami & Mota 1999). A non-
minimal coupling of the quintessence field to dark matter is therefore
worth investigating (Wetterich 1995; Amendola 2000; Amendola &
Tocchini-Valentini 2001; Amendola & Tocchini-Valentini 2002;
Tocchini-Valentini & Amendola 2002; Farrar & Peebles 2004;
Mainini & Bonometo 2004). It is then natural to think that due to
this coupling, inhomogeneities in the dark matter fluid will then
propagate to the scalar field, affecting its evolution (Barrow &
Mota 2003; Nunes & Mota 2006). Clearly such effect will be-
come even more important when dark matter perturbations become
non-linear. Hence, it is interesting to investigate the possibility of
a dark energy component which may present inhomogeneities at
cluster scales, during the non-linear regime of matter perturbations
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(Mota & van de Bruck 2004; Maor & Lahav 2005). In fact, Wetterich
(2001, 2002) and in Arbey, Lesgourgues & Salati (2001) speculated
that highly non-linear matter perturbations might indeed affect a
scalar field even on galactic scales. They found that, at least in
principle, the quintessence field (or a scalar field) could be respon-
sible for the observed flat rotation curves in galaxies. In Padman-
abhan & Choudhury (2002), Padmanabhan (2002), Bagla, Jassal &
Padmanabhan (2003) and Causse (2003) more exotic models, based
on tachyon fields, have been discussed and they argued that the
quintessence equation of state is scale dependent. This is indeed
a general feature of non-minimally coupled scalar fields, whose
properties depend on the local density of the region they ‘live in’
(Khoury & Weltman 2003, 2004a,b; Brax et al. 2004; Clifton, Mota
& Barrow 2004; Mota & Barrow 2004a,b).

In this paper we investigate the possibility of using measurements
from cluster number counts to differentiate among dark energy mod-
els. We study quintessence candidates coupled to dark matter and
analyse the cluster number counts dependence on the amount of dark
matter coupled to dark energy. Adding to that, we also consider the
possibility of dark energy models which present inhomogeneities at
cluster scales, during the non-linear regime of structure formation.
We then compare with the more popular models where dark energy
is homogeneous at those scales and where inhomogeneities only
occur at horizon scales. We conclude the article assessing the pos-
sibility of near future galaxy surveys to discriminate quintessence
models coupled to dark matter.

2 C O U P L E D QU I N T E S S E N C E A N D T H E

S P H E R I C A L C O L L A P S E

We consider a flat, homogeneous and isotropic background uni-
verse with scale factor a(t). Since we are interested in the matter-
dominated epoch, when structure formation starts, we assume that
the universe is filled with cold dark matter (CDM) and a quintessence
field (φ). The equation that describes our background universe scale
factor is (we set h̄ = c ≡ 1 throughout the paper)

3H 2 = 8πG(ρm + ρφ), (1)

where H ≡ ȧ/a is the Hubble rate, ρφ = (1/2)φ̇2 + V (φ) and
V(φ) is the scalar field potential. We assume the potential to be a
pure exponential function V(φ) = V0 exp (ακφ), where κ2 = 8πG.
This is widely used in the literature. With the correct choice of the
parameter α this potential leads to a late time acceleration (Amen-
dola 2000; Barreiro et al. 2000; Copeland, Nunes & Pospelov 2004;
Brookfield et al. 2006). Since we are investigating non-minimally
coupled quintessence fields, ρm includes both the dark matter cou-
pled to dark energy (ρcDM) as well as the non-coupled dark matter
(ρum). Throughout all the paper we use �m0 = 0.3, �φ0 = 0.7 and
h = 0.65.

It is important to note that our theory differs significantly in one
key aspect from the work of Kaplinghat & Rajaraman (2006), where
instabilities in the matter fluid can occur. In our models, the dark
energy sector is described by a light scalar field, with a mass which
is at most of order H. The models investigated by Kaplinghat &
Rajaraman (2006) are such that the mass of the scalar field is much
larger than H for most of its history. This can have significant impli-
cations upon the behaviour of the dark matter background and the
growth of perturbations which may lead to instabilities.

In order to calculate cluster abundances we need the evolution
of the linear matter density contrast (δ). We describe the evolution
of an overdensity up to the non-linear regime using the spherical
collapse model (see e.g. Padmanabhan 1995). The radius of the

overdense region r and density contrast δ are related in this case
by 1 + δ = ρmc/ρm = (a/r)3, where ρmc and ρm are the energy
densities of pressureless matter in the cluster and in the background,
respectively.

The energy density of cold dark matter in the background and
inside the collapsing region are simply given by the following ana-
lytical solutions (see e.g. Amendola 2000):

ρum = ρ0�um0

(
a0

ai

)3 (ai

a

)3

, (2)

ρcDM = ρ0�DM0

(
a0

ai

)3 (ai

a

)3

eB(φ)−B(φ0), (3)

ρumc = (1 + δi )ρ0�um0

(
a0

ai

)3 (ri

r

)3

, (4)

ρcDMc = (1 + δi )ρ0�cDM0

(
a0

ai

)3 (ri

r

)3

eB(φc)−B(φ0), (5)

where again the subscripts ‘um’ and ‘cDM’ mean uncoupled mat-
ter and coupled dark matter, respectively. Uncoupled matter corre-
sponds to both baryons and uncoupled dark matter. The function
B(φ) represents the coupling between dark energy and dark matter.
We use the same coupling as in the model discussed in (Holden &
Wands 2000; Amendola 2000), B(φ) = −Cκφ, where C is a con-
stant. Since our scalar field only couples to dark matter, this constant
sets the ratio of the strength of the dark–dark interaction with respect
to the gravitational interaction; it is then clearly not constrained by
local experiments or by Ġ/G measurements.1 However, it is con-
strained by primordial nucleosynthesis bounds on the quintessence
energy density at that epoch. Notice that if the baryons were coupled
to the scalar field as well, then we would need to consider several
constraints on the coupling which would arise from a variety of ex-
periments and observations of fifth force effects (Ellis et al. 1989;
Wetterich 1995).

The total energy densities in the background and inside the cluster
are, respectively, ρm = ρum + ρcDM and ρmc = ρumc + ρcDMc which
evolve accordingly to

ρ̇m = −3
ȧ
a

ρm + dB
dφ

ρcDMφ̇, (6)

ρ̇mc = −3
ṙ
r
ρmc + dB

dφc
ρcDMcφ̇c. (7)

The equations of motion for the evolution of the scalar field in
the background and inside the overdensity are in this case (Nunes
& Mota 2006):

φ̈ = −3
ȧ
a

φ̇ − dV
dφ

− dB
dφ

ρcDM, (8)

φ̈c = −3
ṙ
r
φ̇c − dV

dφc
− dB

dφc
ρcDMc + 	φ

φ̇c
, (9)

where 	φ describes the quintessence loss of energy inside the cluster
(see e.g. Mota & van de Bruck 2004; Maor & Lahav 2005).

1Damour et al. (1990) derived a constraint for dark matter interaction with a
dilaton based on the age of the Universe. This constraint assumes a field with
no potential and a nowadays matter-dominated universe, which is clearly not
our case.
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It is known that the system quintessence coupled to dark matter
has a scaling attractor solution (Amendola 2000; Holden & Wands
2000; Amendola & Tocchini-Valentini 2002a) with

�φ = C2 + Cα + 3γ

(C + α)2
, γφ = 3γ 2

C2 + Cα + 3γ
, (10)

where γ and γ φ are the background and the scalar field equation of
state, respectively. This attractor has a power-law expansion a ∝
tp given by p = (2/3 γ ) (1 + (C/α)) (Copeland et al. 2004). The
solution leads to a late time acceleration for p > 1, that is for α <

2C for a matter background. The value of C can be extracted from
equation (10) where now we also have to take into account the
coupled and the uncoupled dark matter. Therefore,

C = −α + α +
√

α2 − 12�̃cDM

2�̃cDM
(11)

is a good estimate for the value of the coupling in the tracker regime.
Here �̃cDM = �cDM/(�cDM + �φ).

The constraints from nucleosynthesis imply that �φ(τ ns) < 0.1
(Wetterich 1995; Sarkar 1996; Ferreira & Joyce 1998), which trans-
lates into α2 > 4/�φ(τ ns) (Holden & Wands 2000). In all our models
we choose α = 10, and C will be chosen according to equation (11).

Following Maor & Lahav (2005) and Mota & van de Bruck
(2004), we study the two extreme limits for the evolution of dark
energy inside the overdensity. In the first case we assume that dark
energy is homogeneous, i.e. the value of ρφ inside the cluster is the
same as in the background, with

	φ = −3
( ȧ

a
− ṙ

r

)
(ρφc + pφc ). (12)

Hence, in this case, dark energy perturbations are not present at
small scales and so φc = φ. In the second limit, dark energy is
inhomogeneous and collapses with dark matter. Thus 	φ = 0 and
φc �= φ. In this case perturbations in the scalar field are important
at cluster scales.

In order to compute the cluster number counts we also need the
evolution for the linear density contrast (δL) which is given by

δ̈L = −2H (δ̇L − f ) + ḟ

+ κ2

2

[
ρmδL + (

1 + 3wφc

)
δφ ρφ + 3ρφδwφ

]
, (13)

where δφ = δ ρφ/ρφ , with

δρφ = φ̇ δφ̇ + dV
dφ

δφ, (14)

δwφ = (1 − wφ)

(
− 1

V
dV
dφ

δφ + δφ

)
(15)

and

f = G

[
dB
dφ

δφ̇ +
(

dB
dφ

)2

(1 − G)φ̇ δφ + d2 B
dφ2

φ̇ δφ

]
, (16)

where

G(φ) = �cDM0eB(φ)−B(φ0)

�cDM0eB(φ)−B(φ0) + �um0
. (17)

This system of equations closes with the equation of motion for the
scalar field perturbations:

δφ̈ = −3H δφ̇ − dB
dφ

G ρmδL + (δ̇L − f )φ̇

−
[

d2V
dφ2

+
(

dB
dφ

)2

G (1 − G) ρm + d2 B
dφ2

G ρm

]
δφ. (18)

Integrating these equations we are now able to obtain the growth
factor D(z) = δL(z)/δ(0) and the linearly extrapolated density thresh-
old above which structures will end up collapsing, i.e. δc(z) =
δL(z = zcol). Here zcol is the redshift at which the radius, r, of the
overdensity is zero, and is obtained using the spherical infall model.
Both of these quantities are needed to compute the number of col-
lapsed structures following the Press–Schechter formalism (Press
& Schechter 1974).

In order to understand the cluster number counts dependence on
the amount of dark matter coupled to dark energy and the behaviour
of dark energy inhomogeneities during the non-linear regime, we
investigate four different models/cases. We have chosen the models
parameters in such a way as to have limiting cases. These give us
a good understanding of the physics behind large-scale structure
formation and coupled quintessence models, being at the same time
viable cosmological models. We clarify here the four cases under
study.

(i) Model A (homogeneous dark energy with a large amount of
dark matter coupled):
All the dark matter is coupled to dark energy, �cDM = 0.25. Only
baryons remain uncoupled �um = �b = 0.05. From equation (11)
one has C = 27.4. In this model we consider that dark energy does
not cluster in overdense regions. Its energy density is the same both
in the cluster and in the background. Thus 	φ is the same as in
equation (12).

(ii) Model B (homogeneous dark energy with a small amount of
dark matter coupled):
Only a small fraction of the dark matter is coupled, �cDM = 0.05.
The rest is uncoupled matter �um + �b = 0.25. From equation (11)
one has C = 139.9. As in case A, we consider that dark energy
does not cluster in overdense regions. Hence, it is a homogeneous
component, with the same density all over the Universe.

(iii) Model C (inhomogeneous dark energy with a large amount
of dark matter coupled):
All the dark matter is coupled to dark energy �cDM = 0.25, only
baryons remain uncoupled �um = �b = 0.05. From equation (11),
one has C = 27.4. In this case we consider that dark energy clusters
in overdense regions. Hence, 	φ = 0, which means that dark energy
collapses along with dark matter.

(iv) Model D (inhomogeneous dark energy with a small amount
of dark matter coupled):
Only a small fraction of the dark matter is coupled �cDM = 0.05.
The rest is uncoupled matter �um + �b = 0.25. From equation (11)
one has C = 139.9. As in case C, we also consider the clustering of
dark energy in overdense regions, therefore, 	φ = 0.

In Fig. 1 we have plotted δc(z) for several dark matter/dark energy
couplings and for both homogeneous and inhomogeneous dark en-
ergy models. It is interesting to note the wiggles in δc, which are a
feature of dark energy models coupled to dark matter. These wiggles
come from the oscillations in the dark energy scalar field around the
minimum of the effective potential. When allowing dark energy to
clump with dark matter 	φ = 0 (inhomogeneous models), these os-
cillations are strongly translated to the matter fluctuations and hence
appear in δc. Notice that in the homogeneous scenario oscillations
are still present (see fig. 5 in Nunes & Mota 2006); nevertheless they
are very suppressed and could not be appreciated in the plot.

3 P R E S S – S C H E C H T E R F O R M A L I S M

Press and Schechter (Press & Schechter 1974), using the spherical
collapse model, provided a formalism to predict the number density
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Figure 1. Evolution of δc with redshift. Model A: 	φ �= 0, �cDM =
0.25, �um = �b = 0.05. Model B: 	φ �= 0, �cDM = 0.05, �um + �b =
0.25. Model C: 	φ = 0, �cDM = 0.25, �um = �b = 0.05. Model D: 	φ

= 0, �cDM = 0.05, �um + �b = 0.25. The �CDM case, solid line, is also
plotted for reference.

of collapsed objects. Several groups (Gross et al. 1998; Governato
et al. 1999; Jenkins et al. 2001; Springel et al. 2005) found signif-
icant deviations between Press–Shcecther predictions and N-body
simulations. A better agreement to the simulations is given, for in-
stance, by the Sheth & Tormen (1999) or Jenkins et al. (2001) fits
for n(m). However, the formalism by Press & Schechter (1974) and
its extensions by Bond et al. (1991) and Lacey & Cole (1993), even
if crude, predicts the evolution of the mass function of collapsed
objects well enough for the purpose of this paper: the study of how
dark energy inhomogeneities and dark matter–dark energy coupling
influences cluster number counts.

The main assumption in the Press and Schechter formalism is
Gaussianity of the matter density field. When the density fluctuation
field δ(x) is smoothed with a top hat window of radius R, i.e. when
averaged in a sufficiently large volume V = (4π/3)R3 around each
point, it follows a Gaussian distribution:

p(δL, R) = 1√
2πσ

e− δ2
L

2σ2 , (19)

where σ (R) is the rms of linear fluctuations δL. Both σ (R) and δL

are redshift dependent. The volume fraction of points with δL � δc

is

f =
∫ ∞

δc

p(δL, R)dδL = 1

2
erfc

(
δc√

2 σ (R)

)
, (20)

which is assumed to be equal to the mass fraction in bounded objects
with M � (4π/3)ρm R3.

We are interested in the comoving number density of collapsed
objects in a mass range. To obtain this we have to take the derivative
of f, which gives the mass fraction in objects with mass between M
and M + dM, and also multiply by ρ̄/M , which converts the result
into number densities. Here ρ̄ is the comoving matter density. Thus,
the prediction of the Press–Schechter formalism for the comoving
number density of collapsed objects is

n(M)dM = 2
ρ̄

M
d f
dσ

dσ

dM
dM

= −
√

2

π

(
δc

σ

)
d ln σ

d ln M
exp

(
− δ2

c

2σ 2

)
ρ̄ dM

M2
. (21)

Note that there is a factor of 2 introduced to recover the mean
matter density. This factor can be better understood when taking
into account the ‘cloud-in-cloud’ structure of haloes (Bond et al.
1991).

There seems to be some confusion in the literature regarding
equation (21). We would like to stress that the matter density ρ̄(z) in
this equation is the comoving mean matter density at a given redshift.
In most cases, it is constant and is equal to the present mean matter
density, but not always. This equivalence is no longer true when one
generalizes the Press–Schechter formalism to coupled quintessence
models. In this case one has to bear in mind that ρ̄ varies with redshift
directly affecting the prediction of the number density of collapsed
objects.

Following Viana & Liddle (1999) we take the variance in spheres
of radius R to be

σ (R, z) = σ8

(
R

8 h−1 Mpc

)−γ (R)

D(z), (22)

where D(z) is the growth factor and

γ (R) = (0.3	 + 0.2)

[
2.92 + log10

(
R

8 h−1 Mpc

)]
, (23)

where 	 is the shape parameter of the transfer function. Note that
although the formalism by Viana & Liddle (1999) could be crude for
the present day precision cosmology experiments, it is good enough
for the Press–Schechter formalism and for the purposes of this pa-
per. We are not seeking exact solutions nor precise confrontations
with the observational data, but to understand the influence of inho-
mogeneities in dark energy and dark energy–dark matter interaction
on cluster number counts.

As in Sugiyama (1995) we use

	 = �mh exp

(
−�b(1 + √

2h)

�m

)
, (24)

because it takes into account the baryon component.
The Press–Schechter formalism gives us the comoving number

density of haloes, which we want to compare with astronomical
data. In order to make this comparison easier we convert n(m) to
a cluster number counts per redshift and square degree with mass
Mmin above 2 × 1014 M	 h−1,

dN
dz

=
∫

1 deg2

d�
dV

dz d�

∫ ∞

Mmin

n(M) dM . (25)

The comoving volume element per unit redshift, dV/dz =
d�r(z)2/H(z) (with r(z) being the comoving distance), depends
strongly on the cosmological parameters and, as we will see, on
the coupling between dark matter and dark energy. Therefore, it
plays an important role on determining the total amount of cluster
number counts.

In Fig. 2 we plot δc/σ 8 D as a function of redshift for several
case scenarios. We find that all coupled models have a ratio δc/σ 8 D
below that of the �CDM model. For non-coupled models this is the
only relevant quantity and it would have meant to expect larger halo
densities than the �CDM model. For coupled quintessence models,
however, one has also to take into account the redshift evolution of
the comoving matter density, which plays a very important role as
we will see in the next section. In fact, ρ̄ enters both linearly and
also through σ (R(M, ρ̄)) in the equation for the comoving number
density of collapsed objects (see equation 21).

It is interesting to notice that both δc and D acquire oscillations
through equation (13). Hence, the typical prominent wiggles we saw
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Figure 2. Evolution of the ratio δc/σ 8 D with redshift. Model A: 	φ �=
0, �cDM = 0.25, �um = �b = 0.05. Model B: 	φ �= 0, �cDM = 0.05, �um +
�b = 0.25. Model C: 	φ = 0, �cDM = 0.25, �um = �b = 0.05. Model D:
	φ = 0, �cDM = 0.05, �um + �b = 0.25. The �CDM case is also plotted
for reference.

in δc (see Fig. 1) for inhomogeneous coupled dark energy models,
cannot be seen in Fig. 2. The reason being that oscillations in δc

are exactly compensated by oscillations in the linear growth factor
when calculating the ratio δc/σ 8 D.

4 C L U S T E R S N U M B E R C O U N T S

D E P E N D E N C E S

We choose to normalize all models by fixing the number density
of haloes n(m) at redshift zero. This is the normalization taken by
Nunes et al. (2004). At redshift zero all models have the same co-
moving background density ρ̄ and growth factor D. Therefore, the
only dependence on n(m) is through δc(0)/σ 8 (see equation 21).
The normalization is done by adjusting σ 8 in each model such that
δc(0)/σ 8 is equal to the fiducial (σ 8 = 0.9) �CDM case. The table
of computed σ 8 is presented below.

Model σ 8

�CDM (fiducial) 0.9
A (homogeneous, large amount coupled) 0.843
B (homogeneous, small amount coupled) 0.892
C (inhomogeneous, large amount coupled) 0.224
D (inhomogeneous, small amount coupled) 0.695

4.1 Dependence on the coupling between dark matter

and dark energy

The coupling between dark matter and dark energy results into sev-
eral signatures which distinguish these models from the minimally
coupled ones. The first imprint is associated to the comoving den-
sity. In non-coupled dark energy models, as the universe evolves, the
mean matter density of the universe (ρm), gets diluted by a−3 due to
the expansion. In order to account for the expansion effect one con-
structs the comoving matter density ρ̄ = ρma3. For models with no
coupling between dark matter and dark energy, ρ̄ remains constant.
However, this is not the case for coupled quintessence models, as
can be seen from equation (6).

0 1 2 3 4
z

0

0.5

1

ρ(
z)

/ρ
(0

)

Figure 3. Comoving background matter density as a function of redshift.
There is a decrease of density because of the coupling between dark matter
and dark energy. Increasing the coupling leads to a faster decreasing of
the comoving density with redshift. Wiggles are a characteristic signature
of coupled quintessence models. Notice that in this plot non-coupled dark
energy models would correspond to a constant line equal to one.

In Fig. 3 we plot the comoving matter density, in units of its
present value, as a function of redshift. We can see that ρ̄ decreases
with redshift. For models with all dark matter coupled to dark energy,
ρ̄ is reduced a factor of 3 at redshift 1. Since n(m) depends linearly
on ρ̄, the cluster number counts are reduced by the same factor.

Coupling dark matter to dark energy not only changes ρ̄ but
also the expansion history of the universe through equation (1)
(see e.g. Amendola 2000; Amendola & Tocchini-Valentini (2002a)
for the evolution of background quantities). In Fig. 4 we plot the
value of dV/dz for our models A, B, C and D referenced to the
Einstein–de-Sitter universe. The concordance �CDM model is also
plotted for comparison. Note that the volume element is a back-
ground quantity, therefore, the clustering of dark energy during the
non-linear regime of matter perturbations does not affect it at all. It
is clear from the figure that different possible expansions of the uni-
verse are reflected in the comoving volume element evolution with
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Figure 4. Comoving volume compared to Einstein–de Sitter volume for
the four study models. Since the dark energy clustering does not affect the
background evolution the difference is due only to the coupling. Models A
and C with all dark matter coupled to dark energy have much more volume
than models B and D, in which only a small fraction of dark matter is coupled.
The concordance �CDM model is also plotted for comparison.
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Figure 5. Redshift dependence of the number of clusters of M > 2 ×
1014 M	 h−1 for square degree. All models are normalized to have the same
number density of haloes today. �CDM case is also plotted for reference.
Note the wiggles which are a feature of coupled dark energy models.

redshift. Models with more dark matter coupled to dark energy have
higher values of dV/dz.

Increasing the value of dV/dz directly translates into increased
cluster number counts. In fact, this effect is going in the reverse
direction to the previous discussed one, i.e. increasing the volume
element actually compensates or even overtakes the reduction of
the number counts due to a decrease in the comoving density ρ̄.
The combination of both effects can be more clearly seen in Fig. 5,
where the cluster number counts for square degree are plotted for
the four models. The �CDM model is also plotted for comparison.
In this figure, one can see that coupled quintessence models have
less number counts than the fiducial �CDM. Actually, increasing
the amount of dark matter coupled to dark energy leads to a decrease
in the number counts obtained. This is due to the different δc(z)/
σ (M, z) values and the decrease of the comoving matter density,
which becomes more important than the larger accessible volume.

A peculiarity of models where dark energy is coupled to dark
matter is the oscillations present at the cluster number counts (see
Fig. 5). Wiggles are in fact a common characteristic of coupled
quintessence models. These appear when the scalar field oscillates
about the minimum of its effective potential. Due to the coupling
to dark matter, these oscillations are transferred to the dark matter
fluid, and induce a corresponding oscillation in the ρcDM and ρcDMc

components (see fig. 7 of Copeland et al. 2004). Notice, however,
that these wiggles are related to the quintessence potential form and
initial conditions for the scalar field (Mota & van de Bruck 2004;
Nunes & Mota 2006). For instance, other coupled quintessence mod-
els which would have an effective potential without a minimum may
not present such wiggles. Similarly, a different choice of initial con-
ditions for the scalar field may lead to the case where the field did
not have time to reach the minimum of its potential today. Hence,
one would not see the oscillations. Nevertheless, fluctuations in the
cluster number counts if detected would likely indicate the existence
of a coupling between dark energy and dark matter.

4.2 Dependence on the dark energy inhomogeneities

From Fig. 5, it is clear that models with clustering dark energy
(inhomogeneous models) have more number counts than their ho-
mogeneous counterparts. This can be understood looking at δc and

the ratio δc(z)/σ 8 D(z) (see Figs 1 and 2). When dark energy clus-
ters with matter, it acts as a negative pressure slowing the growth
of structures. Models with a linear growth factor increasing slowly
have more structure in the past because we normalize all cases such
that we have the same number density of haloes today. In fact, the
density of collapsed objects is very sensitive to the linear growth
factor and to the critical density δc(z). For inhomogeneous dark en-
ergy models, it turns out to be significantly lower than the fiducial
�CDM model (see Fig. 1). This is also the reason for their low σ 8

in the normalization table.
Wiggles are a common feature for both the homogeneous and in-

homogeneous cases. There are, however, some differences between
these cases. While in homogeneous models wiggles are basically
only present in background quantities, i.e. ρ̄m (see Fig. 3); in the
inhomogeneous cases, this is not so. Due to the clustering of dark
energy, wiggles will also quite distinctly appear in clustered related
quantities like δc and the linear growth factor δL (see Fig. 1). Inde-
pendent of the clustering properties of dark energy, oscillations in
cluster number counts will appear, in coupled quintessence models,
due to oscillations in the background density. These oscillations are
propagated via the Press–Schechter formalism. Since for a given ra-
dius of a top hat filter, the volume fraction of the density field points
with δL > δc corresponds to the mass fraction of collapsed objects
with mass M > 4/3πR3ρ̄. The mass fraction is then converted to
number density through the background density.

5 D I S C R I M I NAT I N G M O D E L S

W I T H F U T U R E S U RV E Y S

It is important to estimate whether future surveys measuring cluster
abundances will be able to discriminate among different dark energy
models. In order to assess such possibility we test our dark energy
model B: homogeneous dark energy component with a small amount
of dark matter coupled. The aim here is not to perform a detailed
analysis but to get an idea of the potential detectability of the features
of coupled quintessence models.

Bahcall & Bode (2003) have used the abundance of massive clus-
ters (m > 8 × 1014 M	) in the redshift range z = 0.5–0.8 to constrain
the amplitude of fluctuations σ 8 within 10 per cent in the �CDM
case. Such uncertainty in σ 8 comes from the presence of very large
errors in cluster number counts, which are big enough for differ-
ent models to survive. Moreover, errors in the mass determination
of clusters also significantly change the expected number counts
(Lima & Hu 2004).

In the near future new surveys are planned to specifically find
clusters in the sky. The South Pole Telescope (SPT) (SPT Collab-
oration: Ruhl et al. 2004), which is currently under construction,
will use the Sunayev–Zeldovich effect to find clusters and deter-
mine their masses. Also the recently proposed Dark Energy Survey
(DES) (Annis et al. 2005)2 will observe almost the same region of
the sky and provide redshifts for those clusters. Both surveys will
share an area of 4000 deg2 in which 2000 clusters are expected to
be found. Such large numbers will allow to better test and discrim-
inate dark energy models. The expected errors in redshift for the
SPT+DES clusters are σz = 0.02 for clusters with z < 1.3 and
σz < 0.1 for clusters in the redshift range 1.3 < z < 2. Where
σz encompasses the 68 per cent probability for the redshift being in
the z ± σz range.

2Dark Energy Survey: http://cosmology.astro.uiuc.edu/DES/ http://www.
darkenergysurvey.org
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Figure 6. Top: cluster number counts for model B (dashed line) along with a
�CDM fit for the model (solid line). The fit is done by adjusting σ 8 and �m.
Bottom: cluster number counts in redshift bins for the 4000 deg DES+SPT
survey. Horizontal bars show shot-noise errors for the bins. Solid line shows
the wiggles as a difference between model B and the fit in an arbitrary scale.

In order to explore the potential detectability of wiggles in the
cluster number counts from these future surveys, we fit model B with
a flat �CDM model by varying σ 8 and �m. We simply integrate the
cluster number counts for all 4000◦ DES+SPT survey in redshift
bins. We choose to use bins of width 0.05 for z < 1.3 and 0.1
within the range 1.3 < z < 2, to be consistent with the expected
observational errors. The best fit is obtained by minimizing χ2:

χ 2 =
∑
bins

(
N modelB

i − N�CDM
i (�m, σ8)

)2

σ 2
SN

, (26)

where Ni is the number of clusters in the ith bin and σ SN
i is its shot

noise error, which is the expected error in any counting statistics.
The best fit corresponds to �m = 0.27 and σ 8 = 0.861. Both the best
fit and model B are shown in the top panel of Fig. 6. In the bottom
panel we plot the difference of the binned cluster counts between
the model and the fit. This difference is also in redshift bins. In the
bottom panel we also plot in horizontal bars the shot noise error for
each bin. The continuous line represents the unbinned difference
between model B and the fit. For clarity, this difference is arbitrarily
scaled, it is plotted only to see the correspondence between bins,
wiggles and the smoothing due to the binning.

In this section we are interested in having a broad idea about the
potential detection of the cluster number counts oscillations, which
are a special feature of coupled quintessence models. To answer this,
one could ask how significant is the difference between the model
and the fit, given the expected errors for the cluster number counts
in each redshift bin. The minimum χ 2 for this realization is 47.7,

which gives a probability of less than 5 per cent for the wiggles
being explained by stochastic fluctuations from the best fit �CDM
model. We also performed a Kolmogorov–Smirnov test, which is
less sensitive to the tidal parts of the distribution. After smoothing
the wiggles signature with a Gaussian beam of half-width = 0.05 in
redshift to simulate the errors, the Kolmogorov–Smirnov test gives
a probability ∼6 per cent for �CDM being the underlying model.
Hence, both the χ2 test as well as the Kolmogorov–Smirnov test
seem to indicate that future surveys could possibly detect those
oscillations in the cluster abundances.

6 C O N C L U S I O N S

In this article we have investigated the possibility of using cluster
number counts to differentiate dark energy models. In particular, we
have studied quintessence models coupled to dark matter. We have
also compared dark energy models that can present inhomogeneities
at cluster scales, with models that are homogeneous at those small
scales. The aim is to better understand the dependence of the cluster
number counts on the coupling between dark energy and dark mat-
ter, and on the dark energy inhomogeneities during the non-linear
regime of matter perturbations.

We have shown that there is a significant dependence of cluster
number counts on dark energy inhomogeneities and on the amount of
dark matter coupled to dark energy. Increasing the coupling between
dark matter to dark energy reduces the cluster number counts. This
effect is due to the decrease of the comoving matter density and
the distinctive evolution of δc/σ in time. Dark energy clustering
is shown to increase cluster number counts by slowing down the
formation of structure. Hence, depending on the amount of coupling
between dark energy and dark matter and on the clustering properties
of dark energy, these effects can combine together or against each
other to strongly increase or reduce cluster abundances.

Oscillations in cluster number counts in redshift are found to be a
specific signature of models with dark matter coupled to dark energy.
In homogeneous dark energy models, these oscillations are mainly
present in background quantities, such as ρ̄m, while in the inhomo-
geneous case the oscillations also appear in perturbed quantities,
like δc. We have shown that such fluctuations are propagated to the
cluster number counts producing this very peculiar cosmological
imprint.

Finally, we investigated the possibility of near future observations
to discriminate among different quintessence models coupled to
dark matter. As an example, we have chosen to test a particular
model where dark energy is coupled to a small amount of dark
matter and where dark energy is homogeneous at cluster scales. We
fit this model to a flat �CDM model by varying σ 8 and �m and
minimizing χ 2. When plotting, in redshift bins, the cluster number
counts for all 4000◦ of the DES+SPT surveys, wiggles still remain
above the shot noise for some bins. In fact the null test from the χ2

gives a probability of less than 5 per cent for these wiggles being
a stochastic realization of a �CDM model. Hence, future surveys
could possibly detect such wiggles and may be able to discriminate
among dark energy models.
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