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Abstract “soft” clustering methods, which partition the networkant

overlapping clusters. These tend to generate numerous clus
We initiate the study of a new clustering framework, terseven on small networks. The abundance of clusters may
called cluster ranking Rather than simply partitioning a make the results hard to digest and interpret. Moreover, typ
network into clusters, a cluster ranking algorithm also or- ically only a small portion of the clusters are interestimg o
ders the clusters by thestrength To this end, we intro-  meaningful, giving rise to a “needle in a haystack” prob-
duce a novel strength measure for clusters—the integratedem: how to select the important clusters from the masses
cohesion—which is applicable to arbitrary weighted net- of results returned?

works. In order to address the above difficulties, we propose a
We then present C-Rank: a new cluster ranking algo- new clustering framework, calletluster ranking Given a
rithm. Given a network with arbitrary pairwise similarity  cjuster strength measuravhich assigns a “strength score”
weights, C-Rank creates a list of overlapping clusters and t every subset of nodes, and givemaximality criterion
ranks them by their integrated cohesion. We provide exten-which determines which sets of nodes are “self-contained”,
sive theoretical and empirical analysis of C-Rank and show gz cluster ranking algorithm outputs the maximal clusters in
that it is likely to have high precision and recall. the network, ordered by their strength. The ranking pro-
Our experiments focus on minimgailbox networks A vides information that is usually not conveyed by tradigibn
mailbox network is an egocentric social network, consist- clustering: which clusters are more important than others.
ing of contacts with whom an individual exchanges email. This information can be used, for instance, to qu|ck|y singl
Ties among contacts are represented by the frequency obut the most significant clusters. Similarly to search algo-
their co-occurrence on message headers. C-Rank is wellrithms in information retrieval, cluster ranking algoritis

suited to mine such networks, since they are abundant Withare measured bgrecisionand recall. Our new framework
overlapping communities of highly variable strengths. We is described in Section 3.

demonstrate the effectiveness of C-Rank on the Enron data

set, consisting of 130 mailbox networks. Cluster strength measure. A crucial ingredientin the new
framework is the choice of a suitable cluster strength mea-
sure. A proper definition of such a measure turns out to be

1. Introduction a major challenge. Even for unweighted networks, there is
no consensus on how to measure quality of a cluster or of a

Cluster ranking. When clustering large networks, clus- clustering [8, 19].

tering algorithms frequently produce masses of clusters. We propose a novel cluster Strength measure—ittee

This phenomenon is magnified when employing “fuzzy” or grated cohesioa-which is applicable to arbitrary weighted
*Supported by the European Commission Marie Curie Inteynati n_etworks. TQ define this measure, we flrs_t definedblee-
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capture how “cohesive” an unweighted cluster is. We ob- to extract clusters from each of these unweighted networks.
serve that these notions are unsatisfactory, especialhein  Full details of the algorithm are given in Section 5.

presence of overlapping clusters. We then ShowdBEEX  \1ailhox networks. We demonstrate the efficacy of the

;eparatorg rather thgn edge separators, are more effective, ;. ol framework and of the C-Rank algorithm in a new do-
in measuring cohesion. _ main: clustering mailbox networks. Mailbox networks

E)ften(_jmg co_he5|onto captl_Jre strength of weighted c_Ius— an “egocentric” social network [29, 35]—a network cen-
ters is tricky, since edge weights have to be taken into igreq around a root individual. Unlike global “socioceditri
account as well. A standard approach for handling edgeneqworks [14], it provides the subjective viewpoint of an
weights is “thresholding™ one determines a threshfld  jngividual on her social environment. A mailbox network
and transforms the weighted network into an _unweightedis generated by mining messages in an individual’s mail-
network, by keeping only the edges whose weight exceeds, oy Actors in this network are the individual’s group of
the threshold’. We show that standard thresholding is in- gntacts. The weight of an edge connecting two actors is
suffic.ient for measuring streng_th of weighteq clusters. We ihe number of messages on whose header both actors ap-
then mtroducentegrated cohesioas an gﬁectlve measure  pear (either as co-recipients, or as a sender and a redipient
of strength for weighted clusters. The integrated cohesionTpis weight represents the strength of the ties between the
of a cluster is the sum of the cohesion scores of all the un-yyq actors from the individual’'s perspective. Mailbox net-
weighted clusters obtained by applying all possible thresh ks are abundant with overlapping communities of vari-
olds to the given weighted cluster. Our new cluster strength 3¢ strengths, and thus C-Rank is highly suitable for them.
measures are discussed in Section 4. Automatically discovering communities within mailbox
Cluster ranking algorithm. Having set up the new frame- networks could be beneficial in various applications. In
work, we present C-Rank: a cluster ranking algorithm. email clients, the knowledge of one’s favorite communities
C-Rank is designed to work for networks with arbitrary could supportthe automation of a variety of features such as
weights. The network’s nodes are assumed neither to be-completion of groups when entering multiple recipients, de
long to a metric space nor to conform to any statistical tection of missing or redundant recipients, etc. Email com-
model. C-Rank produces and ranks overlapping clustersmunities might also help in spam filtering by identifying
and is thus in particular an overlapping clustering aldnonit “spam groups” [5]. In the intelligence domain, communi-

C-Rank works in three phases. First, it identifies a list ties can evidence gangs or potential criminal groups around
of candidate clusters. Then, it ranks these candidates byknown criminals.

their integrated cohesion. Finally, it eliminates redumda Experimental results. We evaluated C-Rank on our own
clusters—ones that are non-maximal. mailboxes as well as on 130 mailboxes from the Enron data
At the core of C-Rank is a hierarchical overlapping clus- get [21]. To evaluate the quality of C-Rank, we adapted
tering procedure, which constructs a hierarchy of overlap- the popular edge betweenness clustering algorithm of Gir-
ping clusters in unweighted networks. This procedure may yan and Newman [15] to the cluster ranking framework, and
be of independent interest. Given a netwdtk the pro-  compared the two algorithms. We found that C-Rank dom-
cedure finds aparse vertex separaton 7, and uses the  jnates the edge betweenness algorithm under almost any
separator to split the network into a collection of overlap- metric. We also evaluated the robustness of C-Rank under
ping clusters. The procedure then recurses on each of theandom removal of data, and found it to be quite resilient.

clusters, until reaching cliques or singletons. Intenegyj, These results are presented in Section 6.
the hierarchy produced by the procedure may be a DAG,

rather than a tree. We provide rigorous theoretical amalysi 2. Related work
of this procedure and show that it is guaranteed to &ihd
maximal clusters irG (note that other soft clustering algo- The literature on clustering and community detection
rithms may not have this guarantee and are thus less usefutonsists of numerous measures of quality for communi-
in our framework). The procedure may run in exponential ties and clustering. These vary from distance-based rsetric
time in the worst-case—an unavoidable artifact of the quest(such as minimum diameter, sum-of-squatesjeans, and
for overlapping clusters. Yet, we show that its running time k-medians, cf. [18]), to graph-theoretic measures (such as
is only polynomial in the output length. In practice, it took normalized cuts [31], conductance [19], degree-based-meth
C-Rank several minutes to cluster networks consisting of ods [12, 13, 17], performance [34], edge betweenness [15],
thousands of nodes on a standard PC. modularity [26], bipartite cores [22], anklcliques [27]),
Given a weighted network, C-Rank produces candi- to statistical methods (e.g., [3]). Unfortunately, these i
date clusters by transforming the network into multiple un- no single, widely acceptable, definition, and many of the
weighted networks using a gradually increasing threshold.above notions are known to work badly in some situations
The hierarchical overlapping clustering procedure is used(cf. [8, 19, 20]). Furthermore, many of the above measures



are suited for restricted scenarios, such as hard padition negative real valuesu(C) is thecluster strengttof a net-
clustering, model-based clustering, or clustering of metr work C'.
space data points. i . ]

Fuzzy cluster analysis (cf. [16]) is a branch of data clus- Intuitively, ;.(C') represents h‘_)W stror_1g3‘_|s asa Cll.JS'
tering, in which each data point can be associated with mul-t'- There could be many possible realizations of this def-
tiple clusters with different confidence probabilitieszey ~ nition, depending on the properties of a cluster viewed

clustering can be used in particular to generate overlgppin as malﬂng I “str;ng“. OpehS|r(;1pIe exalznplerll_s tbleue
clusters. Nevertheless, most of the classical work in tag ar  SU€Ngth measuréor unweighted networks. This measure

(e.g., Fuzzy c-means) assumes the data points lie in a met{@kes on only Boolean values: a netwarks of strength 1

ric space, which respects the triangle inequality. We con- ' It S @ clique, and is of strength 0 otherwise.

sider arbitrary weighted networks whose induced distance _ ClUSter strength is an intrinsic property of the network
measure does not necessarily satisfy the triangle inaguali C- TYPically, C'is a subset of a larger netwotk and thus
More recent studies (e.g., [32, 30, 2, 7, 27, 4]) address thec!ust(’?r strength by itself is insufficient to represent tﬂe-
general scenario of networks with arbitrary pairwise simi- Si'ed” clusters in a network. For example, a small clighe
larity weights. These algorithms substantially differrfro ~ Which is embedded in a larger cliqu is strong under the

ours, because they do not rank clusters and are not guararf£due strength measure, but is evidently not very interest
teed to output all maximal clusters ing, because it is simply an integral part of the larger &iqu

Pereira, Tishby, and Lee [28] present a hierarchical soft IE order t?j ct:)apt.ur.e thedsg red;u;]dafnt cluster;, we introduce
clustering algorithm for weighted networks that lie in a met the second basic ingredient of the framework:

ric space, using a technique calledterministic anneal-  pefinition 2 (Maximality criterion). Let G = (Vg, Eq)

Several works studied communities in email networks. mapped tal are callednaximaland all the subsets that are
Tyler et al. [33] mined communities isociocentricemail mapped td) are callechon-maximal

networks, i.e., ones extracted from the viewpoint of an or-
ganization’s mail server. Fisher and Dourish [11, 10] study A natural maximality criterion in the cliques example
egocentric mailbox networks as we do, yet they detect com-maps a seC' to 1 if and only if it is a clique and not con-
munities by manual inspection and not by an automatic al- tained in any other clique. The maximal clusters in this case
gorithm. Boykin and Roychowdhury [5] mined communi- are the maximal cliques i&v.

ties in mailbox networks in order to detect “spam commu-  We can now state the cluster ranking problem:

nities”. Their clustering algorithm, however, is too caars
to reveal the overall community structure of the network.

McCallumel al. [24] cluster email messages in an individ- The cluster ranking problem
ual's mailbox, based on their text content, rather than en th
message headers. Input: A networkG.

Output: The maximal clusters it ordered by strength

3. Cluster ranking framework

Throughout,G = (Vg, Eg) is an undirected network The cluster ranking problem, as stated, could be a hard op-
andn = |VG| is the number of nodesid. G has no para”e| timization prOblem. One immediate d|ﬁ|CU|ty is that the
edges, yet self loop edges are allowed. Every edgef; number of maximal clusters may be very large, so just out-
is associated with a non-negative weidtite). The weight ~ Putting them may take a long time. We thus measure the
represents the strength of the tie between the two connecte@erformance of ranking algorithms not only relative to the
nodes. The self loop weight represents the intrinsic “im- input length but also relative to the output length. A more
portance” of the corresponding node. dfandv are not ~ Serious problem s that typically the computational proble

connected by an edge, we implicitly assubiéu, v) = 0. itself (even when the output is short) is hard. It followsttha
In the special case all edge weights ar&/is called arun-  in reality we cannot expect a ranking algorithm to provide
weightedhetwork. Note that edge weights can be arbitrary, @n exact solution to the ranking problem. A typical rank-
and in particular need not correspond to a metric. ing algorithm may include on its list non-maximal clusters
The first basic ingredient of the cluster ranking frame- @nd/or may miss some maximal clusters. We thus adapt in-
work is the following: formation retrieval metrics to evaluate the quality of tdus
ranking algorithms.
Definition 1 (Cluster strength measure). A cluster For a networlkG and for a ranking algorithmd, let A(G)

strength measuris a functionu, mapping networks to non-  be the list of clusters returned byywhen givenG as input.



Let I(G) denote the list of all maximal clusters @. The Formally, avertex separatoof an undirected and un-
recall of A is: recall(4, G) = ADAUD  Theprecision ~ weighted networlC' = (V¢, Ec) is a subsefs of Ve s.t.

(Gl : ; :

- . _AGNI(G)] the network induced ol \ S (i.e., the network obtained
of Ais: precision(4, ¢7) = IO from C by removingsS and all its incident edges) is dis-
4. New cluster strength measure and maximal-  connected. Apartition induced by a vertex separatsris

ity criterion a partition of V¢ \ S into two disjoint sets4d and B s.t. no

edge inF¢ connects4d and B. Note that the same separa-
In this section we develop a new measure of cluster tor may induce multiple different partitions. We define the
strength and a corresponding maximality criterion. Our cohesion of a network via the notion of “vertex separator
measure is quite general, and in particular is suited for find sparsity” (cf. [1, 9]):

ing overlapping clusters in networks with arbitrary weght o _
Definition 3 (Network cohesion). Let C = (V¢, E¢) be

4.1. Unweighted networks an unweighted network. Thewhesiorof C is:
In unweighted networks a strong cluster is one which is 1]
“cohesive” in the sense that it does not “easily” break up cohesion(C) =

min - ,
into smaller pieces. This intuition has been formalized via (8.4, min{|A[, | B[} + 5]

various notions of graph partitioning, such as normalized
cuts [31], conductance [19], edge betweenness [15], modu
larity [26], and relative neighborhoods[12]. The undertyi
principle in all these approaches is the same: a network is
cohesive if and only if it does not have any “weak” edge sep-
arator (a.k.a. edge cut). Aedge separatos a subset of the The ratio m is called thesparsity of the
network's edges whose removal from the network makespartition. It is minimized wherS is small andA and B
the network disconnected. The above approaches differ ingre both large. That is, under the above definition, a net-
the way they measure the “weakness” of the edge separatofyork C' is cohesive if and only if it cannot be broken into

We observe that regardless of the weakness measurgrge pieces by removing a small number of nodes from the
used, edge separators sometimes fail to capture the cohenetwork. The fact that the two pieces are large is important,
sion of networks, especially in the presence of overlappingbecause it may be easy to cut off a small part from a net-
clusters. While the existence of a weak edge separator inwork, even if the network is cohesive, e.g., by isolating a
a network is sufficient to make the network noncohesive, single leaf node.
it is not a necessary condition. A simple example for this The cohesion of a network takes on values between 0
is illustrated in Figure 1(a). Here, we have two cliques of (for disconnected networks) ard(for cliques). Note that
sizen that overlap in a single node. Itis easy to check that sparse vertex separators subsume weak edge separators: if
any edge separator of this network 6&3:) edges and thus  the network has a weak edge separator, then it must also
will be considered relatively strong almost under any mea- have a sparse vertex separator. However, as the example
sure. However, this network is clearly noncohesive becausenetwork above demonstrates, the converse is not true.
it naturally decomposes into the two overlapping cliques. Computing the cohesion of a network is an NP-hard op-
timization problem [6]. Yet, it can be approximated in poly-
nomial time [23, 9]. In this paper we use a faster flow-based
Clique of Clique of approximation of network cohesion, which is described in

size n size n the full version of this papék.

4.2. Weighted networks

where the minimum is over all vertex separatsrsf C and
‘over all partitions ofC' induced byS. The cohesion of a
singleton (a cluster of size 1) is 1, if it has a self loop, and 0
otherwise.

(a) Overlapping cliques (b) Nested cliques . o
In weighted networks cohesion is no longer the sole fac-

tor determining cluster strength. Edge weights should be

We propose usingertex separatorsrather than edge taken into account as well. qu example, ac!ique of s_ize
separators, to measure the cohesion of a network. A verte;@!l Of whose edges are of weight 1 and a clique of size
separator is a subset of the network’s nodes whose removafill Of Whose edges are of weight0 are equally cohesive.
leaves the network disconnected. In the example network Yel: clearly the latter clique is “stronger” than the former
above, the single node in which the two cliques overlap is HOW do we then Comb'”i cohesion and edge weights into a
a vertex separator. Intuitively, a network is cohesive flan Single strength measure
only if it does not have a small vertex separator that sepa-  iyanuscript of full draft available athttp:// wwv. ee.
rates it into large pieces. technion. ac. i | / peopl e/ zi vby.

Figure 1. Cligue examples




One of the popular methods for dealing with weighted of two overlapping clique€; C D;, C; C D, of size
networks is “thresholding” (see, e.g., [27]): given a n/2 each, whose overlap coincides withy N D,. It can

weighted networkC', one selects aveight thresholdl” > be checked that' is more cohesive thab, yet clearlyC' is
0, and transformg into an unweighted network'” by “uninteresting”, since it is an integral part &f. We would
changing all the weights that are greater tiato 1 and all like then to say thaD subsume¢’, and thusC' cannot be

the weights that are at mogtto 0. C' is then clustered by = maximal. In fact, in this exampl€' is not unique. Any
simply clustering®”'. This approach, though, is too coarse, union of a subset ab; with a subset oD, whose overlap
especially in the presence of overlapping clusters. Tg4llu coincides withD; N D, will give a cluster, which is more
trate the problem, consider the example network depicted incohesive tharD, but is subsumed bip.
Figure 1(b). In this example, we have two nested cliques.
A smaller cliqueA all of whose edges are of weight 10 is
nested within a larger cliqu®, whose other edges are of
weight 1. Clearly, bottd and B are clusters of interest, yet
any choice of a single threshold results in the loss of atleas
one of them. If the threshold is set to be less than 1, then
is lost, while if the threshold is set to be at least 1, tlitis
lost.

Our crucial observation is that in order to determine the
strength of a weighted network, we should not fix a sin-
gle weight threshold, but rather consider all possible Weig

thresholdssimultaneously A strong cluster is one that has Figure 2. Example of cluster subsumption.
high cohesion under many different thresholds. Formally,
this is captured by the following measure: What really make® subsume” in the above example?

If we break upD into its natural cluster®; and D5, then
alsoC breaks up into different piece€’( andCs). That s,
the partition ofD inducesa partition ofC.

o To formally define subsumption, we introduce some ter-
intcohesion(C) = / cohesion(CT)dT. minology:
0

Definition 4 (Integrated network cohesion). Let C' be a
weighted network. Thantegrated cohesioof C is:

¢ Definition 5 (Covers). Let V' be a set. Acoverof V' is a
collection of subsetd/,...,V, C V whose union isV:
Ule Vi = V. Note that sets participating in a cover, unlike
a partition, can overlap. The cover is callgtvial, if at
least one ofly,...,V, equalsV. Given a subsetV’ C

V, the cover ofV’ inducedby V4,..., Vi is V] = Vi n
Vi, . . Vi=VenV'.

For example, the integrated cohesion of a clique all o
whose edges are of weightis k. Similarly, the integrated
cohesion of a singleton whose self loop weight is also
k. Although integrated cohesion is defined as a continu-
ous infinite sum, in practice: (1) It is always finite, as for
all thresholdsT” that are greater than the maximum edge
weight,C7 is an empty graph, and thushesion(C7) = 0.

(2) It can be computed by summing up a finite number of ey separators not only provide us with a robust no-

cohesion values. The only weight thresholds in which the 4, ¢ hetwork cohesion, but they also enable us to break
induced unweighted network can change are the dlstmctup networks into their “natural” top-level clusters:

edge weights of’. Therefore, by summing up at maéic |

cohesion scores, one can compute the integrated cohesionDefinition 6 (Vertex separator cover). LetG = (Vg, Eg)
be an unweighted network and I&be a vertex separator of
G. LetA,..., A, bethek connected components@f\ S.

We now define maximality criteria for weighted and un- TheS-coverof Gis SU A, SU Ay, ..., S U Ay.
weighted networks.

4.3. Maximality criteria

) i . Note that the clusters participating in a vertex separator
Unwe_|ghted networks. In grder_ to define maxlmallty N cover overlap, because all of them contain the separator. In
unweighted networks, we first discuss the notiorclakter the example depicted in Figure 2, the interseciibm D
subsumptionOur maximal clusters will be the ones thatare g 5 (sparsest) vertex separator of battandC'. The cor-

not subsumed by any other cluster. . responding covers ab andC are Dy, D, andC, Cs, re-
Let us begin with a motivating example. Consider the spectively.

two clusters depicted in Figure 2. The larger clugters
the union of two overlapping cliquds,, D- of sizen each, Definition 7 (Subsumption). Let C C D be two clusters
whose overlap is of size. The smaller clustef’ is a union in an unweighted networks. D is said tosubsume”, if



there exists a sparsest vertex separétof D, whose cor-
responding cover induces a non-trivial coverCof

In the example abov® subsumeg’, because the cover
corresponding to the sparsest vertex separatoiDofs
Dy, Do, and this cover induces the non-trivial cover, Cs
of C.

The notion of subsumption does not properly handle
cligues, because the vertex separator of any clique isthirea

trivial, and thus the covers it induces on all its subsets are

trivial too. In particular, non-maximal cliques are not sub
sumed by any of their supersets under this definition. To fix
this anomaly, we explicitly postulate that ## is a clique,
then it subsumes all its proper subsets.

We can now define maximality in unweighted networks:

Definition 8 (Maximality in unweighted networks). Let
G = (Vg, Eq) be an unweighted network. A subggtC
Ve is calledmaximal if it is not subsumed by any other
subset ofiz.

In the example network depicted in Figure 2, the cluster
C'is non-maximal, because it is subsumed by the cluster

The following lemma shows that the above maximality
criterion captures natural types of clusters:

Lemma 9. Let G be an unweighted network. Then, the
connected components @fand the maximal cliques i&
are maximal.

For lack of space, the proof of this lemma, as all other
proofs in this paper, appears in the full version of the paper

Weighted networks. Having defined maximality in un-
weighted networks, it is quite straightforward to extenel th
definition to weighted networks:

Definition 10 (Maximality in weighted networks). Let
G = (Vg, E¢) be aweighted network. A subsetC Vi is
calledmaximal if there exists at least one threshdld> 0,
for which C is maximal in the unweighted netwoek” .

In the example network depicted in Figure 2, if the edges
of the clustelC are all of weight 10 and the rest of the edges
in the clusterD are of weight 1, ther is now maximal,
because it is maximal in the unweighted netwaork, for
all T € [1,10).

Remark.A common pattern in social networks is the “onion

motivates us to search for clusters that are not just maximal
but are rather maximdly a margin

We say that a cluster is maximal by a margin, if there
exists an interva|T, Tz], whereTs > (1 + €)1y, s.t.C'is
maximal inG”, for all T € [T}, T). For instance, if in the
network depicted in Figure 2, the weight of edge<ins
1.1 rather tharl 0, thenC' is maximal by a margin od.1.

5. The C-Rank algorithm

In this section we describe C-Rank: an algorithm for de-
tecting and ranking clusters in weighted networks. C-Rank
consists of three major phases: (1) identification of candi-
date clusters; (2) ranking the candidates by integrated-coh
sion; and (3) elimination of non-maximal clusters.

5.1. Candidate identification in unweighted net-
works

Our candidate identification procedure (see Figure 3)
finds the sparsest vertex separator of the given networg, use
its induced cover to split the network into overlapping elus
ters, and then recurses on the clusters. The recursion stops
when reaching cliques or singletons, since they cannot be
further partitioned. If more than one vertex separatortsxis
one of them is chosen arbitrarily.

1:ProcedureunweightedCRank{, £)

addGto £

if G is a clique or a singleton return

S := sparsest vertex separator@f

. Ai,..., Ay = connected components 6f\ S

: fori=1tokdo

G, := sub-network of7 induced onS U A;

if G; not already inC then
unweightedCRank{;, £)

©oNaRr®ON

Figure 3. ldentifying candidate clusters in un-
weighted networks.

As the procedure detects overlapping clusters, it may en-
counter the same cluster more than once. Thus, in order to
avoid duplications, the procedure checks that a clustastis n
already on the list, before recursively processing it.

The procedure not only produces a list of maximal clus-
ters from the given networkz, but also implicitly orga-

pattern” [11]: a sequence of nested clusters, each of whichnizes them in ahierarchy, similarly to hierarchical clus-

is only slightly stronger than the cluster it is contained in
This pattern characterizes, for instance, the collabomati
within projects: most of the interaction occurs within aeor
team of project members, while larger circles of consutant
are only peripherally involved. The different layers of an
“onion” give rise to clusters that are all maximal. Never-
theless, it is clear that not all of them are of interest. This

tering. The difference is that here, due to the overlapping
clusters, the hierarchy is not necessarily a tree, butlierat

a DAG (Directed Acyclic Graph). The root of the hierarchy
is the whole networkz and its leaves are either singletons
or cligues. Each cluster in the hierarchy is covered by its
child clusters. We call such a hierarchjii@rarchical over-
lapping clustering



Example run. Figure 4 shows an example run of the above clusters inG”" using the procedure unweightedCRank. This
procedure on a simple 5-node network. The procedure firstguarantees that we output all maximal clusterszofand
detectsS = {¢,d} as the sparsest vertex separator of the hence obtain ultimate recall.

network and removes it from the network. The resulting The above brute force enumeration could be very time-
connected components ary = {a,b} and A, = {e}. consuming, since we need to make ug ;| calls to un-
The procedure addS to each of the connected compo- weightedCRank, and each call is made over the entire net-
nents, obtaining the two overlapping clustéasb, c, d} and work G. Furthermore, this approach tends to be wasteful,
{c,d, e}. No recursive calls need to be made in this exam- as we may identify the same clusters again and again un-
ple, because both of these clusters are cliques. der different thresholds. For example, a maximal clique

Analysis. We next analyze the quality and the performance all of whose edges are of weigfit will be discovered at
of the algorithm. We start by showing that the algorithm is @ll thresholdsI” < T'. A natural question is then whether

guaranteed to have an ultimate recall of 1: we can trade the ultimate recall guarantee for better perfor
mance?

Lemma 11. Given an unweighted netwok, C-Rank out- To this end, we make the following observation. What

puts all the maximal clusters i&. is the reason for a cluster to be maximak#t, for some

thresholdZ’, while not being maximal a&”", for all 7" <

T? This can happen only if for evefly/ < T, there ex-
ists a clusterD D C that subsumes’ at GT', but does
not subsume it anymore &t”. If D itself was maximal

The lemma establishes that C-Rank has ultimate recall.
But what about precision? How likely is C-Rank to out-
put clusters that are non-maximal? When C-Rank splits a

f;lig’:eéc Into éuircelunsé?rfjﬁgqr'ﬁgfn??fg C? i\s/er;tziirsne;;a- atGT’, then the algorithm should have identifiédat that

thenb b ’C k are likelv to b - 't H ' time. This gives us an opportunity for large savings in run-
s bk y 10 be maximal too. - HOowever, ning time. For every threshold’, after having identified

this intuition does not always work, @, ..., C); may be the maximal clusters a&”", we do not need to search the

subsumed by subsets 6L This sm_Janon, though, rarely entire network for new maximal clusters at the subsequent
happens. We do not have theoretical guarantees about thﬁqreshold, but rather onlwithin the maximal clusters of

grec;!5|orf13 ct)r: Ct,-.feank, [.)u.t we prov:jde empirical evidence in GT'. This limits our search space and also enables faster
ection atiis precision|s good. advancement of thresholds.

The performance of C-Rank is directly related to the . . -
. . In practice, our algorithm does not even search within all
number of clusters it produces. Clearly, since the number . o
the maximal clusters, but rather only within the most cohe-

of maximal clusters can be exponential in the size of the . o : .

. ., sive ones. Note that the efficiency gains of this approach

input networkG, then C-Rank may run for an exponential : Y .

amount of time. However, when the list of maximal clusters "'oY cOMe at the price of compromising the ultimate recall

is short. then C.-Rank wiII,aIso run more auicklv: guarantee of the algorithm, because we may miss clusters
' q y: that are subsumed by non-maximal clusters or by noncohe-

Lemma 12. Suppose that on a given netwatkC-Rank  Sive clusters.
outputs a list ofin candidate cluster€’;, ..., C,,. Then, The procedure for identifying candidate clusters in
the running time of C-Rank ©(>"1", (f(|Ci]) + |Ci|?)), weighted networks is depicted in Figure 5. Given a net-
where f(n) is the amount of time needed to compute the work G, the procedure sets a threshdldio be the mini-
sparsest vertex separator of a network of size mum edge weight i and computes the unweighted net-
work GT. Note thaiG” has the same edges@sexcept for

Recall that finding the sparsest vertex separator of a netthe minimum weight edges that are eliminated. The proce-
work is NP-hard. Hence, in a naive implementation of C- dure then finds the maximal clustersGf’ and adds them
Rank, f(n) will be exponential inn, which is of course  to the list of candidate clusters. Next, the procedure recur
unacceptable. Therefore, C-Rank does not compute exactively searches for more clusters within the cluster&/6f
sparsest separators, but rather approximate sparsest sep@hose cohesion exceeds t@hesion threshold.
rators. These separators are computable in quadratic time.  The first call to the procedure (i.e., with the original net-
The approximation procedure is described in the full ver- \ork ) slightly differs from subsequent recursive calls: the
sion of the paper. thresholdr” is set to be 0 and not the minimum edge weight.
This guarantees that the first unweighted network processed
is G°, which has exactly the same edgegas

The simplest way to extract all maximal clusters from  The recursion stops when reaching a clusteand a
a weighted networky = (V, E¢) is the following. We thresholdT” s.t. C* cannot be further partitioned into sub-
enumerate all possible thresholfgthere are at most | clusters by the procedure unweightedCRank. This means
such thresholds), comput&’, and output all the maximal thatC” must be either a clique or a singleton, and thus

5.2. Candidate identification in weighted networks



D A
&
@
(b)

Figure 4. Identifying unweighted clusters: Example run.

1:Procedu_rt_aweightedCRa_nl((?,_ﬂ, L) accordingly. The main thing to note is that calculating the
2: T = minimum edge weight it~ integrated cohesion of a clustér requires computing the
3: G" = unweighted network obtained fro6i using threshol@  cohesion of? for & values of the threshol@. wherek is

. T ; !
4: L7 :=an empty list of clusters the number of distinct edge weights@ Thus, each such
2- unweightedCRank{™, £7) calculation requires at mogE| sparsest separator calcu-
Z
8

: appendc” to £ : . . e
: for all clustersC' € LT for which cohesion(C) > 8 do lations, giving a total oD(|Ec| - f(|C1)) running time.

weightedCRank(, 8, £) 5.4. Candidate elimination
Figure 5. Identifying candidate clusters in The third and last phase of C-Rank consists of eliminat-
weighted networks. ing non-maximal clusters from the ranked list of clusters.

Testing maximality directly is hard, since to check whether
a clusterC' is maximal or not, we would need to compare
C against all its supersef3 O C. Each comparison entails
testing whetheD subsume&’ under each one of the pos-
sible thresholdg". This process requires exponential enu-
i meration, and moreover every single subsumption test may
Example run. Figure 6 shows an example run of the al_::ove be prohibitive, sinceD may have many different sparsest
procedure on a 5-node netwofk The procedure applies grtex separators.

a threshold ofl" = 0 and obtains the unweighted network oy candidate elimination procedure, therefore, makes
Go_depicted in Figure 6(b). The procedure then finds un- g relaxations. First, each clustéf is compared not
weighted clusters i, resulting in the clusterfa, b,c,d}  against all its possible supersets, but rather only against
and{c, d, e} depicted in Figure 6(c). A recursive call is persets that also belong to the list of candidates. Thisfsign
made on each of these two clusters. We focus, for examplejcantly reduces the search space and makes the enumeration
on the clustea, b, ¢, d} (Figure 6(d)). The minimum edge only polynomial in the number of candidates.

weight in this cluster i2, and thus the procedure applies  Gijyen a candidate clustér that strictly contains a candi-

a threshold” = 2, resulting in the unweighted network  gate cluster”, we do not test directly whethd? subsumes
depicted in Figure 6(e). This network breaks into the two  nder at least one threshdld We rather declar® as
clusters{a, b, c} and{d}. More recursive calls are made on subsuming’ if intcohesion(D)(1 + €) > intcohesion(C)
these clusters, and we focus on the one mad¢amh, c} (Wheree is the maximality margin). The idea is that/i
(Figure 6(f)). The minimum edge weight this timefis= 5 subsumeg” at GT, then D is at least (and usually more)
and thus the resulting unweighted network is the one de-cgnesive tharC in G7. Since cohesion is monoton®)
picted in Figure 6(g). Note that the network now consists 5 5150 expected to be more cohesive titaat G7” for all

of singletons only, and therefore the recursion stops. Thes — 7 Thisis likely to make the integrated cohesion of
final list of clusters that will be returned ifa, b, ¢, d, e}, D higher (or at least not much lower) than the integrated
{aa b7 Cy d}' {Ca d, 6}, {a7 b, C}’ {a}1 {b}' {C}’ {d}’ and{e}' cohesion ofC.

Some of these clusters (namefy,},{b}, and{e}) will be

eliminated at the third phase of C-Rank, because they are6. Experiments

not maximal.

is either a homogeneous clique (i.e., a clique all of whose
edges are of the same weight) or a singleton.

) ] Experimental setup. We tested C-Rank on our own mail-
5.3. Candidate ranking boxes as well as on the Enron email dat&,sehich con-

Atits second phase, C-Rank computes the integrated coSists of 150 mailboxes of Enron employees. The data set

hesion of each one of the candidate clusters and ranks them 2http://iwww.cs.cmu.edaéenron.




Figure 6. Identifying weighted clusters: Example run.

contains more than 500,000 messages, mostly sent alonflewman’s variant of the algorithm [25], which is adapted to
the years 2000-2002. weighted networks). The benchmark algorithm, which we
Given a mailbox, we constructed two corresponding call EB-Rank, is identical to C-Rank, except that it gener-
networks—aninbox networkand anoutbox network-as ates its candidate clusters using the edge betweenness al-
follows. First, we cleaned the data, by removing dupli- gorithm. The ranking and candidate elimination phases of
cate messages, merging alias addresses, and ignoring me&B-Rank are identical to those of C-Rank.
sages that did not include the mailbox’s owner as an explicit Anecdotal results. In order to give a feel of the communi-
sender or recipient. We then split the messages into “out-ties produced by C-Rank, we start with some anecdotal re-
going” and “incoming”. All the incoming messages were gy|ts from two of our mailboxes. Figure 7 shows the top 10
used to construct the inbox network and all the outgoing non-singleton communities in the inbox of Ziv Bar-Yossef.
messages were used to construct the outbox network. Therhe example demonstrates that the strong communities out-
inbox (resp., outbox) network consists of all contacts that pyt py the algorithm are indeed meaningful, as the owner
appear on headers of incoming (resp., outgoing) messagesould easily attach a title to each one of them. This list con-
eXCIUding the mailbox’s owner. Two contacts are Connectedsists of feW over|apping CommunitieS, Since Ziv’s research
by an edge if and only if they appear on at least one mes-projects tend to be separated and have very few common
sage header together. The weight of the edge is the numbeparticipants.
of message headers on which they co-occur. The self loop

weight of a contact is the number of message headers on [Rank]|[weight] Size Member IDs Description ]

which it appears. 1 | 183 [ 2 1,2 grad student + co-advig
We ran C-Rank with the following parameters: (1) max- R B pg‘l’c?'ci’:‘p?o"l‘mm

imality margine = 0.75; (2 co_hesion threshold = 1. In 2 | 285 | 6| 202122232408 hew car pool

most of the experiments, we ignored the self loop weights 5 28 | 2 26,27 colleagues

altogether, in order to focus on the non-singleton communi- 6 | 28 | 2 28,29 colleagues

. hich | trivial to find d K 7 25 3 26,30,31 colleagues

ties, which are less rivial to ind and rank. 8 19 | 3 32,33,34 department committe
We enforced a hard time limit of 3,600 seconds on the 9 | 159 [ 19 3553 jokes forwarding grouj

execution of C-Rank on each mailbox. C-Rank was unable L2015 | 4 5461 reading group

to finish its execution on 19 of the 150 mailboxes by this
time limit, and thus these mailboxes were excluded from
the data set. We ran the experiments on Intel Pentium 4  Figure 8 shows the top 10 communities output for the in-
2.8GHz processor workstations with 2GB of RAM. box of Ido Guy, including singleton communities. This ex-
Evaluating clustering results automatically is a difficult ample demonstrates that singleton communities can blend
task. Our situation is even more complicated, because therevell with non-singleton communities and that they do not
is no benchmark cluster ranking algorithm to which we necessarily dominate the list of strong communities. It fac
could compare C-Rank. We thus created such a benchmarkdo’s list is quite diverse in terms of community sizes, rang
from the widely used edge betweenness hierarchical clustering from singletons to groups of over 10 participants. The
ing algorithm of Girvan and Newman [15]. (In fact, we used workplace-related communities are highly overlapping; co

Figure 7. Ziv Bar-Yossef’s top 10 communities.



responding to different projects with overlapping teams or @ Outbox O Inbox
to different sub-groups within the same project. =
[}
% 20 A
Rank | Weight | Size Member IDs Description 'g 15 |
1 184 2 1,2 projectl core team E
2 37 1 3 spouse g 10
3 75 1 4 advisor g 5/
4 70.3 4 1,5,6,7 project2 core team é
5 62 1 8 former advisor 0
6 48.2 6 1,2,9,10,11,12 projectl new team
7 46.9 | 13 13-25 academic course staff Deciles of communities ordered by size
8 46.7 9 1,5,6,7,26-30 project2 extended team (IBM)
9 42.3 5 1,2,9,10,31 projectl old team : P : : :
10 41.3 | 13| 1,5,6,7,26-30,32-¢ | project2 extended team (IBM+Luce] Figure 9. Distribution of community sizes.

Figure 8. Ido Guy’s top 10 communities (with sin-

on this mailbox. Intuitively, the recall of A relative to B
gletons).

should be the fraction of the communities 4 that also
appear inC 4. However, even when A and B detect the same
community, they may have slightly different “versions” of

Enron data set statistics. Next, we present some statistical ¢ community, differing in a few nodes. Therefore, when
data about the results of C-Rank on the 131 mailboxes of thesearching the lisC 4 for a communityC' that shows up on

Enron data set. We first addressed the issue of the promiyhe Jist £,;, we did not look for an exact copy af, but
nence of “singletons”in the data set. A “singleton message” rather for a communitg” that is “comparable” ta’. For-

is one that has only one sender or one recipient, apart fromma”y, we say that” is comparableto C, if ¢’ D C and

the mailbox’s owner. Such a message contributes c_)n_ly tointcohesion(C’)(l + ¢) > inteohesion(C), wheree is the

the self Ioop_we|ght of the corresponding sender/recipient maximality margin. The recall of A relative to B on the
In the examined Enron data set, about 80% of the outgo-gpecific mailbox was then calculated as the fraction of the
ing messages and 50% of the incoming messages, regardsommunities in , for which we found a comparable com-
less of the mailbox size, were singletons. This huge densitymunity inC4.

of singleton messages necessarily affected also the sesult  after calculating the recall for each mailbox, we ordered
of C-Rank. Indeed, when taking into account self 100ps, the networks by their size, split into 10 deciles, and pibtte
70% to 90% of the outbox communities and 20% to 65% 0f he median recall at each decile. The results prove that the
the inbox communities detected by C-Rank were singleton reca)| of C-Rank relative to EB-Rank is significantly higher
communities. We conclude that the high density of single- thap, the recall of EB-Rank relative to C-Rank. The differ-
ton communities should be attributed to the nature of the gnce even becomes higher for larger networks. This exper-
data set, rather than to biases of C-Rank. Since singleton$ment underscores the advantage of overlapping clustering

are easy to handle separately, in the rest of our experimentsyyer partitional clustering, at least in this applicatioor d
we eliminated the self loops from the network, and thus fo- ,5ip.

cused only on the analysis of non-singleton communities.
Figure 9 depicts the distribution of community sizes out-
put by C-Rank. For each mailbox, we ordered all the out-
put communities by their size, split them into 10 deciles, g
and calculated the median community size in each decile. 0 f
We then plotted for each decile the median of these me-
dian values, over all mailboxes. The results demonstrate
that C-Rank is not biased towards small communities, as
one may suspect initially. The median community size at 0+
the top decile, for example, was about 20 contacts!

Comparison with EB-Rank. We now describe a set of

experiments that compare the results of C-Rank with the re-
sults of EB-Rank (the edge betweenness based algorithm)
on the Enron data set. Figure 10 compares the relative re-

‘w Outbox C-Rank m Outbox EB-Rank O Inbox C-Rank m Inbox EB-Rank ‘
1.2

0.6 F

Median recall

0.4}
02 Ji

1 2 3 4 5 6 7 8 9

Deciles of networks ordered by size

Figure 10. Relative recall of C-Rank and EB-Rank.

The previous experiment showed that C-Rank is much

call of C-Rank and EB-Rank. For each mailbox, we cal-
culated the recall of algorithm A relative to algorithm B as
follows. We compared the two list§ 4 and L5 of com-

munities output by A and by B, respectively, when running

more successful than EB-Rank in detecting many maximal
communities. However, is it possible that these extra com-
munities are all weak, and if we focus only on the strong
communities then the two algorithms are comparable? In



order to explore this possibility, we compared the strength ‘n Outbox C-Rank m Outbox EB-Rank 0 Inbox C-Rank m Inbox EB-Rank
scores of the communities output by the two algorithms. 12
For each mailbox and for eaéh= 5, 10, 15, ..., m, where 11E
m is the minimum number of communities output by the 0.8 1}
two algorithms on this mailbox, we calculated the median
integrated cohesion of the tdp communities on each of
the two output lists. For eadhand for each algorithm, we 0.2l
then plotted the median score over all networks for which ok
m > k. These results indicate that C-Rank not only finds
more maximal communities overall, but also finoistter
communities. This phenomenon is consistent across inbox Figure 12. Precision of C-Rank and EB-Rank.
and outbox and across different values:of

0.6

Median precision

04

Deciles of networks ordered by size

[ 1o  Rank B Ouibox EB- Rark § ibox G Rank @ o E3-Fark | we used 36 outboxes and 41 inboxes in this experiment.
For each such mailbox, we constructed 3 networks: one
that was constructed using all the messages in the mail-
box, one that was constructed using 80% randomly chosen
messages from the mailbox, and one that was constructed
using 20% randomly chosen messages from the mailbox.
(The latter two networks were constructed 5 times each,
and the results presented here are the medians over these
5 trials.) For each of the two latter networks, and for each
K p = 10%,20%,...,100%, we calculated the recall of the
top £ = p - m communities output by C-Rank on this net-
work (wherem is the total number of communities output
. . on this network) relative to the tdpcommunities output by

In Figure 12 We compare the precisions of C-Rank and C-Rank when running on the first, complete, network. For
EBTRank. Precision was calculated as foIIows.. .For each eachp, we then calculated the median recall over all net-
mailbox, we compared the number of communities even-, 1< This value, which we call “recall@p”, captures how

tually output by the algorithm (after elimination of non- a1 c_Rank was able to detect the strong communities of
maximal communities) to the number of communities iden- the mailbox, when running over only a portion of the data
tified at the candidate identification phase. This ratio was ; the mailbox.

assumed to represent the precision of the algorithm on this 1 resyits indicate that C-Rank is rather resilient to ran-
mailbox. We then ordered the networks by size, and split 4,1, removal of data. On the networks built over 80% of the
them into 10 deciles. We plotted the median precision of 4,44 c_Rank was able to maintain a recall of about 90%
the algorithm in each d(_ac_lle. The results sh_own inthe gr?phacross all values gf. When running on a mere 20% of the

demonstrate that precision goes down with network size. 4412 c.Rank was still able to maintain reasonable recall of

The explanation is quite simple: large networks tend to be 4o ot the top decile and 20% at the bottom decile.
richer in complex community patterns, and “onions” (see

Section 4.3) in particular. Such patterns give rise to adarg [80% Outbox 0 80% Inbox m 20% Outbox | 20% Ibox |
number of non-maximal communities, some of which are

selected in the first phase of the algorithm. Most of these
communities are filtered at the elimination phase of the al-
gorithm. Surprisingly, although C-Rank has higher recall

than EB-Rank, its precision is comparable and even better
than that of EB-Rank.

Robustness experiments.One indication of a good clus-
tering algorithm is that it is robust to small changes in the
data. In order to test the robustness of C-Rank, we com-
pared the communities it output when running over on the Figure 13. Recall of C-Rank on sampled data.

entire Enron data set to the communities it output when

running over a sample of the data. For this experiment, To sum up, we believe that the above experiments pro-
we focused only on sufficiently large mailboxes: ones in vide convincing evidence that C-Rank is able to achieve
which the number of messages was at least 500. Overallhigh recall values (i.e., covering many of the maximal clus-

Median score of top K
communities

Figure 11. Distribution of community scores.

Recall@P




ters in the network), while maintaining a relatively higlepr ~ [13] G. W. Flake, S. Lawrence, C. L. Giles, and F. Coetzeef- Sel
cision. C-Rank is completely superior to EB-Rank, which is organization and identification of web communitielEEE
based on the very popular edge betweenness clustering al- Computey 35(3):66-71, 2002.

gorithm. C-Rank is also robust to random removal of data, [14] L. C. Freeman.The Development of Social Network Anal-
attesting to its quality. ysis: A study in the Sociology of SciencEmpirical Press,

2004.
7. Conclusions [15] M. Girvan and M. E. J. Newman. Community structure in
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