
1

Cluster Refinement for Block Placement

Jin Xu, Pei-Ning Guo, and Chung-Kuan Cheng

Department of Computer Science and Engineering
University of California, San Diego

La Jolla, CA 92093

Abstract
We propose an iterative optimization approach for mixed

macro-cell and standard-cell placement, which minimizes the chip
size and interconnection wire length at the same time. We present a
branch-and-bound algorithm which efficiently searches for the opti-
mal solution by evaluating all of the possible configurations on the
selected cluster to minimize the gap distance between the ceiling
and the floor. A virtual grid and permutation order are generated
dynamically to eliminate redundant branches, which was the cause
of much higher complexity in other approaches. Experimental
results on the MCNC benchmark circuits show that the algorithm
achieves very competitive results to manual design.

1 Introduction
Placement of blocks on a 2D surface is the first and the most

critical process in VLSI layout design. The major objectives are
chip area minimization and interconnection wire length minimiza-
tion. Since the number of possible placements increases explosively
with the number of blocks, even subsets of the problem have been
shown to be NP-complete or NP-hard.

H. Murata et al.[4] introduces a P-admissible solution space
of size (n!)28n, wheren is the total number of blocks, and applies a
simulated annealing method to search for a good solution. Clearly,
the space is so large that there is no guarantee of finding an optimal
solution in a reasonable amount of computation time.

Onodera et al.[5] presents a building block placement
approach which employs a branch-and-bound strategy to search for
an optimal solution within the whole solution space. However, the
maximum number of blocks which can be placed in a reasonable
amount of CPU time is around six, and larger problems must be
decomposed, and placements are constructed hierarchically in a
bottom-up manner.

Shin et al.[6] uses zone refinement technique in IC layout
compaction. They first select a cluster of blocks from the ceiling,
store the x- positions of the blocks as the best known solution, lower
the blocks onto the floor to the leftmost positions, then find the
block, one block each time, which is responsible for the minimum
gap distance, search for a new candidate place for it. Lee[3] extends
the zone refinement technique to arbitrarily shaped rectilinear and
soft block floorplanning.

Note that the above approaches can be applied to general
structures. For slicing structure, Yamanouchi et al.[8] proposes a
partial clustering and module restructuring algorithm.

In this paper, we present a new iterative placement optimiza-
tion approach. The major contribution of the work is a 2D branch-
and-bound cluster refinement algorithm that searches for an optimal

This research was funded in part by grants from the NSF
project number MIP-9529077 and California MICRO Program.
Permission to make digital/hard copy of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and its
date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers or to redistribute to lists, requires prior spe-
cific permission and /or a fee.
DAC 97, Anaheim, California
(c) 1997 ACM 0-89791-920-3/97/06 ..$3.50

solution within the gap between the ceiling and the floor. It identi-
fies the redundancy in the searching space trying out the same set of
corners. A permutation tree is used to order the branch and bound
sequence, and thus eliminate the redundancy dynamically.

To demonstrate the efficiency of the algorithm, we apply our
algorithm to the MCNC benchmark circuits. Experimental results
show that the algorithm achieves excellent area utilization while
minimizing interconnection wire length at the same time.

2 Problem Description
Inputs of the placement problem are
• a set of blocks with fixed geometries and fixed pin positions
• a set of nets specifying the interconnections between pins of

blocks
• a set of pads (external pins) with fixed positions
• a set of user constraints, e.g., block positions/orientations,

critical nets, if any
Given the inputs, the objective of the problem is to:
find the positions and orientations of each block, so that the chip
area and interconnection wire length between blocks are minimized
while satisfying all the given constraints.

We take wire length into account simultaneously in the opti-
mization process. Since it is impossible to calculate the exact wire
length at this stage where detailed routing has not yet been carried
out, we estimate the length of each net as one-half of the perimeter
of the bounding box of the net.

The objective function, which measures the quality of the
resulting placement, can be expressed as follows,

whereC1, C2 are the corresponding weights.

3 Some properties of rectilinear blocks for
placement

We introduce here some properties of rectilinear convex
blocks for placement. By convex, we mean that within the block any
two points with the same x- coordinates (or y- coordinates) can be
connected via a horizontal or a vertical line, which is also contained
by the block. Therefore, for example, the block in Fig. 1(a) is con-
vex, while the one in Fig. 1(b) is not.

A rectilinear convex block has four sets of edges viewed from
the four corners of the block. The number of edges in the four sets
gives the shape information of the block. Letnne, nse, nsw, nnw be the
number of edges in the four corners: northeast (horizontal edges),
southeast (vertical edges), southwest (horizontal edges), northwest
(vertical edges) respectively. A rectilinear convex block can be
expressed as a 4-tuple (nne, nse, nsw, nnw). Fig. 2(a) shows an exam-
ple wherenne=3, nse=1, nsw=2, nnw=1.

When a block is rectangular, as a special case, the 4-tuple is
simply (1, 1, 1, 1).

E C1 ChipArea× C2 WireLength×+=

(b)(a)
Fig. 1: Rectilinear convex. (a) convex; (b) concave.

2

When a block is rotated 90 degree clockwise, the 4-tuple is
also ‘rotated’ clockwise, becoming (nnw, nne, nse, nsw); when it is
reflected up/down along its x- axis or left/right along its y- axis, the
4-tuple is also ‘reflected’, becoming (nse, nne, nnw, nsw) or (nnw, nsw,
nse, nne), as illustrated in Fig. 2(b), (c) and (d) respectively.

When two rectangular blocksA, B are placed adjacent to each
other, there are four possible topological relationships between
them([5]), i.e.,B is above, right to, below, left toA. In the case of
rectilinear convex blocks, the situation is much more complicated.

In general, when we are placing two stairlines adjacent to
each other, one withm stairs, the other withn stairs, the total num-
ber of topological relationships between them is in the worst
case, as shown in Fig. 3, where the number is .

The following observation gives the general relationships
between two rectilinear convex blocks in the worst case.

Observation: The total number of possible topological rela-
tionships between two rectilinear convex blocksA, B without rota-
tion and reflection is

When both blocks are rectangular, as a special case, the total
number is simply .

If one block is rotated or reflected, then the corresponding
number of possible additional relationships is simply the ‘rotated’
or ‘reflected’ 4-tuple of that block multiplied by the 4-tuple of the
other block respectively.

4 Overall Algorithm
Zone refinement is a technique used in the purification pro-

cess of crystal ingots. It provides a general framework for reducing
the total number of blocks to the degree which can be handled at one
time.

Fig. 4(a) shows the situation when cluster refinement is in
progress. A placement consists of two regions of blocks, separated
by a zone called a ‘gap’. The lower bound of the top region forms
the ‘ceiling’ profile, while the upper bound of the bottom region
forms the ‘floor’ profile, as illustrated by the bold lines. The ‘gap’
profile is obtained by ‘deducting’ the ceiling from the floor profile.

1

2

3
1

1

1
1

2

1

1

2
1

1
2

2
3

1
1

1

2

3
1

1

2
1

1
3

2

(1, 3, 1, 2) (1, 2, 1, 3)(1, 3, 1, 2)(3, 1, 2, 1)
(a) (b) (c) (d)

Fig. 2: Express rectilinear convex block as a 4-tuple. (a) original; (b)
rotated 90 degree clockwise; (c) reflected up/down; (d) reflected left/right.

m n×
3 4× 12=

1
2

4
3

1

2
3

Fig. 3: Topological relationships between two stairlines

Ane Bsw× Ase Bnw× Asw Bne× Anw Bse×+ + +

1 1× 1 1× 1 1× 1 1×+ + + 4=

Fig. 4: Cluster refinement. (a) Cluster selected; (b) Constraint graphs

12
34

ceiling
floorgap

1

4 3

2

horizontal

vertical

(a) (b)

First a cluster of blocks is selected and ‘peeled off’ from the
ceiling. Then the branch-and-bound algorithm is applied to the clus-
ter, and the cluster is placed onto the floor based on the results
obtained. The algorithm loops until the ceiling is empty.

The figure above shows the outline of the algorithm. The
algorithm improves an initial placement along one direction, alter-
nates the optimizing direction and begins the next iteration. It may
iterate many times until no improvement is achieved, a given num-
ber of iterations is reached or a computation time limit is passed.

4.1 Cluster Selection
The selection is based on compaction constraint graphs([6]).

We first give the definition of neighbors, then present the algorithm.
Definition: Two blocks areneighbors if they are adjacent to

each other in either horizontal or vertical constraint graph.
For example, in Fig. 4(a), the neighbors of block1 are block

2(left), block3(above) and block4(above), based on the constraint
graphs shown in Fig. 4(b).

The algorithm selects a cluster adaptively and sequentially,
according to the current partial placement. It identifies the block
which dominates the minimum gap distance to be the ‘critical’
block, then build up a cluster of sizek with this block and itsk-1
neighbors.

In Fig. 4(a), ifk=4, block 1 is identified first and a cluster is
built up with it and its three neighbors, blocks2, 3 and4.

4.2 Branch-and-Bound Placement
In order to find an optimal solution, we evaluate all of the pos-

sible combinations within the whole solution space on the selected
cluster. Because the number of possible combinations increases
greatly with the number of blocks examined, we employ a branch-
and-bound technique to explore the solution space effectively.

4.3 Branching Operations
We enumerate the state space as a tree whose nodes corre-

spond to partial placements for some blocks in the cluster. The suc-
cessors of a node correspond to the implementation of the blocks to
be considered next. A path from the root to a leaf represents a com-
plete placement for the cluster.
4.3.1 order

Supposek blocks are selected in the cluster and are numbered
1, 2,..., k. To find the best order of blocks to be placed, we try all
combinations of the blocks, i.e.,k! permutations.
4.3.2 rotation

Each block may be specified in any one of eight orientations,
i.e., two rotations and four reflections. We specify one rotation out
of two for each block when placing each block, because rotation is
closely related to the final chip area. Since reflection is only directly
related to interconnection wire length, we try the four reflections for
each block only when making estimates to reduce the total wire
length.
4.3.3 virtual grids

When we search for the optimal position for a block in the
cluster, we have to try all of the virtual grids created by the blocks

ClusterRefinementPlacement {
Select a compaction direction;
for(n=0; n<IterationNumber; n++) {

Construct ceiling;
Initialize floor and gap;
while(ceiling not empty) {

Select cluster;
Update ceiling;
Branch-and-Bound placement;
Update floor;}

Alternate compaction direction;}}

Fig. 5: Outline of the algorithm

3

which have been placed onto the floor, and which are in the ceiling,
as illustrated in Fig. 6.

4.4 Bounding Operations
The efficiency of the branch-and-bound method depends a lot

on the bounding technique. By pruning unpromising branches in the
decision tree, we can explore the solution space much more effi-
ciently to find the optimal solution.
4.4.1 recursive permutation tree

We can form thek! permutations as a recursive permutation
tree. Therefore, when trying different permutations of the ith
blocks, we only have to place the (i-1)th block once.
4.4.2 corners only

A permutation ofk blocks can be expressed as
p(1), p(2),..., p(i),..., p(k)

wherep(i) is the number of the ith block in the permutation. When
we are placing two neighboring blocksp1, p2 in a permutation, we
have to evaluate all of the virtual grids for the blockp1 first, then for
thep2. When they swap their order to bep2, p1 in another permuta-
tion, after the blockp2 has been placed in the floor, it creates some
new grids. Then to place the blockp1, the only virtual grids we have
to evaluate are those new grids, because they are the only grids that
could not be evaluated by other permutations. Therefore, the fol-
lowing important theorem holds.

 Theorem. When searching for the optimal position for the
ith block in a permutation, we only have to evaluate the corners cre-
ated by the (i-1)th block if

p(i) < p(i-1)

In general, we have to search for all of the virtual grids to
place a block. The theorem above suggests that we only need to
evaluate those virtual grids in the range from the leftmost to the
rightmost position of the previous block(Fig. 7). This greatly
reduces the search space and let the algorithm prune unpromising
branches and reach the optimal solution much more efficiently.
4.4.3 lower bounds

We first place each block in the cluster to its original x- posi-
tion, and calculate the cost functions and record their values along
with the x- positions as the current best known solution. Those val-
ues along with the constraints given, provide lower bounds for the
placements obtained in the search process later. The cost functions
used could be some or all of the following: gap distance, chip width,
chip length, aspect ratio, dead space created, interconnection wire
length, etc..

Each node in the decision tree corresponds to a partial prob-
lem in which only rotations or positions of some blocks in the clus-
ter are determined, and only permutation among those blocks is
established, while those of the others have not been yet. Associated
with the nodes, are the partial cost values of the corresponding
placement. If any one of them exceeds the corresponding lower

Fig. 6: Virtual grids

ceiling

floor

p(i-1)

Fig. 7: Corners only

p(i)

p(i)
p(i)

ceiling

floor

bound, we can say that the branch is not promising, the search pro-
cess along the branch will be terminated.

When the search process along a branch reaches a leaf node,
a complete placement for the cluster is obtained. If the cost values
of the placement are better than the current best known solution, we
update the values and save the current x- positions as the best
known solution.

4.5 Rectilinear block placement
In the case of rectilinear blocks, we also have to try all the dif-

ferent orders of blocks, and also the rotations and all the virtual
grids for each block. And since reflection can result in different
placements now, we also have to try different reflections for each
block.

In general, the floor profile might not be overall ‘convex’. We
can divide the floor profile to several segments, so that each seg-
ment is ‘convex’(Fig. 8). Then we can apply the rules of relation-
ships between rectilinear convex blocks to place rectilinear blocks.

5 Complexity Analysis
We will roughly investigate the complexity of our algorithm

which is adopted from the well-known analysis of zone-refinement
algorithm. First we consider the complexity of constraint graphs
and pure Z-R algorithm, and then analyze our extension parts for
clustering and branch-and-bound algorithm.

5.1 Complexity of the constraint graphs and Z-R algo-
rithm

Traditional Z-R algorithm deals withn blocks and utilizes two
necessary data structures: constraint graphs and ceiling-floor-gap
relations. These structures are maintained throughout the program
and their updations are the key operations of entire algorithm.

Shin et al.[6] gave a detail proof that the initial construction
of structures takesO(n2) and the updation needsO(n) for each block
moving. For a complete pass of Z-R, it needsO(n) updation and
results in an overall complexityO(n2).

5.2 Complexity of cluster refinement algorithm
In Section 4. 3, we assumek blocks per cluster andm virtual

grids for every cluster moving. The bounding operations give a
great amount of pruning from the original solution spaceO(k!mk).
The following is the complexity analysis of the cluster refinement
algorithm.

 Lemma 1:Given a permutation (p1, p2, …, pk), the branches at

level i is

The number of branches in each node is eitherm for new pat-
tern of permutation, or 2 when it is corner-only because of some old
permutation covering most locations of virtual grids already.

 Lemma 2:Given a permutation (p1, p2, …, pk), the total number

of branches isB(p1, p2, …, pk) = .

 Lemma 3:Given a cluster (1, 2, …, k), the total number of
branches in its decision tree is

.

Fig. 8: Dividing floor profile to ‘convex’ segments

rotationreflection virtual grid

bi

m if i, 1 pi 1– pi<∨=

2 otherwise,



=

bi
i 1=

k

∏

B p1 p2 … pk, , ,()
p1 p2 … pk, , ,() permutation∈

∑

4

For most cases, the useful sizek of cluster is equal to or less
than 5 andm is about . Table 1 gives the complexity fork
less or equal to 5.

Thus, the overall complexity for cluster refinement algorithm
will be O(2kmkn2). And for smallk, it becomesO(n2+k/2).

5.3 Comparison to other approaches
Cluster refinement takes the advantages of the Z-R algorithm

and utilizes exhaustive search in local area that improves Z-R algo-
rithm’s weak point. Extra branch-and-bound searching of best
placement for clusters increases the complexity by the factor of
O(2kmk) to the original Z-R algorithm’sO(n2).

Other approaches like Onodera’s topological relationship[5]
takingO(8nn!) to find the optimal solution which can only handle
six blocks at most mentioned by the author. Another approach,
Murata’s sequence-pair[4] has solution space in the size of
O(8n(n!)2) and using the simulated annealing method to search only
a small fraction of the whole space. Fig. 9 shows the comparison
with other approaches.

6 Experiments
To examine the efficiency of the proposed algorithm, we

apply our algorithm to the MCNC benchmark circuits. The algo-
rithm is implemented in C and executed on a Sun Sparc20 worksta-
tion.

Table 2 shows the final results when four blocks are selected
in a cluster. Fig. 10 shows the final placements for the two biggest
benchmark circuitsami33 andami49.

Table 1: Cluster size and complexity
k number of branches
1 m
2 m2 + 2•m
3 m3 + 4•2•m2 + 22•m
4 m4 + 11•2•m3 + 11•22•m2 + 23•m
5 m5 + 26•2•m4 + 66•22•m3 + 26•23•m2 + 24•m

Table 2: Experimental Results on MCNC Benchmark Circuits
circuit apte xerox hp ami33 ami49

area(mm2) 48.42 20.30 9.575 1.207 37.69
dead space(%) 3.83 4.69 7.77 4.15 5.95

wire length(mm) 321 477 185 64 764
CPU (sec) 223.8 18.8 18.0 603.4 1861.7

Table 3: CPU time required when using different cluster sizes
cluster size 1 2 3 4 5

ami33 11.8 25.4 109.9 893.7 7931.9
ami49 31.7 60.5 219.1 2141.2 41298.2

Table 4: Placements onami49 using different cluster sizes
cluster size 1 2 3 4 5
area (mm2) 39.51 38.99 38.38 37.69 37.26

dead space (%) 10.29 9.08 7.64 5.95 4.87

O n()

Fig. 9: Comparisons

Zone Refinement
Cluster Refinement (k=2)
Cluster Refinement (k=4)

Onodera[4]

Sequence Pair[3]

The algorithm can employ different cluster sizes. Obviously,
the more blocks are selected in the cluster, the more CPU time the
algorithm will take, but it is also expected that, the better results the
algorithm will achieve, because the branch-and-bound algorithm
will search for the larger solution space. Table 3 shows the CPU
time, when different cluster sizes are used, to iterate the algorithm
100 times on the two biggest benchmark circuits. Table 4 shows the
results by using different cluster sizes on benchmark circuitami49.

It is difficult to fairly compare our algorithm with the other
approaches reported, because they include routing space in their
placements, which is not necessary any more because of recent
technology progress. However, it is estimated that the chip area and
wire length would increase around 10% and 5% respectively, if
introducing routing space by the technology factor T they used([4],
[5]). So our approach still outperforms others a lot.

References
[1] C.K. Cheng, E.S. Kuh, “Module Placement based on Resistive Network

Optimization”,IEEE Trans. Computer-Aided Design, vol. CAD-3, pp.
218-225, July 1984.

[2] W. M. Dai, E. S. Kuh, “Simultaneous Floor Planning and Global Rout-
ing for Hierarchical Building-Block Layout”,IEEE Trans. Computer-
Aided Design, vol. CAD-6, pp. 828-837, Sept. 1987.

[3] T. C. Lee, “A Bounded 2D Contour Searching Algorithm for Floorplan
Design with Arbitrarily Shaped Rectilinear and Soft Modules”,Proc.
30th Design Automation Conf., pp.525-530, 1993.

[4] H. Murata, K. Fujiyoshi, S. Nakatake, Y. Kajitani, “Rectangular-Pack-
ing-Based Module Placement”,Proc. IEEE International Conf. on
Computer-Aided Design, pp. 472-479, 1995.

[5] H. Onodera, Y. Taniguchi, K. Tamaru, “Branch-and-Bound Placement
for Building Block Layout”,Proc. 28th Design Automation Conf., pp.
433-439, 1991.

[6] H. Shin, A. L. Sangiovanni-Vincentelli, C. H. Sequin, “‘Zone-Refining’
Techniques for IC Layout Compaction”,IEEE Trans. Computer-Aided
Design, vol. 9, pp. 167-178, Feb. 1990.

[7] D. F. Wong, C. L. Liu, “A New Algorithm for Floorplan Design”,Proc.
23rd Design Automation Conf., pp. 101-107, 1986.

[8] T. Yamanouchi, K. Tamakashi, T. Kambe, “Hybrid Floorplanning Based
on Partial Clustering and Module Restructuring”,Proc. IEEE Interna-
tional Conf. on Computer-Aided Design, pp. 478-483, 1996.

Fig. 10: Final placements. (a)ami33; (b)ami49

(a)

(b)

