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ABSTRACT

Context. Clusters are potentially powerful tools for cosmology provided their observed properties, such as the Sunyaev-Zel’dovich
(SZ) or X-ray signals, can be translated into physical quantities like mass and temperature. Scaling relations are the appropriate means
to perform this translation. It is, therefore, important to understand their evolution and their modifications with respect to the physics
and to the underlying cosmology.
Aims. In this spirit, we investigate the effect of dark energy on the X-ray and SZ scaling relations. The study is based on the first hydro-
simulations of cluster formation for diferent models of dark energy. We present results for four dark-energy models which differ from
each other by their equations-of-state parameter, w. Namely, we use a cosmological constant model w = −1 (as a reference), a perfect
fluid with constant equation of state parameter w = −0.8 and one with w = −1.2 and a scalar field model (or quintessence) with
varying w.
Methods. We generate N-body/hydrodynamic simulations that include radiative cooling with the public version of the Hydra code,
modified to consider an arbitrary dark-energy component. We produce cluster catalogues for the four models and derive the associated
X-ray and SZ scaling relations.
Results. We find that dark energy has little effect on scaling laws, making it safe to use the standard ΛCDM scalings for conversion
of observed quantities into cluster temperatures and masses.
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1. Introduction

To explain the current acceleration of the universe (Riess et al.
1998; Perlmutter et al. 1999) in the context of the theory of
General Relativity, it is general procedure to introduce a new
form of gravitational component with negative pressure – dark
energy. Various candidates, such as a cosmological constant or a
quintessence field, have been proposed. These models are char-
acterised by their equation-of-state parameter and constrained
by either using the observation of background quantities or the
growth of cosmic structures. An alternative way of explaining
the acceleration of the universe is to allow for modifications of
gravity. Many classes of models exist; for instance, a light scalar
field coupled to matter leads to models of extended quintessence
and more generally to scalar-tensor type theories. Other possibil-
ities were studied in the context of braneworld models. Testing
the Poisson equation on large scales may be a way of distin-
guishing between all these alternative scenarios.

Regardless of its nature, dark energy as a dominant compo-
nent plays a role in structure formation and thus modifies the
number of formed structures. The evolution of linear perturba-
tions in the presence of a scalar field, such as quintessence and
the effects on the abundance of collapsed structures and its de-
pendence on redshift, were widely explored and suggested as

a tool for constraining the nature of dark energy and its evo-
lution (Haiman et al. 2001; Weller et al. 2001; Weinberg &
Kamionkowski 2003; Battye & Weller 2003; Wang et al. 2004;
Mohr 2004). The properties of collapsed haloes (density contrast
and virial radius) depend strongly on the shape of the potential,
the initial conditions, the time evolution of the dark energy equa-
tion of state, and on its ability to collapse on the structure scale
(Nunes & Mota 2006). One can investigate the effects of dark
energy on the growth rate of structure and consequently study
how dark energy affects the abundance of collapsed halos in dark
energy models (Nunes et al. 2006; Manera & Mota 2006).

Cluster number counts can potentially distinguish between
dark energy models, in particular, the evolution of their equation
of state. However, a large number of clusters with known red-
shifts from SZ, X-ray, or optical surveys are needed (Bartelmann
et al. 2005). Future Sunyaev-Zel’dovich (SZ), as well as X-rays
observations, will provide us with high quality data making
galaxy clusters an efficient and powerful cosmological tool.
Cluster-physics, however, is complex. The presence of substruc-
tures, the possible contamination by radio and IR sources, the
still imperfect knowledge of the relation between the halo mass,
and the clusters’ observed properties induce degeneracies be-
tween cluster physics and cosmological models. Scaling re-
lations are key quantities in observational cosmology as they
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relate the observables in X-rays and SZ to the cluster proper-
ties, namely, masses and temperatures. The latter are then used
in cluster number counts to constrain the cosmological models.

Due to their importance in translating observations to phys-
ical quantities, but most of all in probing the cluster forma-
tion, scaling relations have raised considerable attention. Simple
models of formation of virialised, systems such as clusters pre-
dict that they exhibit self-similar behaviours (Kaiser 1986),
see also Ascasibar et al. (2006). In the self-similar model,
gravitational infall drives shock heating of the intra-cluster
medium (ICM) and establishes the gas properties, such that they
scale with the halo mass giving rise to the scaling relations.
However, it is now clear that more physics is required to pro-
vide a more complete picture of the cluster formation and evo-
lution and to explain the deviations between observations and
the predictions based on self-similar scaling as shown mostly
by X-ray observations (Edge & Stewart 1991; Allen & Fabian
1998; Markevitch 1998; Nevalainen et al. 2000; Finoguenov
et al. 2001; Ettori et al. 2004; Henry 2004; Arnaud et al. 2005;
Rasia et al. 2005; Balogh et al. 2006; Maughan et al. 2006;
Morandi et al. 2007). As the complexity of the physical descrip-
tion increases due to the additional gas physics (galactic winds
and/or quasar outflows, radiative cooling, preheating), the use
of numerical simulations appears the best option for compar-
ing predictions and observations and examining the role of those
new ingredients in explaining the departures form self similar-
ity (Evrard et al. 1996; Bryan & Norman 1998; Bialek et al.
2001; Thomas et al. 2001; Babul et al. 2002; Voit et al. 2002;
Borgani et al. 2004; Rowley et al. 2004; Muanwong et al. 2006;
Kay et al. 2007). The ICM can also be probed by the Sunyaev-
Zel’dovich (SZ) effect, inverse Compton scattering of cosmic
microwave background (CMB) photons off high-energy elec-
trons. The magnitude of the SZ effect is determined by the inte-
grated gas pressure along the line-of-sight, called the Compton
parameter, y. Unlike the X-ray surface brightness, the SZ effect
is not subject to cosmological dimming and can be used out to
high redshift, which makes SZ-scaling relations particularly in-
teresting and attractive tests. Nevertheless, although gaining in
quality and quantity, SZ measurements are at the moment still
not sufficient to be fully used and this explains why investiga-
tions of SZ scaling relations are still limited from the observa-
tional point of view (Cooray 1999; Benson et al. 2004; McCarthy
et al. 2003; Morandi et al. 2007), as well as from the numerical
point of view (da Silva et al. 2004; Molt et al. 2005; Bonaldi
et al. 2007).

Scaling laws relate the observed properties in X-rays and SZ
to the cluster properties, namely, masses and temperatures that
are then used to construct mass functions and number counts
utilised to constrain the cosmological models. Understanding the
possible biases in the scaling relations is thus essential for the
use of clusters as cosmological probes. Previous studies based on
numerical simulations have focused on the effects of additional
gas physics in the scaling laws. In the present study, we explore
the effects of the cosmological model on the scaling properties
of galaxy clusters and their evolutions. We perform hydrody-
namic numerical simulation of cluster formation and evolution
assuming a simple radiative cooling model, rather than a more
complete gas model, which allows us to single out only dark-
energy properties. We then investigate whether the X-ray and
SZ scaling laws derived for different dark-energy models depart
from those obtained in the standard cosmological constant model
(the ΛCDM model) taken as our reference. In the next section
we briefly present the dark-energy models used for the first nu-
merical simulation of cluster formation with hydrodynamics in

dark-energy dominated universes. We describe the simulation
code and the procedure used to construct the X-ray and SZ clus-
ter catalogues. In Sect. 3, we present the X-ray and SZ scaling
laws studied in the article, together with the fitting procedure.
Our results and conclusions are summarised in Sects. 4 and 5,
respectively.

2. Dark-energy simulations

2.1. Simulation models

Numerical N-body simulations including a dark-energy compo-
nent were performed by several groups to complement the an-
alytical computations of structure formation in the presence of
dark energy, and to the study the effects of dark energy at the
structure level. All studies on galaxy clusters, were essentially
dedicated to studying dark-matter halo shapes and mass func-
tions in different models of dark energy (Linder & Jenkins 2003;
Lokas et al. 2003; Klypin et al. 2003; Dolag et al. 2004; Kuhlen
et al. 2004). The overall picture that has emerged from these
studies is that halo mass functions are well approximated by the
Jenkins mass function (Jenkins et al. 2001) and halo core den-
sities, or concentrations, are sensitive to the mean cosmological
density at halo formation and therefore depend on the underly-
ing dark-energy model. These findings have led to investigations
of the effect of dark energy on the lensing properties of simu-
lated cluster sized haloes and their possible use for constraining
dark energy (Meneghetti et al. 2005a,b). In the present study, we
perform the first hydrodynamics simulation of cluster formation
in dark-energy dominated universes and we focus, for the first
time, on the baryonic component of clusters and investigate the
possible effects of dark energy on their gas properties. In an ear-
lier study, Maio et al. (2006) produced numerical simulations of
dark energy with baryonic gas to study the implications on cos-
mic reionisation from first stars.

In all the aforementioned studies, the scalar field associated
with dark energy is assumed not to have density fluctuations on
scales of galaxy clusters or below. If dark energy influences the
perturbations on small scales as proposed by Arbey et al. (2001),
Bean & Magueijo (2002), Padmanabhan & Choudhury (2002),
or Bagla et al. (2002), the collapse of structures itself will be
affected. In our simulations, we also ignore any possibility of
dark energy clustering and influencing the cluster formation.

In addition to the cosmological constant model with a con-
stant equation-of-state parameter w = ρde/Pde = −1, we simu-
lated four other models previously studied in Nunes et al. (2006).
These phenomenological models span the range of values that
the equation-of-state parameter can take for typical quintessence
models. All models are compatible with current observational
constraints at z � 0, but they differ especially in the range of
redshift of interest for cluster formation (z < 5). This is clearly
illustrated in Fig. 1 of Nunes et al. (2006). Namely, we take two
models for which the dark energy is given by a perfect fluid with
constant equation-of-state parameter: w = −0.8 and w = −1.2
(phantom dark energy), and one model where dark energy re-
sults from a slowly evolving scalar field in a potential with two
exponential terms (2EXP1, Barreiro et al. 2000)

V(φ) = V0

(
eακφ + eβκφ

)
, (1)

where α = 6.2 and β = 0.1, which has an equation-of-state
parameter today, of w0 = −0.95. One other model (2EXP2)
with a varying equation of state was studied in Nunes et al.
(2006). However, because its energy contribution to the total
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Fig. 1. Cluster scaling relations LX,200−TX,200 (left panel) and Y200−M200 (right panel) at redshift zero. Displayed quantities are computed within
R200, the radius where the mean cluster density is 200 times higher than the critical density. The embedded plots show the best fits with a power
law to clusters represented in the main plots for the w = −1 (triangles), w = −0.8 (diamonds), 2EXP1 (squares), and w = −1.2 (circles) models.
The shaded regions in the embedded plots give the typical scatter of the fits, i.e. the rms dispersion around the best-fit lines.

energy of the universe quickly decays with redshift, it has no
significant departures from the Lambda model in the redshift
range of cluster formation (e.g. z < 5). We thus choose, from
this point onwards, not to consider this model it in this work.
We further assume for all models that the energy density of
dark energy, dark matter, and baryons today are, respectively,
Ωde = 0.7, Ωm = 0.3, ΩB = 0.0486, and the Hubble parameter
h = H0/100 km s−1 Mpc−1 = 0.7. σ8 = 0.9.

2.2. The simulation code

For each of the cosmological models considered, we performed
N-body/hydrodynamic simulations of structure formation using
a modified version of the public Hydra code (Couchman et al.
1995; Pearce & Couchman 1997), which implements an adaptive
particle-particle/particle-mesh (AP3M) algorithm to calculate
gravitational forces (Couchman 1991) and smoothed particle
hydrodynamics (SPH) (Monaghan 1992) to estimate hydrody-
namic quantities. The SPH implementation follows that used by
Thacker & Couchman (2000) and conserves both energy and en-
tropy. All simulations analysed below include a model for radia-
tive cooling using the method described in Thomas & Couchman
(1992) and based on the cooling tables of Sutherland & Dopita
(1993). The metallicity was assumed to be a global time varying
quantity, Z = 0.3(t/t0) Z�, where t/t0 is the age of the universe in
units of the current time and Z� is the solar metalicity. At a given
time step, gas particles with temperatures below 1.2× 104 K and
overdensities (relative to the critical) higher than 104 are con-
verted into collisionless material and no longer participate in the
gas’s dynamical processes.

We modified the computation of the physical time, t, and
scale factor, a, in Hydra to account for the effect of time-variable
equations of state of dark energy,

t =
∫ a

0

da′

a′ H(a′)
= H−1

0

∫ a

0

d ln a′

E(a′)
, (2)

where E(a) ≡ H(a)/H0, or

E(a)2 =
Ωm

a3
+ Ωde e−3

∫ 1

a
(1+w(a′)) da′

a′ +
1 −Ωm −Ωde

a2
, (3)

for flat cosmologies. To speed up computations, this quantity is
pre-tabulated for each of the dark-energy models and read once
at the beginning of the simulation run. Then E(a) is interpolated
and used in Eq. (2). With these modifications, our version of
the Hydra code can thus be used to simulate generic models of
homogeneous dark energy.

The initial density field of simulations was constructed, at
redshift z = 49, using N = 4 096 000 particles of baryonic and
dark matter, perturbed from a regular grid of fixed comoving
size L = 100 h−1 Mpc. We used the Zel’dovich approximation
and the same set of random numbers to generate the initial dis-
placements. The amplitude of the matter power spectrum was
calculated assumingσ8 = 0.9 in all models and the linear growth
factor computed for each model, as presented in Nunes & Mota
(2006). We refer the reader to Nunes et al. (2006) for a discus-
sion of the normalisation. We also assume that the matter power
spectrum transfer function is the same for all models and equals
that of the cosmological constant model, which is computed us-
ing the BBKS formula (Bardeen et al. 1986) and the shape pa-
rameter Γ given by the formula in Sugiyama (1995). With this
choice of parameters, the dark matter and baryon particle masses
are 2.1×1010 h−1 M� and 2.6×109 h−1 M� respectively. In phys-
ical units the gravitational softening was set fixed to 25 h−1 kpc
below z = 1 and above this redshift scaled as 50(1+z)−1 h−1 kpc.

Individual simulation runs took between 2592 to 2812 time
steps to evolve to z = 0. For each run we stored a total of 50 sim-
ulation snapshots (box outputs) for a list of selected redshifts
(the same for all runs) ranging from z = 20 to z = 0. Thirty of
these outputs are inside the interval 0 < z < 3, which is typically
the range where galaxy clusters form.

2.3. Catalogue construction

From simulations, we constructed cluster catalogues using a
modified version of the cluster extraction software developed
by Thomas and collaborators (Thomas et al. 1998; Pearce et al.
2000; Muanwong et al. 2001). To summarise, the cluster identifi-
cation process starts with the construction of a minimal-spanning
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tree of dark-matter particles whose density exceeds the mean
density of the box by Δb = 178 × Ω−0.55

m (z) (i.e., the density
contrast predicted by the spherical collapse model of a virialised
sphere relative to the mean background density in the Lambda
cosmology; Eke Navarro & Frenk 1998). Although Δb may dif-
fer for different dark-energy models, this is not important at this
step because cluster properties are computed at fixed overdensi-
ties as described below. The minimal-spanning tree is then split
into clumps of particles using a maximum linking length equal
to 0.5Δ−1/3

b times the mean inter-particle separation. Finally we
grow a sphere around the densest dark-matter particle in each
clump until the enclosed mass verifies

MΔ(< RΔ) =
4π
3

R3
Δ Δ ρcrit(z), (4)

where Δ is a fixed overdensity contrast, ρcrit(z) =
(3H2

0/8πG)E2(z) is the critical density and E(z) is given
by Eq. (3). We have constructed master catalogues for all
dark-energy simulation containing at least 500 particles of
gas and dark matter, i.e. with an equivalent minimum mass
of Mlim ≈ 1.18 × 1013 h−1 M�, at four fixed overdensities,
Δ = 200, 500, 1000, 2500. Here we will report our findings for
cluster scaling relations only at Δ = 200, the highest cluster
overdensity radius usually considered in the literature. For this
catalogue we find 377, 393, 396, 374 clusters at z = 0 in the
cosmological constant, w = −0.8, 2EXP1 and w = −1.2 sim-
ulation runs respectively. Although our choice of Δb may limit
any exact comparison of numbers, these abundances reproduce
the behaviour predicted in Nunes et al. (2006) in their analytical
study. We note that the cluster definition used in this article is
different from that used in da Silva et al. (2004) and Muanwong
et al. (2006). Despite the similar simulation parameters, direct
comparison with their findings is only possible for the Lambda
model at redshift zero, where cluster definitions are identical.

For each model, the cluster catalogue provides us with esti-
mated structural and observable quantities. We refer the reader
to da Silva et al. (2004) for the definitions of the these quan-
tities. More specifically for this study we compute: masses;
intrinsic SZ luminosity, Y = YSZ × D2

A where YSZ is the inte-
grated SZ signal and DA is the angular diameter distance; mass-
weighted gas temperature Tmw; and bolometric X-ray tempera-
ture, TX, and luminosity, LX, excluding a cooling radius of about
50 h−1 kpc around the cluster centre. We excised the central re-
gion to focus on the properties on the cluster scale and to re-
duce degeneracies between possible effects of dark energy and
the effects of cooling. For the SZ emission, the contribution is
dominated by the outer parts of clusters. Differences due to the
cooling are thus negligible for the SZ scalings.

3. Analysis of the scaling relations

In this paper we investigate the following scaling relations be-
tween cluster properties: TX − M, Y−M, Y−Tmw, LX−TX, and
Y−LX. These can be expressed as

TX = ATM (M/M0)αTM (1 + z)βTM E(z)2/3, (5)

Y = AYM (M/M0)αYM (1 + z)βYM E(z)2/3, (6)

Y = AYT (Tmw/Tmw,0)αYT (1 + z)βYT E(z)−1, (7)

LX = ALT (TX/TX,0)αLT (1 + z)βLT E(z), (8)

Y = AYL (LX/LX,0)αYL (1 + z)βYL E(z)−9/4, (9)

where we have chosen the normalisation scales M0 =
1014 h−1 M�, TX,0 = Tmw,0 = 1 keV, LX,0 = 1043 erg/s/h2. The
powers of the E(z) function give the predicted evolution, extrap-
olated from the self-similar model (Kaiser 1986), of the scalings
in each case. The quantities, A, α, and β, give the scalings nor-
malisation at z = 0, the power on the independent variable, and
the departures from the expected redshift evolution.

To investigate these cluster scaling relations in our simula-
tions, we use the method described in da Silva et al. (2004).
According to Eqs. (5)–(9), the general form of how a given clus-
ter property y relates to a property x can be written as

y f (z) = y0(z) (x/x0)α, (10)

where

y0(z) = A (1 + z)β, (11)

and f (z) is some fixed power of the cosmological factor E(z).
This is a power-law function whose parameters A, α and β can
be obtained by fitting our cluster catalogue distributions at each
redshift with a straight line in the (log(y f (z)), log x) plane. To
be more specific, the fitting procedure is carried out in three
steps. First, we fit the cluster distributions with a straight line
in logarithmic scale at all redshifts. If the logarithmic slope α
remains approximately constant (i.e. shows no systematic vari-
ations) within the redshift range of interest, we then take α at
z = 0 as the best-fit value. In the second step, we repeat the
fit using this value of α to determine the scaling normalisation
factors y0(z). This avoids unwanted correlations between α and
y0(z). Finally, in the last step we use Eq. (11) to obtain the pa-
rameters A and β.

In the fitting process we consider only clusters with Mlim >
5 × 1013 h−1 M� for scalings with mass, Llim > 6.6 ×
1042 h−2 erg s−1 for scalings with luminosity, and Tmw,lim >
1 keV, TX,lim > 1.1 keV for scalings with mass-weighted and
emission-weighted temperatures, respectively. This ensures that
our cluster samples are complete at all redshifts and that, for each
model, equal number of clusters are used for all scalings at red-
shift zero. With these selection criteria, our cluster samples con-
tain 60 clusters for the cosmological constant model and a simi-
lar number of clusters for the other models, at z = 0. We note that
above z = 1.5 the number of clusters with Mlim > 5×1013 h−1 M�
in our sample decreases typically below 10, hence; we do not fit
the scaling relations above this redshift value. As we discuss in
the next section, all the scaling relations explored in the present
study are well-fitted by power laws of the form Eq. (10), in the
redshift range 0 < z < 1.5, except for the LX−TX and Y−LX
whose normalisation dependences on redshift, log(y0(z)), are ap-
proximated well by a straight line only in a narrower redshift
range.

4. Results

4.1. Scaling relations at z = 0

We start by discussing the cluster scaling laws at redshift zero.
For all scalings and models under investigation in this work,
these were determined at an overdensity radius R200. In Table 1
we present the power-law best fit for the logarithmic slopes α
obtained for each of the cases. As can be inferred from the table,
all models provide very similar results for each scaling, with dif-
ferences between models comparable to or, in most cases, within
the statistical errors of the fit. This indicates that the local clus-
ter scaling relations are quite insensitive to the underlying dark-
energy model driving the present-day evolution of the universe.
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Table 1. Best fit values of the parameters α, log A and β as well as their respective 1σ errors.

Model w = −1 w = −0.8 2EXP1 w = −1.2
TX − M αTM 0.620 ± 0.029 0.604 ± 0.031 0.581 ± 0.033 0.602 ± 0.029

log ATM 0.260 ± 0.005 0.267 ± 0.004 0.271 ± 0.005 0.258 ± 0.005
βTM −0.228 ± 0.020 −0.249 ± 0.017 −0.264 ± 0.023 −0.230 ± 0.023

Y − M αYM 1.732 ± 0.025 1.730 ± 0.025 1.721 ± 0.022 1.752 ± 0.024
log AYM −5.910 ± 0.004 −5.906 ± 0.004 −5.902 ± 0.005 −5.910 ± 0.003
βYM 0.128 ± 0.016 0.116 ± 0.016 0.108 ± 0.020 0.135 ± 0.013

Y − Tmw αYT 2.922 ± 0.100 2.902 ± 0.136 2.838 ± 0.072 2.985 ± 0.175
log AYT −6.522 ± 0.008 −6.518 ± 0.005 −6.499 ± 0.007 −6.538 ± 0.008
βYT 0.454 ± 0.036 0.443 ± 0.022 0.430 ± 0.031 0.517 ± 0.036

LX − TX αLT 2.738 ± 0.086 2.691 ± 0.089 2.902 ± 0.099 2.796 ± 0.146
log ALT 2.602 ± 0.010 2.629 ± 0.007 2.558 ± 0.006 2.589 ± 0.011
βLT 0.279 ± 0.063 0.027 ± 0.042 0.270 ± 0.035 0.348 ± 0.070

Y − LX αYL 1.063 ± 0.028 1.064 ± 0.026 1.076 ± 0.026 1.084 ± 0.037
log AYL −6.314 ± 0.005 −6.330 ± 0.004 −6.344 ± 0.005 −6.305 ± 0.006
βYL 0.668 ± 0.033 0.890 ± 0.028 0.770 ± 0.034 0.497 ± 0.037

See text for the redshift ranges in which the linear fit is a good approximation.

Fig. 2. Slope (upper panel), normalisation log(y0(z)) (middle panel),
and normalisation best-fit lines (bottom panel) of the TX − M relation
as a function of redshift (log(y0(z)) is defined in Eq. (11)). Blue colour
and triangles stand for the cosmological constant model, cyan, and dia-
monds are for the w = −0.8 model, green and squares are for the 2EXP1
model, and yellow and circles are for the w = −1.2 model. The shaded
area in the bottom panel gives the dispersion of the normalisation fit for
the cosmological-constant model.

As stated in Sect. 2.3, our cluster definition is the same as in
da Silva et al. (2004) and Muanwong et al. (2006) at redshift

zero for the Lambda model. We verified that indeed theirs and
our results are in excellent agreement at this redshift.

To illustrate the robustness of the scalings with respect to
the dark-energy models investigated in this paper, we present
in Fig. 1 two characteristic X-ray and SZ galaxy cluster scaling
relations: the LX−TX (left panel) and the Y−M (right panel) scal-
ings. In each case, the main plot shows the cluster distributions
for all models, whereas the embedded panels show the power-
law best fits obtained. For both scaling relations, the cluster dis-
tributions and best-fit lines clearly overlap. Also represented by
a shaded area in the embedded panels is the rms dispersion of
the fit for Lambda model:

σlog y′ =

√
1
N

∑
i

(log(y′i/y′))2, (12)

where y′ = y f (see Eq. (10)) and y′i are individual data points.
This dispersion is the same size as the fit dispersions obtained
in the other models and it is clearly wider than the best-fit line
separations of the various dark energy models. As expected, the
scatter in the (core excised) LX − TX is greater than in the Y −M
relation due to the higher sensitivity of the former scaling to the
gas physics in the inner regions of clusters.

4.2. Evolution of the scaling relations

In Figs. 2–6, we present our findings for the variation with red-
shift of α (top panels) and y0(z) (middle panels) for the TX − M,
Y − M, Y − Tmw, LX − TX, and Y − LX relations, respectively.
The coloured bands give the the best fit errors obtained at each
redshift for these quantities. The lines in the bottom panels of
these figures are linear best fits to the evolution of log(y0(z)) with
log(1 + z). The shaded area in these panels gives the rms disper-
sion of the log(y0(z)) fit for the cosmological constant model
(similar values of dispersion are found for the other models).
The resulting best-fit parameters for, A, β, and α are presented in
Table 1, for all scaling investigated in this paper.

As can be inferred from the figures, the fit to a power law
in a redshift range 0 < z < 1.5 was possible for all the scaling
relations explored in the present study except the relations in-
volving LX (namely LX − TX and Y − LX). For the latter two, we
found no significant departures of the slopes α from the cosmo-
logical constant model, but we could not fit the evolution of the
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Fig. 3. Slope, normalisation, and normalisation best-fit lines of the Y −
M relation as a function of redshift. The shaded area in the bottom panel
stands for the dispersion of the normalisation for the Lambda model.

scaling relations by a power law within the whole redshift range
0 < z < 1.5 (see Figs. 5, 6). For these scalings we therefore re-
strict the analysis to a narrower range, namely 0 < z < 0.75, ie
(log(1 + z) < 0.25) where the linear fit is valid.

We compared the average value of the slope α of each scaling
relation, for all the cosmological models, over the redshift range
0 < z < 1.5 and found no significant departures from one model
to the other, confirming the behaviour observed at z = 0. This
is also clear from the upper panels of Figs. 2–6, where thereis a
high degree of overlap between the α’s obtained for the four cos-
mological models. For scalings with mass (Tx−M and Y−M) the
degree of overlap at high redshift is somewhat less striking due
to larger variations caused by the rapid decrease in the number
clusters with Mlim > 5× 1013. These “oscillations” show no sys-
tematic dependences on redshift and are about the same “mean
values” for all models.

To study the evolution of the scaling relations, we factored
out the redshift dependence expected from the self-similar evo-
lution which is parametrised by a power law with exponent β,
see Eq. (11). As a general remark, we find that, excluding the
Tx−M relation, all scalings investigated here show positive evo-
lutions relative to the expected self-similar evolution; i.e., for
a given x in Eq. (10) the property y f is higher at higher red-
shift. In the case of the Tx − M relation, the opposite behaviour
is observed. This is expected because the inclusion in all mod-
els of radiative cooling (which is a non-gravitational physical
process) causes cluster scaling laws to deviate from self-similar

Fig. 4. Slope, normalisation, and normalisation best-fit lines of the
Y−Tmw relation as a function of redshift. The shaded area in the bot-
tom panel stands for the dispersion of the normalisation for the Lambda
model.

evolution, (da Silva et al. 2004; Muanwong et al. 2006) for stud-
ies in cosmological constant model simulations.

It is clear from the table and the lower panels of the figures
that the value of β is slightly more model dependent than the pa-
rameters α and A. This is especially true for the LX − TX, and
Y − LX relations for which there is a mild difference between
models. For these scalings the w = −1.2 and w = −0.8 model
generally show the strongest deviations from the cosmological-
constant model, whereas the 2EXP1 show the least. However,
those differences are of the same order of magnitude as the in-
trinsic errors and dispersions. We can thus safely consider that
there are no significant departures from the cosmological con-
stant model.

5. Conclusions

The abundance of clusters, their redshift distribution, as well
as their clustering, are governed by the geometry of the uni-
verse and the power spectrum of the initial density perturba-
tions. Gas physics related to cluster structure and evolution also
enters through mapping of the cluster observable (SZ flux or
X-ray luminosity) relative to the total mass of the cluster. As
a result, galaxy cluster counts can be used as probes of cos-
mological and cluster properties. However, there are several re-
quirements needed to achieve precise cosmological constraints:
(i) advances in understanding the formation and evolution of

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/200810692&pdf_id=3
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Fig. 5. Slope, normalisation, and normalisation best-fit lines of the
LX−TX relation as a function of redshift. The shaded area in the bot-
tom panel stands for the dispersion of the normalisation for the Lambda
model.

cluster-size haloes; (ii) a good understanding of the selection
function; (iii) robust observational proxies for the cluster mass.

The first condition relates to the conduction of large sim-
ulations. This is achieved in the standard cosmological model
with a cosmological constant. In the context of a dark-energy
dominated universe, N-body simulations are becoming available
for models different from the simple cosmological constant with
constant or varying equation-of-state parameter. These simula-
tions now provide us with a good understanding of the halo
properties. They show that the halo mass function is approxi-
mated well by the Jenkins mass function. Simulations also indi-
cate that the clusters halos are more concentrated in dark-energy
models, since structures grow earlier, than in lambda models and
that concentrations are higher in models with varying rather than
constant equation state. The second condition, understanding the
cluster selection function, translates into understanding the lim-
iting mass and the completeness of the surveys from realistic
mock cluster catalogues. The mass (or temperature) selection
function is directly linked with the cluster observed quantities
through cluster scaling relations, which is our third requirement
(the need for a good proxy for the cluster mass).

In this work we have thus for the first time explored the scal-
ing laws for both SZ and X-rays observations using hydrody-
namic simulations of galaxy clusters in four dark-energy mod-
els with constant or varying equation of states spanning a large

Fig. 6. Slope, normalisation, and normalisation best fit lines of the
Y−LX relation as a function of redshift. The shaded area in the bot-
tom panel stands for the dispersion of the normalisation for the Lambda
model.

class of models. We studied the scaling properties at z = 0 and
their evolution with redshift. We find that dark energy induces
no modifications on the scaling laws at z = 0 and presents very
little difference from the cosmological-constant model at higher
redshifts. The results reported in the article are from simulations
with radiative cooling. We also performed adiabatic simulations
for the same set of dark-energy models and initial conditions.
No significant departures were found in the scalings for the adi-
abatic runs, thus showing the quasi-null effect of dark energy
independently of the cluster physical model.

While detailed simulations incorporating viable dark-energy
models remains a programme in progress, it is reassuring that all
models considered in this work predict similar scaling properties
to the lambda model. The modelling of the cluster gas compo-
nent appears to be nearly independent of the dark-energy model.
Therefore, using the “standard” lambda-model scaling relations
for converting observable to masses and temperatures in future
surveys should not introduce any additional bias into the cosmo-
logical constraints derived from cluster counts. In this work, we
have considered that dark energy does not cluster with dark mat-
ter. It would be interesting, however, to evaluate how our conclu-
sions stand for numerical simulations in a scenario where dark
energy is inhomogeneous and collapses along with dark matter
during the formation of structure. This will be pursued in a forth-
coming study.
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