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Abstract

We investigate cluster-tilting objects (and subcategories) in triangulated 2-Calabi–
Yau and related categories. In particular, we construct a new class of such categories
related to preprojective algebras of non-Dynkin quivers associated with elements in
the Coxeter group. This class of 2-Calabi–Yau categories contains, as special cases, the
cluster categories and the stable categories of preprojective algebras of Dynkin graphs.
For these 2-Calabi–Yau categories, we construct cluster-tilting objects associated with
each reduced expression. The associated quiver is described in terms of the reduced
expression. Motivated by the theory of cluster algebras, we formulate the notions
of (weak) cluster structure and substructure, and give several illustrations of these
concepts. We discuss connections with cluster algebras and subcluster algebras related
to unipotent groups, in both the Dynkin and non-Dynkin cases.

I. Introduction

The theory of cluster algebras, initiated by Fomin and Zelevinsky in [FZ02] and further developed

in a series of papers including [BFZ05, FZ03, FZ07], has turned out to have interesting

connections with many parts of algebra as well as other branches of mathematics. One of these

links is with the representation theory of algebras, where a connection was first discovered

in [MRZ03]. The philosophy has been to model the main ingredients in the definition of a

cluster algebra in a categorical or module-theoretical setting. The cluster categories associated

with finite-dimensional hereditary algebras were introduced for this purpose in [BMRRT06]

and shown to be triangulated in [Kel05] (see also [CCS06] for the An case); the module

categories mod Λ for Λ a preprojective algebra of a Dynkin quiver have been used for a similar

purpose [GLS06]. This development has both inspired new directions of investigations on the

categorical side and provided interesting feedback on the theory of cluster algebras; see, for

example, [ABS08, BM06, BMR07, BMR08, BMRT07, CC06, CK06, CK08, GLS08, GLS06, Hub,

Iya07a, Iya07b, IT06, KR07, IR08, IY08, KR08, Rin07, Tab07] for material relevant to this paper.

The cluster categories and the stable categories mod Λ of preprojective algebras are both

triangulated Calabi–Yau categories of dimension two (2-CY for short). Both have so-called

cluster-tilting objects or subcategories [BMRRT06, IY08, KR07] (referred to as ‘maximal

1-orthogonal’ in [Iya07a]), which are important since they are the analogs of clusters. The

investigation of cluster-tilting objects or subcategories in 2-CY and related categories is
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interesting both from the point of view of cluster algebras and in its own right. Hence it is

of importance to develop methods for constructing 2-CY categories together with the special

objects or subcategories of interest, and this is the main purpose of the first two sections of this

paper.

The properties of cluster-tilting objects in (Hom-finite) 2-CY categories that have been

important for applications to cluster algebras are: (a) the unique exchange property for

indecomposable summands of cluster-tilting objects; (b) the existence of associated exchange

triangles; (c) the non-existence of loops or 2-cycles (in the quiver of the endomorphism

algebra of a cluster-tilting object); and (d) the fact that when passing from the endomorphism

algebra of a cluster-tilting object T to the endomorphism algebra of another cluster-tilting

object T ∗ via an exchange, the change in quivers is given by a Fomin–Zelevinsky mutation.

The properties (a) and (b) are known to hold for any 2-CY triangulated category [IY08];

this was proved for cluster categories in [BMRRT06] and for stable categories of preprojective

algebras of Dynkin type in [GLS06]. Property (c) does not always hold (see [BIKR08]), hence

it is of interest to establish criteria for when it does hold, and this is one of the issues we

deal with in this paper. We also show, for any 2-CY category, that if (c) holds, then (d)

follows, as previously proved by Palu for algebraic triangulated categories [Pal08]. We construct

new 2-CY categories with cluster-tilting objects from old ones via a subfactor construction,

extending results from [IY08], with a main focus on how condition (c) behaves under this

construction. Associated with this, we introduce the notions of cluster structures and cluster

substructures.

Important examples investigated in [GLS06] are the categories mod Λ of finitely generated

modules over the preprojective algebra Λ of a Dynkin quiver. We deal with appropriate

subcategories of mod Λ. The focus of this paper is on the more general case of subcategories of

the category f. l. Λ of finite-length modules over the completion of the preprojective algebra of a

non-Dynkin quiver with no loops. Our main tool is to extend the tilting theory developed for Λ

in the noetherian case in [IR08]. This turns out to give a large class of 2-CY categories associated

with elements in the corresponding Coxeter groups. For these categories we construct cluster-

tilting objects associated with each reduced expression, and we describe the associated quiver

directly in terms of the reduced expression. We prove that this class of 2-CY categories contains

all the cluster categories of finite-dimensional hereditary algebras as well as the stable categories

mod Λ for a preprojective algebra Λ of Dynkin type; this allows us to get more information on

the latter type.

We illustrate our results with applications to constructing subcluster algebras of cluster

algebras, a notion that we shall define here and which is already implicit in the literature. To

this end, we introduce (strong) cluster maps, inspired by maps from [CC06, CK08] and [GLS06].

These maps have the property that we can pass from cluster structures and substructures to

cluster algebras and subcluster algebras.

In relation to substructures for preprojective algebras of Dynkin type, we discuss examples
from SO8(C)-isotropic Grassmannians and the Gr2,5 Schubert variety. For a (non-Dynkin) quiver
Q with associated Coxeter group W we can, for each w ∈W , consider the coordinate ring C[Uw]
of the unipotent cell associated with w in the corresponding Kac–Moody group. We conjecture
that this ring has a cluster algebra structure and that it is modelled by our (stably) 2-CY

category associated with the same w. As support for this, we verify the conjecture in the Â1 case
for a word w of length at most four.
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The second section is devoted to introducing and investigating the notions of cluster structures
and substructures, and to giving sufficient conditions for such structures to occur. Also, the
two concrete examples mentioned above are investigated and used to illustrate the connection
with cluster algebras and subcluster algebras defined in § IV.2. In § III, we use tilting theory to
construct categories whose stable categories are 2-CY, along with natural cluster-tilting objects
in these categories. In § IV.2 we present examples for preprojective algebras of Dynkin type,
and in § IV.3 we discuss our conjecture.

Part of this work was done independently by Geiss et al. in [GLS08]. They used a somewhat
different approach to develop, as in our § II, 2-CY categories (in a different language) for the case
of subcategories of the form Sub P (or Fac P ) for P projective, over a preprojective algebra of
Dynkin type. Parallel to our § IV.2, examples arising from Sub P were presented independently
in [GLS08]; in this respect, the fourth author was inspired by a lecture of Leclerc in 2005, where
cluster algebras associated with Sub P in the An case were discussed. Recently, using completely
different methods, Geiss et al. [GLS07C] have also done work related to our § III in the case of
adaptable elements in the Coxeter group.

For general background on representation theory of algebras we refer to [ARS97, ASS06,
Rin84, Hap88, AHK07]; for background on Lie theory we refer to [BL00].

Modules in this paper will usually be left modules and, with composition of maps, fg will
mean first f , then g.

The second author would like to thank William Crawley-Boevey and Christof Geiss for
answering a question about references for the 2-CY property of preprojective algebras. He also
thanks Bernard Leclerc for valuable comments.

II. 2-CY categories and substructures

The cluster algebras of Fomin and Zelevinsky have motivated attempts to model the essential
ingredients of the definition of a cluster algebra in a categorical or module-theoretical way. In
particular, this led to the theory of cluster categories and the investigation of new aspects of
the module theory of preprojective algebras of Dynkin type. In § II.1 we give some of the main
categorical requirements needed for the modelling, for the cases with and without coefficients;
this leads to the notions of weak cluster structure and cluster structure. Like the aforementioned
examples, our main examples do have 2-Calabi–Yau-type properties.

We introduce substructures of (weak) cluster structures in § II.2. It is natural to deal
with (weak) cluster structures that have so-called coefficients, at least for the substructures.
Of particular interest for our applications to cluster algebras is the case of completions of
preprojective algebras Λ of a finite connected quiver with no loops over an algebraically closed
field K, where the interesting larger category is the stable category f. l.Λ of the finite-length
Λ-modules. For Dynkin quivers this is the stable category mod Λ of the finitely generated Λ-
modules, and in the non-Dynkin case f. l.Λ = f. l. Λ. The former case is discussed in § II.3, while
§ III is devoted to the latter case.

II.1 Cluster structures

In this section we introduce the concepts of weak cluster structure and cluster structure for
extension-closed subcategories of triangulated categories and for exact categories. These concepts
are illustrated with 2-CY categories and other closely related categories, and the main objects

1037

https://doi.org/10.1112/S0010437X09003960 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003960


A. B. Buan et al.

we investigate are the cluster-tilting ones. These cases are particularly nice when the quivers
of the cluster-tilting subcategories have no loops or 2-cycles. The closely related maximal rigid
objects also provide interesting examples.

We start by introducing the notions of weak cluster structure and cluster structure.
Throughout this section, all categories are Krull–Schmidt categories over an algebraically closed
field K; that is, each object is isomorphic to a finite direct sum of indecomposable objects with
local endomorphism ring. The categories we consider are either exact (e.g. abelian) categories
or extension-closed subcategories of triangulated categories. Note that an extension-closed
subcategory of an exact category is again exact. We refer to [Kel96, Kel90] for the definition
and basic properties of exact categories, which behave very much like abelian categories, and
also with respect to derived categories and Ext-functors.

We shall often identify a set of indecomposable objects with the additive subcategory
consisting of all summands of direct sums of these indecomposable objects. We will also identify
an object with the set of indecomposable objects appearing in a direct sum decomposition, and
with the subcategory obtained in the above way.

Assume that we have a collection of sets x (which may be infinite), called clusters, of non-
isomorphic indecomposable objects. The union of all indecomposable objects in clusters is called
the set of cluster variables. Assume also that there is a subset p (which may be infinite) of
indecomposable objects, called coefficients, which are not cluster variables. We denote by T the
union of the indecomposable objects in x and p, sometimes viewed as a category with these
objects, and call it an extended cluster.

We say that the clusters together with the prescribed set of coefficients p give a weak cluster
structure on C if the following hold.

(a) For each extended cluster T and each cluster variable M which is a summand in T , there
is a unique indecomposable object M∗ 6≃M such that we get a new extended cluster T ∗

upon replacing M by M∗. We denote this operation, called exchange, by µM (T ) = T ∗, and
we call (M,M∗) an exchange pair.

(b) For each cluster variable M , there are triangles or short exact sequences M∗ f
−→B

g
−→M and

M
s
−→B

′ t
−→M∗, where the maps g and t are minimal right add(T\{M})-approximations and

f and s are minimal left add(T\{M})-approximations. These are called exchange triangles
or exchange sequences.

Denote by QT the quiver of T , where the vertices correspond to the indecomposable objects
in T and the number of arrows Ti→ Tj between two indecomposable objects Ti and Tj is given
by the dimension of the space of irreducible maps rad(Ti, Tj)/rad2(Ti, Tj). Here rad( , ) denotes
the radical in add T , where the objects are finite direct sums of objects in T . For an algebra Λ
(where Λ has a unique decomposition as a direct sum of indecomposable objects), the quiver of
Λ is then the opposite of the quiver of add Λ.

We say that a quiver Q= (Q0, Q1) is an extended quiver with respect to a subset of vertices Q′
0

if there are no arrows between two vertices in Q0\Q
′
0. We regard the quiver QT of an extended

cluster as an extended quiver by neglecting all arrows between two vertices corresponding to
coefficients.

We say that C, with a fixed set of clusters and coefficients, has no loops (respectively,
no 2-cycles) if in the extended quiver of each extended cluster there are no loops (respectively, no
2-cycles). In this case, the extended quiver QT is given by the sequences in (b).When x is finite,
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this is the opposite quiver of the factor algebra End(T ) of End(T ) by the maps factoring through
direct sums of objects from p.

We say that we have a cluster structure if the following additional conditions hold.

(c) There are no loops or 2-cycles. (In other words, for a cluster variable M , any non-
isomorphism u : M →M factors through g : B→M and through s : M →B′, while any
non-isomorphism v : M∗ →M∗ factors through f : M∗ →B and through t : B′ →M∗, with
B and B′ having no common indecomposable summand.)

(d) For an extended cluster T , passing from QT to QT ∗ is given by the Fomin–Zelevinsky
mutation at the vertex of QT given by the cluster variable M .

Note that (c) is needed for (d) to make sense, but it is still convenient to express this as two
separate statements.

We recall that, for an extended quiver Q without loops or 2-cycles and a vertex k in Q′
0, the

Fomin–Zelevinsky mutation µk(Q) of Q at k is the quiver obtained from Q upon making the
following changes [FZ02].

• Reverse all the arrows starting or ending at k.

• Let s 6= k and t 6= k be vertices in Q0 such that at least one vertex belongs to Q′
0. If in

Q we have n > 0 arrows from t to k, m> 0 arrows from k to s and r arrows from s to t
(interpreted as −r arrows from t to s if r < 0), then there are nm− r arrows from t to s in
the new quiver µk(Q) (interpreted as r − nm arrows from s to t if nm− r < 0).

The main known examples of triangulated K-categories with finite-dimensional
homomorphism spaces (Hom-finite for short) which have a weak cluster (and usually cluster)
structure are the 2-CY categories. These are triangulated K-categories with functorial
isomorphisms D Ext1(A, B)≃ Ext1(B, A) for all A and B in C, where D = HomK( , K). Note
that this is called weakly 2-CY in [Kel08] (see also [Kel05, § 8]). A Hom-finite triangulated
category is 2-CY if and only if it has almost-split triangles with translation τ and τ : C → C is a
functor isomorphic to the shift functor [1] (see also [RV02]).

We have the following examples of 2-CY categories.

(1) The cluster category CH associated with a finite-dimensional hereditary K-algebra H is, by
definition, the orbit category Db(H)/τ−1[1], where Db(H) is the bounded derived category
of finitely generated H-modules and τ is the AR-translation of Db(H)(see [BMRRT06]). It
is a Hom-finite triangulated category [Kel96], and it is 2-CY since τ = [1].

(2) The stable category of maximal Cohen–Macaulay modules CM(R) over a three-dimensional
complete local commutative noetherian Gorenstein isolated singularity R containing the
residue field K is 2-CY [Aus78] (see also [Yos90]).

(3) The preprojective algebra Λ associated to a finite connected quiver Q without loops is
defined as follows: let Q̃ be the quiver constructed from Q by adding an arrow α∗ : i→ j
for each arrow α : j→ i in Q; then Λ =KQ̃/I, where I is the ideal generated by the sum
of commutators

∑
β∈Q1

[β, β∗]. Note that Λ is uniquely determined up to isomorphism by
the underlying graph of Q.
When Λ is the preprojective algebra of a Dynkin quiver over K, the stable category mod Λ
is 2-CY (see [AR96, Propositions 3.1 and 1.2], [CB00] and [Kel05, § 8.5]).
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When Λ is the completion of the preprojective algebra of a finite connected quiver without
loops which is not Dynkin, the bounded derived category Db(f. l. Λ) of the category f. l. Λ
of the modules of finite length is 2-CY (see [Boc08, CB00, BBK02] and [GLS07b, § 8]).

We shall also use the term 2-CY in more general situations. From now on, we will usually
write simply ‘category’ instead of ‘K-category’.

We say that an exact Hom-finite category C is derived 2-CY if the triangulated category
Db(C) is 2-CY, i.e. if D Exti(A, B)≃ Ext2−i(B, A) for all A, B in Db(C) and all i. Note that
when C is derived 2-CY, then C has no non-zero projective or injective objects. The category
f. l. Λ where Λ is the completion of the preprojective algebra of a non-Dynkin connected quiver
without loops is an important example of a derived 2-CY category.

We say that a category C is stably 2-CY (or sometimes exact stably 2-CY) if it is Frobenius,
that is, if C is exact and has enough projectives and injectives, which coincide, and the stable
category C, which is triangulated [Hap88], is (Hom-finite) 2-CY. Recall that C is said to have
enough projectives if for each X in C there is an exact sequence 0→ Y → P →X → 0 in C with P
projective; having enough injectives is defined in a dual way.

We have the following characterization of stably 2-CY categories.

Proposition II.1.1. Let C be a Frobenius category. Then C is stably 2-CY if and only
if Ext1C (A, B) is finite-dimensional and we have functorial isomorphisms D Ext1C (A, B)≃
Ext1C (B, A) for all A and B in C.

Proof. It is easy to see that Ext1C (B, A)≃ Ext1C (B, A). If C is stably 2-CY, then Ext1C (B, A),

and hence Ext1C (B, A), is finite-dimensional, so we have the desired functorial isomorphism. The
converse also follows directly. ✷

Examples of stably 2-CY categories are categories of maximal Cohen–Macaulay modules
CM(R) for a three-dimensional complete local commutative isolated Gorenstein singularity R
(containing the residue field K) and mod Λ for Λ being the preprojective algebra of a Dynkin
quiver. We shall see several further examples later.

We are especially interested in pairs (C, C) of 2-CY categories where C is a stably 2-CY
category. The only difference in indecomposable objects between C and C is the indecomposable
projective objects in C. Note also that given an exact sequence 0→A→B→ C→ 0 in C, there is

an associated triangle A→B→ C→A[1] in C. Conversely, given a triangle A→B
g
→ C→A[1]

in C, we lift g ∈HomC (B, C) to g ∈HomC (B, C) and obtain an exact sequence 0→A→B ⊕ P →
C→ 0 in C, where P is projective. We then have the following useful fact, which is easy to prove.

Proposition II.1.2. Let C be a stably 2-CY category with a set of clusters x and a set of
coefficients p which are the indecomposable projective objects. For the stable 2-CY category C,
consider the same set of clusters x but with no coefficients. Then we have the following.

(a) The (x, p) give a weak cluster structure on C if and only if the (x, ∅) give a weak cluster
structure on C.

(b) C has no loops if and only if C has no loops.

(c) If C has a cluster structure, then C has a cluster structure.

In the examples of 2-CY categories with cluster structure which have been investigated, the
extended clusters have been the subcategories T where Ext1(M,M) = 0 for all M ∈ T and such
that whenever X ∈ C satisfies Ext1(M, X) = 0 for all M ∈ T , then X ∈ T . In [KR07], such a T
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is referred to as a cluster-tilting subcategory if it is, in addition, functorially finite in the sense
of [AS80], which is automatically true when T is finite. Such a T has also been called a maximal
1-orthogonal subcategory in [Iya07a, Iya07b], and an Ext-configuration in [BMRRT06].

We have the following connections between C and C for a stably 2-CY category C when using
the cluster-tilting subcategories; these follow easily from Propositions II.1.1 and II.1.2.

Lemma II.1.3. Let C be a stably 2-CY category, and let T be a subcategory of C containing all
indecomposable projective objects. Then T is a cluster-tilting subcategory in C if and only if it
is the same in C.

Lemma II.1.4. Let C be a stably 2-CY category and T a cluster-tilting object in C with an
indecomposable non-projective summand M . Then there is no loop at M for EndC (T ) if and
only if there is no loop at M for EndC (T ). If C has no 2-cycles, then there are none for C.

Note that a stably 2-CY category C with the cluster-tilting subcategories gives a situation
where we have a natural set of coefficients, namely the indecomposable projective objects, which
clearly belong to all cluster-tilting subcategories, whereas C with the cluster-tilting subcategories
gives a case where it is natural to choose no coefficients. We have the following useful observation,
which follows from Proposition II.1.2.

Proposition II.1.5. Let C be a stably 2-CY category. Then the cluster-tilting subcategories
in C, with the indecomposable projectives as coefficients, determine a weak cluster structure on C
if and only if the cluster-tilting subcategories in C determine a weak cluster structure on C.

If C is triangulated 2-CY, then C has a weak cluster structure, with the extended clusters being
the cluster-tilting subcategories [IY08]. Properties (c) and (d) hold for cluster categories and the
stable category mod Λ of a preprojective algebra of Dynkin type [BMRRT06, BMR08, GLS06];
however, (c) does not hold in general [BIKR08]. Nevertheless, we show that when we have some
cluster-tilting subcategory in the 2-CY category C, (d) will hold under the assumption that (c)
holds. This was first proved in [Pal08] for when C is algebraic, i.e. by definition the stable category
of a Frobenius category, as a special case of a more general result. Our proof is inspired by
[IR08, Theorem 7.1].

Theorem II.1.6. Let C be triangulated (or stably) 2-CY with some cluster-tilting subcategory.
If C has no loops or 2-cycles, then the cluster-tilting subcategories determine a cluster structure
for C.

Proof. We give a proof for the triangulated 2-CY case, and for simplicity we assume that T
is a cluster-tilting object. Using exact sequences instead of triangles, a similar argument works
for the stably 2-CY case. Note that in the stably 2-CY case we do not have to consider arrows
between projective vertices.

Let T =
⊕n

i=1 Ti for the cluster-tilting object T in C. Fix a vertex k ∈ {1, . . . , n}, and let
T ∗ =

⊕
i6=k Ti ⊕ T

∗
k = µk(T ). We have exchange triangles T ∗

k →Bk→ Tk and Tk→B′
k→ T ∗

k ,
which show that when passing from End(T ) to End(T ∗), we reverse all arrows in the quiver
of End(T ) starting or ending at k.

We need to consider the situation where we have arrows j→ k→ i. By assumption, there
is no arrow i→ k. Consider the exchange triangles T ∗

i →Bi→ Ti and Ti→B′
i→ T ∗

i . Then Tk

is not a direct summand of B′
i, and we write Bi =Di ⊕ T

m
k for some m> 0, where Tk is not a

direct summand of Di.
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We get the left diagram below by starting with the maps in the upper square and the triangles
that they induce, and applying the octahedral axiom. The third row is then a triangle. Using
again the octahedral axiom, we get the right diagram of triangles, where the second row is an
exchange triangle and the third column is the second column of the left diagram.

(T ∗

k
)m[1] (T ∗

k
)m[1] (T ∗

k
)m[1] (T ∗

k
)m[1]

Ti[−1] // T ∗
i

//

OO

Di⊕T m
k

OO

// Ti Ti
// B′

i
//

OO

T ∗
i

//

OO

Ti[1]

Ti[−1] // X //

OO

Di⊕Bm
k

//

OO

Ti Ti
// Y //

OO

X //

OO

Ti[1]

(T ∗

k
)m

OO

(T ∗

k
)m

OO

(T ∗

k
)m

OO

(T ∗

k
)m

OO

Since Tk is not in add B′
i, we have (B′

i, (T
∗
k )m[1]) = 0 and hence Y =B′

i ⊕ (T ∗
k )m.

Consider the triangle X →Di ⊕B
m
k

a
−→ Ti→X[1]. Let T

∗
= (

⊕
t6=i,k Tt)⊕ T

∗
k . We now show

that Di ⊕B
m
k is in add T

∗
. Note that Di ⊕ T

m
k =Bi is in add T . We know that Ti is not a

direct summand of Di, and Ti is not a direct summand of Bk since there is no arrow from i
to k. Furthermore, Tk is not a direct summand of Di by the choice of Di, and Tk is not a direct
summand of Bk. Hence we see that Bi is in add T

∗
.

Next, we want to show that a is a right add T
∗
-approximation. It follows from the first

commutative diagram that any map g : Tt→ Ti, where Tt is an indecomposable direct summand
of T

∗
not isomorphic to T ∗

k , factors through a. Let f : T ∗
k → Ti be a map and h : T ∗

k →Bk the
minimal left add T -approximation, where T =

⊕
t6=k Tt. Then there is some s : Bk→ Ti such that

hs= f . Thus, by the above, s factors through a since Bk is in add T
∗

(using the fact that Ti is
not a direct summand in Bk) and T ∗

k is not a direct summand of Bk. It follows that a is a right
add T

∗
-approximation.

Now consider the triangle Ti→B′
i ⊕ (T ∗

k )m b
−→X → Ti[1]. It is clear that B′

i ⊕ (T ∗
k )m is in

add T
∗
, since Tk is not a direct summand of B′

i. Since Ti is in both T and T ∗, we have that
Hom(T

∗
, Ti[1]) = 0 and hence b is a right add T

∗
-approximation.

By the above, the number of arrows from j to i in the quiver QT ∗ is

u= αDi⊕Bm
k

(Tj)− αB′
i⊕(T ∗

k
)m(Tj),

where αX(Tj) denotes the multiplicity of Tj in X. We have

u= αDi
(Tj) +mαBk

(Tj)− αB′
i
(Tj) = αBi

(Tj) +mαBk
(Tj)− αB′

i
(Tj),

since Bi =Di ⊕ T
m
k . The last expression says that u is equal to the number of arrows from j to i

in QT , minus the number of arrows from i to j, plus the product of the number of arrows from j
to k and from k to i. This is what is required for having the Fomin–Zelevinsky mutation, so we
are done. ✷

We shall use the term ‘stably 2-CY’ also for certain subcategories of triangulated categories.
Let B be a functorially finite extension-closed subcategory of a triangulated 2-CY category C.
We say that X ∈ B is projective in B if Hom(X, B[1]) = 0. In this setting, we shall prove in
Theorem II.2.1 that the category B modulo projectives in B has a 2-CY triangulated structure.
We then say that B is stably 2-CY. Note that B does not necessarily have enough projectives or
injectives, for example, if B = C.

We illustrate this concept with the following example.
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Example. Let CQ be the cluster category of the path algebra KQ, where Q is the quiver
1
·→

2
·→

3
·.

We have the following AR-quiver for CQ, where Si and Pi denote the simple and projective
modules associated with vertex i, respectively.

P1

$$II
I

S3[1]

$$II
I

S3

$$II
II

P2

::uuuu

$$II
II

P1/S3

::uuu

$$II
I

P2[1]

::uuu

$$II
I

P2

$$II
II

S3

::uuuu
S2

::uuu
S1

::uuu
P1[1]

::uuu

P1

Then B = mod KQ is an extension-closed subcategory of CQ, and it is easy to see that P1 is
the only indecomposable projective object in B. It is then clear that B /P1 is equivalent to the
cluster category CQ′ , where Q′ is a quiver of type A2, which is a triangulated 2-CY category.
Hence B is stably 2-CY.

Besides the cluster-tilting objects, the maximal rigid objects have also played an important
role in the investigation of 2-CY categories. We now investigate the concepts of cluster structure
and weak cluster structure with respect to these objects.

Recall that a subcategory T of a category C is said to be rigid if Ext1(M,M) = 0 for all M
in T , and maximal rigid if T is maximal among rigid subcategories [GLS06]. It is clear that
any cluster-tilting subcategory is maximal rigid, but the converse is not true [BIKR08]. There
always exists a maximal rigid subcategory in C if the category C is skeletally small, while the
existence of a cluster-tilting subcategory is rather restrictive. It is of interest to obtain sufficient
conditions for the two concepts to coincide. For this purpose, the following result is useful;
see [BMR07, Iya07a, KR07] for statement (a) and the argument in [GLS06, Corollary 5.2] for
statement (b).

Proposition II.1.7. Let C be a triangulated (or exact stably) 2-CY category.

(a) Let T be a cluster-tilting subcategory. Then for any X in C, there exist triangles (or short
exact sequences) T1→ T0→X and X → T ′

0→ T ′
1 with Ti, T

′
i in T .

(b) Let T be a functorially finite maximal rigid subcategory. Then for any X in C which is rigid,
the same conclusion as in (a) holds.

We then have the following theorem.

Theorem II.1.8. Let C be an exact stably 2-CY category with some cluster-tilting object.
Then:

(a) any maximal rigid object in C (respectively, C) is a cluster-tilting object;

(b) any rigid subcategory in C (respectively, C) has an additive generator which is a direct
summand of a cluster-tilting object;

(c) all cluster-tilting objects in C (respectively, C) have the same number of non-isomorphic
indecomposable summands.

Proof. (a) Let N be maximal rigid in C. We only have to show that any X ∈ C satisfying
Ext1(N, X) = 0 is contained in add N .

(i) Let M be a cluster-tilting object in C. Since N is maximal rigid and M is rigid, by
Proposition II.1.7(b) there exists an exact sequence 0→N1→N0→M → 0 with Ni ∈ add N .
In particular, we have pdEnd(N)Hom(N,M)≤ 1.

(ii) Since M is cluster-tilting, there is, by Proposition II.1.7(a), an exact sequence 0→
X →M0→M1→ 0 for X as above, with Mi ∈ add M , obtained by taking the minimal left
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add M -approximation X →M0. Applying (N, ), we have an exact sequence 0→ (N, X)→
(N,M0)→ (N,M1)→ Ext1(N, X) = 0. By (i), pdEnd(N) Hom(N, X)≤ 1. Take a projective
resolution 0→ (N, N1)→ (N, N0)→ (N, X)→ 0; then we have a complex

0→N1→N0→X → 0 (1)

in C. Since 0→ (P, N1)→ (P, N0)→ (P, X)→ 0 is exact for any projective P in C, it follows
from the axioms of Frobenius categories that the complex (1) is an exact sequence in C. Since
Ext1(X, N) = 0, we have X ∈ add N and hence N is cluster-tilting.

(b) Let M be a cluster-tilting object in C and N a rigid object in C. By [Iya07b, Lemma 5.3.1],
Hom(M, N) is a partial tilting End(M)-module. In particular, the number of non-isomorphic
indecomposable direct summands of N is not greater than that of M . Consequently, any rigid
object in C is a direct summand of some maximal rigid object in C, which is cluster-tilting by (a).

(c) See [Iya07b, Corollary 5.3.3]. ✷

For a triangulated 2-CY category we also get a weak cluster structure, and sometimes a
cluster structure, determined by the maximal rigid objects, if there are any. Note that there
are cases where the maximal rigid objects are not cluster-tilting [BIKR08], but we suspect the
following.

Conjecture II.1.9. Let C be a connected triangulated 2-CY category. Then any maximal rigid
object without loops or 2-cycles in its quiver is a cluster-tilting object.

Furthermore, we have the next theorem.

Theorem II.1.10. Let C be a triangulated 2-CY category (or exact stably 2-CY category)
having some functorially finite maximal rigid subcategory.

(a) The functorially finite maximal rigid subcategories determine a weak cluster structure on C.

(b) If there are no loops or 2-cycles for the functorially finite maximal rigid subcategories, then
they determine a cluster structure on C.

Proof. (a) This follows from [IY08, Theorems 5.1 and 5.3]. The arguments there are stated only
for cluster-tilting subcategories; however, they work also for functorially finite maximal rigid
subcategories.

(b) The proof of Theorem II.1.6 works in this setting as well. ✷

There exist triangulated or exact categories with cluster-tilting objects also when the
categories are not 2-CY or exact stably 2-CY (see [EH08, Iya07a, KZ08]), but we do not
necessarily have even a weak cluster structure in such a situation. To see this, let Λ be a
Nakayama algebra that has two simple modules S1 and S2 with associated projective covers
P1 and P2. Assume first that P1 and P2 have length three; then in mod Λ we have that
S1 ⊕ P1 ⊕ P2,

S1
S2
⊕ P1 ⊕ P2 and S2

S1
⊕ P1 ⊕ P2 are the cluster-tilting objects, so we do not have

the unique exchange property. If P1 and P2 have length four, then the cluster-tilting objects

are S1 ⊕
S1
S2
S1

⊕ P1 ⊕ P2 and S2 ⊕
S2
S1
S2

⊕ P1 ⊕ P2, so there is no way of exchanging S1 in the first

object to obtain a new cluster-tilting object.

We end this subsection with some information on the endomorphism algebras of cluster-
tilting objects in exact stably 2-CY categories, to be used in § III.5. Such algebras are studied
as analogs of Auslander algebras in [GLS06, Iya07a, Iya07b, KR07]. We denote by mod C
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the category of finitely presented C-modules. If C has pseudokernels, then mod C forms an abelian
category [Aus66].

Proposition II.1.11. Let C be an exact stably 2-CY category. Assume that C has pseudokernels
and the global dimension of mod C is finite. Let Γ = End(T ) for a cluster-tilting object T in C.

(a) Γ has finite global dimension.

(b) If C is Hom-finite, then the quiver of Γ has no loops. If, moreover, C is an extension-closed
subcategory of an abelian category closed under subobjects, then the quiver of Γ has no
2-cycles.

Proof. (a) Let m= gl.dim(mod C). For any X ∈mod Γ, take a projective presentation (T, T1)→
(T, T0)→X → 0. By our assumptions, there exists a complex 0→ Fm→ · · · → F2→ T1→ T0

in C such that 0→ ( , Fm)→ · · · → ( , F2)→ ( , T1)→ ( , T0) is exact in mod C. Since T is
cluster-tilting, we have an exact sequence 0→ T1→ T0→ Fi→ 0, with T1 and T0 in add T by
Proposition II.1.7. Hence we have pdΓ(T, Fi)≤ 1 and, consequently, pdΓX ≤m+ 1. It follows
that Γ has finite global dimension.

(b) For the first assertion, Γ is a finite-dimensional algebra of finite global dimension by
part (a). Then, by [Len69, Igu90], the quiver of Γ has no loops. We now show the second
assertion; our proof is based on [GLS06, Theorem 6.4]. We start by showing that Ext2Γ(S, S) = 0
for any simple Γ-module S, which is assumed to be the top of the projective Γ-module (T, M)
for an indecomposable summand M of T .

First, we suppose that M is not projective in C. Take exact exchange sequences 0→

M∗ f
→B

g
→M → 0 and 0→M

s
→B′ t

→M∗ → 0. Since Γ has no loops, we have a projective

presentation 0→ (T, M)
·s
→ (T, B′)

·tf
→ (T, B)

·g
→ (T, M)→ S→ 0 of the Γ-module S. Since M is

not a summand of B′, we have Ext2Γ(S, S) = 0.

Next, we suppose that M is projective in C. Take a minimal projective presentation (T, B)
·g
→

(T, M)→ S→ 0 of the Γ-module S. By assumption, Im g in the abelian category belongs to C.
Then g : B→ Im g is a minimal right add T -approximation. By Proposition II.1.7(a), we have

that B′ = Ker g belongs to add T . Thus we have a projective resolution 0→ (T, B′)→ (T, B)
·g
→

(T, M)→ S→ 0 of the Γ-module S. Since g is right minimal, B′ does not have an injective
summand. Thus Ext2Γ(S, S) = 0.

Since Ext2Γ(S, S) = 0 in both cases, by [GLS06, Proposition 3.11] we cannot have a 2-cycle. ✷

II.2 Substructures

For extension-closed subcategories of triangulated or exact categories having a weak cluster
structure, we introduce the notion of substructure. Making heavy use of [IY08], we give sufficient
conditions for having a substructure when starting with a triangulated 2-CY category or an
exact stably 2-CY category and using the cluster-tilting subcategories with the indecomposable
projectives as coefficients.

Let C be an exact or triangulated K-category, and let B be a subcategory of C closed under
extensions. Assume that both C and B have a weak cluster structure. We say that we have a
substructure of C induced by an extended cluster T in B if the following holds.

There is a set A of indecomposable objects in C such that T̃ ′ = T ′ ∪A is an extended cluster
in C for any extended cluster T ′ in B which is obtained by a finite number of exchanges from T .

1045

https://doi.org/10.1112/S0010437X09003960 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003960


A. B. Buan et al.

Note that for each sequence of cluster variables M1, . . . , Mt, with Mi+1 in µMi
(T ), we have

µMt(· · · µM1(T )) ∪A= µ̃Mt(· · · µ̃M1(T̃ )), where µ denotes the exchange for B and µ̃ the exchange
for C.

We shall investigate substructures arising from certain extension-closed subcategories of
triangulated 2-CY categories and of exact stably 2-CY categories. We begin with the triangulated
case, and we first recall some results from [IY08] that are specialized to the setting of 2-CY
categories.

For a triangulated category C and full subcategories B and B′, let B⊥ = {X ∈ C |Hom(B, X)
= 0} and ⊥B = {X ∈ C |Hom(X, B) = 0}. We denote by B ∗ B′ the full subcategory of C consisting
of all X ∈ C such that there exists a triangle B→X →B′ →B[1] with B ∈ B and B′ ∈ B′.

We get the following sufficient conditions for constructing 2-CY categories and, hence,
categories with weak cluster structures.

Theorem II.2.1. Let C be a triangulated 2-CY category and B a functorially finite extension-
closed subcategory of C.

(a) B⊥ and ⊥B are functorially finite extension-closed subcategories of C. Moreover, the
equalities B ∗ B⊥ = C = ⊥B ∗ B and ⊥(B⊥) = B = (⊥B)⊥ hold.

(b) Let D = B ∩⊥B[1]. Then B /D is a triangulated 2-CY category, and so B is a stably 2-CY
category. Moreover, B ⊆ (D ∗ B[1]) ∩ (B[−1] ∗ D) holds, and D is a functorially finite rigid
subcategory of C.

(c) Let D be a functorially finite rigid subcategory of C and let B′ = ⊥D[1]. Then B′ is a
functorially finite extension-closed subcategory of C and B′/D is a triangulated 2-CY
category. Moreover, there exists a one-to-one correspondence between cluster-tilting
(respectively, maximal rigid or rigid) subcategories of C containing D and cluster-
tilting (respectively, maximal rigid or rigid) subcategories of B′/D. It is given by T 7→ T/D.

Proof. (a) Since B⊥ = ⊥ B[2] holds by the 2-CY property, the assertion follows from [IY08,
Proposition 2.3].

(b) Clearly, B /D is Hom-finite since C is. To show that B /D is a triangulated 2-CY category,
we need only check, using [IY08, Theorem 4.2], that B ⊆ (D ∗ B[1]) ∩ (B[−1] ∗ D). Let Z be in
B. Since B, and hence B[1], is functorially finite in C, it follows from (a) that we have a triangle
X → Y → Z→X[1] with Y in ⊥ B[1] and X[1] in B[1]. Since B is extension-closed, Y is in B, and
consequently Y is in B ∩⊥ B[1] =D. It follows that Z is in D ∗ B[1] and, similarly, in B[−1] ∗ D.

To see that D is functorially finite in C, we only have to show that D is functorially finite

in B. For any Z ∈ B, take the above triangle X → Y
f
→ Z→X[1] with Y in D and X[1] in B[1].

Since (D, X[1]) = 0, we have that f is a right D-approximation. Thus D is contravariantly finite
in B and, similarly, covariantly finite in B.

(c) See [IY08, 4.9]. ✷

The example from the previous section of the cluster category C of the path algebraKQ, where
Q is of type A3, illustrates part of this theorem. Let D = add P1, then B′ = ⊥ D[1] = mod KQ
and B′ /D = CKQ′ , where Q′ is a quiver of type A2. The cluster-tilting objects in C containing P1

are P1 ⊕ S3 ⊕ P2, P1 ⊕ P2 ⊕ S2, P1 ⊕ S2 ⊕ P1/S3, P1 ⊕ P1/S3 ⊕ S1 andP1 ⊕ S1 ⊕ S3, which are
in one-to-one correspondence with the cluster-tilting objects in B′ /D.

In order to get sufficient conditions for having a substructure, we investigate cluster-tilting
subcategories in B. For this, the following lemma is useful.
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Lemma II.2.2. Let C be a triangulated 2-CY category. For any functorially finite and thick
subcategory C1 of C, there exists a functorially finite and thick subcategory C2 of C such that
C = C1 × C2.

Proof. Let C2 = C⊥
1 . Then we have C2 = C⊥

1 = ⊥ C1[2] = ⊥ C1 by Serre duality, using the fact
that C1 is triangulated. We only have to show that any object in C is a direct sum of objects

in C1 and C2. For any X ∈ C, there exists a triangle A1→X →A2
f
→A1[1] in C with A1 in C1

and A2 in C2 = C⊥
1 , by Theorem II.2.1(a). Since f = 0, we haveX ≃A1 ⊕A2. Thus C = C1 × C2. ✷

Using Lemma II.2.2, we get the following decomposition of triangulated categories.

Proposition II.2.3. Let C be a triangulated 2-CY category and B a functorially finite
extension-closed subcategory of C. Let D = B ∩⊥B[1] and B′ = ⊥ D[1].

(a) There exists a functorially finite and extension-closed subcategory B′′ of C such that
D ⊆ B′′ ⊆ B′ and B′ /D = B /D × B′′ /D as a triangulated category.

(b) There exists a one-to-one correspondence between pairs consisting of cluster-tilting
(respectively, maximal rigid or rigid) subcategories of B and of B′′ and cluster-tilting
(respectively, maximal rigid or rigid) subcategories of B′. It is given by (T, T ′′) 7→ T ⊕ T ′′.

Proof. (a) We know from parts (b) and (c) of Theorem II.2.1 that D is a functorially finite rigid
subcategory and that B /D and B′ /D are both triangulated 2-CY categories. The inclusion
functor B /D→B′ /D is a triangle functor by the construction of their triangulated structures
in [IY08, Theorem 4.2]. In particular, B /D is a thick subcategory of B′ /D; hence we have a
decomposition by Lemma II.2.2.

(b) This follows by Theorem II.2.1(c). ✷

We then obtain the following.

Corollary II.2.4. Let C be a 2-CY algebraic triangulated category with a cluster-tilting
object, and let B be a functorially finite extension-closed subcategory of C. Then we have the
following.

(a) The stably 2-CY category B also has some cluster-tilting object. Any maximal rigid object
in B is a cluster-tilting object in B.

(b) There is some rigid object A in C such that T ⊕A is a cluster-tilting object in C for any
cluster-tilting object T in B.

(c) Any cluster-tilting object T in B determines a substructure for the weak cluster structures
on B and C given by cluster-tilting objects.

Proof. (a) Let D = ⊥ B[1] and B′ = ⊥ D[1]. Since C is algebraic, by Theorem II.1.8 we have a
cluster-tilting object T in C containing D. By Proposition II.2.3, we have the decompositions
B′ /D = B /D × B′′ /D, for some subcategory B′′ of B′, and T = T1 ⊕ T2, with cluster-tilting
objects T1 in B and T2 in B′′. Thus B has a cluster-tilting object.

Now we show the second assertion in (a). Let M be maximal rigid in B. By
Proposition II.2.3(b), M ⊕ T2 is maximal rigid in C. From Theorem II.1.8 it follows that M ⊕ T2

is cluster-tilting in C and, by Proposition II.2.3(b), we have that M is cluster-tilting in B.

(b) We only have to take A= T2.

(c) This follows from part (b). ✷
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It is curious to note that by combining Proposition II.2.3 with Theorem II.2.1, we obtain a
kind of classification of functorially finite extension-closed subcategories of a triangulated 2-CY
category in terms of functorially finite rigid subcategories, analogous to results from [AR91].

Theorem II.2.5. Let C be a 2-CY triangulated category. Then the functorially finite extension-
closed subcategories B of C are all obtained as preimages under the functor π : C → C /D
of the direct summands of ⊥ D[1]/D as a triangulated category, for functorially finite rigid
subcategories D of C.

Proof. Let D be a functorially finite rigid subcategory in C. Then B′ = ⊥ D[1] is functorially
finite extension-closed in C, by Theorem II.2.1(a). The preimage under π : C → C /D of any direct
summand of B′ /D as a triangulated category is therefore functorially finite and extension-closed
in C.

Conversely, let B be a functorially finite extension-closed subcategory of C and let D =
B ∩⊥ B[1]. By Proposition II.2.3, we have that B /D is a direct summand of ⊥ D[1]/D. ✷

We now investigate substructures for exact categories which are stably 2-CY. We have the
following main result.

Theorem II.2.6. Let C be an exact stably 2-CY category, and let B be a functorially finite
extension-closed subcategory of C. Then B has enough projectives and injectives and is an exact
stably 2-CY category.

Proof. We know that B is an exact category and that D = B ∩⊥ B[1] is the subcategory of
projective injective objects. Since B ⊆ B[−1] ∗ D holds by Theorem II.2.1(b), for any X ∈ B
there exists a triangle X → Y → Z→X[1] with Y ∈ D and Z ∈ B. This is induced from an
exact sequence 0→X → Y → Z→ 0 in C. Thus B has enough injectives. Dually, then, B has
enough projectives, which coincide with the injectives. Hence B is a Frobenius category, and
consequently B is exact stably 2-CY. ✷

We have the following interesting special case as a consequence of Theorem II.2.6 and
Corollary II.2.4. For X in C, we denote by Sub X the subcategory of C whose objects are
subobjects of finite direct sums of copies of X.

Corollary II.2.7. Let C be a Hom-finite abelian stably 2-CY category, and let X be an object
in C with Ext1(X, X) = 0 and idX ≤ 1. Then the following hold.

(a) Sub X is a functorially finite extension-closed subcategory of C and is exact stably 2-CY.

(b) If C has a cluster-tilting object, then so does Sub X, and any cluster-tilting object in Sub X
determines a substructure of the cluster structure for C.

(c) If C is abelian, then Sub X has no loops or 2-cycles.

Proof. One can show that Sub X is extension-closed by using the assumption that idX ≤ 1.
It is functorially finite by [AS80], so we can use Theorem II.2.6. Furthermore, (b) follows from
Corollary II.2.4 and (c) follows from Proposition II.1.11. ✷

In order to see when we have cluster structures, we would like to give sufficient conditions
for algebraic triangulated (or stably) 2-CY categories not to have loops or 2-cycles.
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Proposition II.2.8. Let C be an algebraic triangulated (or exact stably) 2-CY category with
a cluster-tilting object, and let B be a functorially finite extension-closed subcategory.

(a) If C has no 2-cycles, then B also has no 2-cycles.

(b) If C has no loops, then B also has no loops.

Proof. We give a proof for the algebraic triangulated 2-CY case. A similar argument works for
the exact stably 2-CY case.

(a) Let D = B ∩⊥ B[1] and B′ = ⊥ D[1]. Since cluster-tilting objects in B′ are exactly cluster-
tilting objects in C which contain D, our assumption implies that B′ has no 2-cycles.

We now show that B has no 2-cycles. Let T be a cluster-tilting object in B. By
Corollary II.2.4(b), there exists T ′ ∈ B′ such that T ⊕ T ′ is a cluster-tilting object in C. We
already observed that T ⊕ T ′ has no 2-cycles. If T has a 2-cycle, then at least one arrow in the
2-cycle represents a morphism f : X → Y which factors through an object in T ′. We write f as a
composition of f1 : X → Z and f2 : Z→ Y with Z ∈ T ′. Since B /D is a direct summand of B′ /D
by Proposition II.2.3, any morphism between T and T ′ factors through D. Thus we can write f1

(respectively, f2) as a composition of g1 : X →W1 and h1 : W1→ Z (respectively, of g2 : Z→W2

and h2 : W2→ Y ) with W1 ∈ D (respectively, W2 ∈ D). We have f = f1f2 = g1(h1g2)h2, where
h1g2 is in rad B and at least one of h2 and g1 is in rad B, since at least one of X and Y is not
in D. So f cannot be irreducible in add T , which is a contradiction.

(b) This is proved in a similar way. ✷

Note that the quiver QT may have 2-cycles between coefficients. For example, let C = mod Λ
for the preprojective algebra of a Dynkin quiver and let B be the subcategory add Λ. Then there
are no 2-cycles for C, but there are 2-cycles for B since Λ is the only cluster-tilting object in B.

II.3 Preprojective algebras of Dynkin type

In this subsection we specialize our general results from § II.2 to the case of finitely generated
modules over a preprojective algebra of Dynkin type; we illustrate this with three concrete
examples. The same examples will be used in § IV to show how to use this theory to construct
subcluster algebras of cluster algebras.

The category C = mod Λ for Λ preprojective of Dynkin type is a Hom-finite Frobenius
category. By [GLS06] (see also § III.2), a rigid Λ-module is cluster-tilting if and only if the number
of non-isomorphic indecomposable summands is the number of positive roots, i.e. (n(n+ 1))/2
for An, n(n− 1) for Dn, 36 for E6, 63 for E7 and 120 for E8.

Let B be an extension-closed functorially finite subcategory of C. We know that B is exact
stably 2-CY by Theorem II.2.6. It is known, too, that C and C have no loops or 2-cycles for
the cluster-tilting objects (see [GLS06]; this also follows from Proposition II.1.11). Then, by
Proposition II.2.8, there are also no loops or 2-cycles for B and the subcategory B of C. Note
that B is not the stable category of B since B may have more projectives than C.

We then have the following result.

Theorem II.3.1. Let B be an extension-closed functorially finite subcategory of the category
C = mod Λ for the preprojective algebra Λ of a Dynkin quiver. Then the following hold.

(a) The exact stably 2-CY category B has a cluster-tilting object, and any maximal rigid object
in B is a cluster-tilting object that can be extended to a cluster-tilting object for C and
which gives rise to a substructure.
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(b) The category B is a triangulated 2-CY category with no loops or 2-cycles for the cluster-
tilting objects; hence it has a cluster structure.

Proof. (a) This follows from Theorem II.1.8 and Corollary II.2.7.

(b) This follows from the above comments and Theorem II.1.6. ✷

We now give some concrete examples of weak cluster structures and substructures. In § IV,
these examples will be revisited and used to model cluster algebras and subcluster algebras.

We let Pi denote the indecomposable projective module associated to vertex i, J the radical
of a ring, and Si the simple top of Pi. Usually, we represent a module M by its radical filtration,
with the numbers in the first row representing the indices of the simples in M/JM and the
numbers in the ith row representing the indices of the simples in J i−1M/J iM . For example,

2
1 3

2
represents the indecomposable projective module P2 for the preprojective algebra of type

A3, which has quiver 1
//
2oo //

3oo .

Example 1. Let Λ be the preprojective algebra of a Dynkin quiver A4. This algebra has quiver

1
//
2oo //

3oo //
4oo . Consider the modules P3 and M = JP3; these are represented by their

radical filtrations
3

2 4
1 3

2
and

2 4
1 3

2

Let C′ = Sub P3 and B = {X ∈ C′ | Ext1(M, X) = 0}. The AR-quiver of C′ is given below. The
indexing of the indecomposables will be explained in § IV.2.

gfed`abc(M
45

)

3
2 4

1 3
2

((PP

(M15)

4
3

2 ((PPP

(M23)

1
2

(M35)

2 4
1 3

2 ((PP
P

66nn _^]\XYZ[(My)

3
2 ((PPP

66nnn
(M25)

4
1 3

2 ((PP

(M13)

2

((PPP
P

66nnnn

(M13)

2

((PPPP

66nnnn _^]\XYZ[(Mx)

1 3
2

((PPP

66nn
(M35)

2 4
1 3

2 ((PP

66nnn _^]\XYZ[(My)

3
2

(M23)

1
2

66nnn
(M34)

2
1 3

2

66nnn gfed`abc(M
45

)

3
2 4

1 3
2

66nn

From the AR-quiver we see that the indecomposable projectives in C′ areM45, M34, M23 andM15.
The indecomposables in B are obtained from C′ by deleting the encircled indecomposable objects,
and B is extension-closed by definition. Thus T =M34 ⊕M23 ⊕M13 ⊕M15 ⊕M35 is a cluster-
tilting object in B, which has a cluster structure, with coefficients the indecomposable projectives
M35, M34, M23 and M15. It is easy to see that T ′ = T ⊕M45 is a cluster-tilting object in C′; hence
C′ has a cluster structure, with coefficients the indecomposable projectives, such that we have
a substructure for B induced by T . One can also show that the cluster-tilting object T ′ in C′

can be extended to a cluster-tilting object T̃ = T ′ ⊕ P1 ⊕ P2 ⊕ P4 ⊕ Z in mod Λ, where Z is the

Λ-module with radical filtration
1

2
3

, by first showing that Ext1(T̃ , T̃ ) = 0 and then using the

fact that T̃ has the correct number 10 = (4 · 5)/2 of indecomposable direct summands.

Example 2. Let Λ be the preprojective algebra of a Dynkin quiver D4:

3

zzuuu
uu

1
//
2oo

::uuuuu

$$II
II

I

4

ddIIIII

1050

https://doi.org/10.1112/S0010437X09003960 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003960


Cluster structures for 2-Calabi–Yau categories and unipotent groups

Using Corollary II.2.7, we see that the subcategory B = Sub P2 is extension-closed. By
Theorem II.3.1, B has a cluster-tilting object that can be extended to a cluster-tilting object for
C = mod Λ.

The indecomposable submodules of P2 for which we need to construct a cluster-tilting object
have the following radical filtrations. The indexing will be explained in § IV.

P2

2
1 3 4

2 2
1 3 4

2

M16
3 4

2 M24
1 3

2 M25
1 4

2 M26
1 3 4

2

M68

1 3 4
2 2

1 3 4
2

M18

1
2

3 4
2

M−

4
2

1 3
2

M+

3
2

1 4
2

Let T be the sum of the indecomposables in the above table and let T̃ = T ⊕ P1 ⊕ P3 ⊕ P4. It
is easy to see that T̃ is a cluster-tilting object in C and hence that T is a cluster-tilting object
in B. It follows that B has a substructure of the cluster structure of C.

III. Preprojective algebras for non-Dynkin quivers

In this section we deal with completions of preprojective algebras of a finite connected quiver Q
with no oriented cycles, mainly those which are not Dynkin. In this case, the modules of finite
length coincide with the nilpotent modules over the preprojective algebra. These algebras Λ are
known to be derived 2-CY (see [Boc08, CB00, BBK02, GLS07b]). Tilting Λ-modules of projective
dimension at most one were investigated in [IR08] for when the quiver Q is a (generalized)
extended Dynkin quiver. It was shown that such tilting modules are exactly the ideals in Λ
which are finite products of two-sided ideals Ii = Λ(1− ei)Λ, where e1, . . . , en correspond to
the vertices of the quiver, and that they are in one-to-one correspondence with the elements
of the corresponding Weyl group, where w = si1 · · · sik corresponds to Iw = Ii1 · · · Iik . Here we
generalize some of the results from [IR08] beyond the noetherian case. In particular, we show
that any finite product of ideals of the form Ii is a tilting module and, moreover, that there is a
bijection between cofinite tilting ideals and elements of the associated Coxeter group W .

For any descending chain of tilting ideals of the form Λ⊇ Ii1 ⊇ Ii1Ii2 ⊇ Ii1Ii2 · · · Iik ⊇ · · ·
we show that for Λm = Λ/Ii1 · · · Iim , the categories Sub Λm and Sub Λm are, respectively,
stably 2-CY and 2-CY with nice cluster-tilting objects. In this way we get, for any w ∈W ,
a stably 2-CY category Cw = Sub(Λ/Iw) and, for any reduced expression w = si1 · · · sik , a

cluster-tilting object
⊕k

j=1 Λ/Isi1
···sij

in Cw. We also construct cluster-tilting subcategories of
the derived 2-CY category f. l. Λ. Thus we obtain many examples of weak cluster structures
without loops or 2-cycles, which are then cluster structures by Theorem II.1.6. We also get many
examples of substructures. In particular, any cluster category and the stable category mod Λ
of a preprojective algebra of Dynkin type occur amongst this class. We give a description of
the quivers of the cluster-tilting objects or subcategories in terms of the associated reduced
expressions. For example, the quiver of the preprojective component of the hereditary algebra
with additional arrows from X to τX occurs in this manner. In § IV.3, a conjectural connection
with coordinate rings of unipotent cells having a cluster algebra structure is given.

We refer to [Iya] for corresponding results for d-CY algebras.
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III.1 Tilting modules over preprojective algebras

Let Q be a finite connected quiver without oriented cycles which is not Dynkin. Let K be
an algebraically closed field and Λ the completion of the associated preprojective algebra.
In [IR08], the tilting Λ-modules of projective dimension at most one were investigated in
the noetherian case, that is, when Q is extended Dynkin [BGL87] (and also the generalized
case with loops). In this section we generalize some of these results to the non-noetherian case,
concentrating on the aspects that will be needed later for our construction of new 2-CY categories
with cluster-tilting objects or subcategories. Note that since Λ is complete, the Krull–Schmidt
theorem holds for finitely generated projective Λ-modules.

We say that a finitely presented Λ-module T is a tilting module if: (i) there exists an
exact sequence 0→ Pn→ · · · → P0→ Λ→ 0 with finitely generated projective Λ-modules Pi; (ii)
Exti

Λ(T, T ) = 0 for any i > 0; and (iii) there exists an exact sequence 0→ Λ→ T0→ · · · → Tn→ 0
with Ti in add T .

We say that T ∈D(Mod Λ) is a tilting complex [Ric89] if: (i′) T is quasi-isomorphic to an
object in the category Kb(pr Λ) of bounded complexes of finitely generated projective Λ-modules
pr Λ; (ii′) HomD(Mod Λ)(T, T [i]) = 0 for any i 6= 0; and (iii′) T generates Kb(pr Λ).

A tilting module is none other than a module which is a tilting complex, since the condition
(iii) can be replaced by (iii′). A partial tilting complex is a direct summand of a tilting complex.
A partial tilting module is a module which is a partial tilting complex.

Let 1, . . . , n denote the vertices in Q, and let e1, . . . , en be the corresponding idempotents.
For each i we denote by Ii the ideal Λ(1− ei)Λ. Then Si = Λ/Ii is a simple Λ-module and Λop-
module, since by assumption there are no loops in the quiver. We shall show that each Ii, and
any finite product of such ideals, is a tilting ideal in Λ, and we will give some information about
how the different products are related. But first we present some preliminary results where new
proofs are needed since, in contrast to [IR08], we do not assume Λ to be noetherian.

Lemma III.1.1. Let T be a partial tilting Λ-module of projective dimension at most one, and
let S be a simple Λop-module. Then at least one of the statements S ⊗Λ T = 0 and TorΛ1 (S, T ) = 0
holds.

Proof. We only have to show that there is a projective resolution 0→ P1→ P0→ T → 0 such
that P0 and P1 do not have a common summand. This is done as in [HU05, Lemma 1.2]. ✷

Recall that for rings Λ and Γ, we call an object T in D(Mod Λ⊗Z Γop) a two-sided tilting
complex if T is a tilting complex in D(Mod Λ) and EndD(Mod Λ)(T )≃ Γ naturally.

The following result is useful (see [Ric89] and [Yek99, Corollary 1.7]).

Lemma III.1.2. Let T ∈D(Mod Λ⊗Z Γop) be a two-sided tilting complex.

(a) For any tilting complex (respectively, partial tilting complex) U of Γ, we have a tilting

complex (respectively, partial tilting complex) T
L

⊗Γ U of Λ such that EndD(Mod Λ)(T
L

⊗Γ

U)≃ EndD(Mod Γ)(U).

(b) R HomΛ(T, Λ) and R HomΓop(T, Γ) are two-sided tilting complexes and are isomorphic in
D(Mod Γ⊗Z Λop).

We collect some basic information on preprojective algebras.
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Proposition III.1.3. Let Λ be the completion of the preprojective algebra of a finite connected
non-Dynkin diagram without loops.

(a) Let Γ be the completion of Λ⊗KQ0 Λop with respect to the ideal J ⊗KQ0 Λop + Λ⊗KQ0 J
op,

where J is the radical of Λ. Then there exists a commutative diagram

0 → P2
f2
→ P1

f1
→ P0 → Λ → 0

↓ ≀ ↓ ≀ ↓ ≀ ↓ ≀

0 → HomΓ(P0, Γ)
f1·
→ HomΓ(P1, Γ)

f2·
→ HomΓ(P2, Γ) → Λ → 0

of exact sequences of Γ-modules such that each Pi is a finitely generated projective Γ-module
and P0 ≃ P2 ≃ Γ.

(b) There exists a functorial isomorphism HomD(Mod Λ)(X, Y [1])≃D HomD(Mod Λ)(Y, X[1]) for

any X ∈Db(f. l. Λ) and Y ∈Kb(pr Λ).

(c) f. l. Λ is derived 2-CY and gl. dim Λ = 2. In particular, any left ideal I of Λ satisfies
pd ΛI ≤ 1.

(d) Exti
Λ(X, Λ) = 0 for i 6= 2 and Ext2Λ(X, Λ)≃DX for any X ∈ f. l. Λ.

Proof. (a) See [GLS06, § 8] and [BBK02, § 4.1].

(b) This follows from (a) and [Boc08, Theorem 4.2].

(c) and (d) These follow immediately from (a) and (b). ✷

We are now ready to show that each Ii, and a finite product of such ideals, is a tilting module.

Proposition III.1.4. Ii is a tilting Λ-module of projective dimension at most one and
EndΛ(Ii) = Λ.

Proof. We have Extn
Λ(Si, Λ)≃D Ext2−n

Λ (Λ, Si) = 0 for n= 0, 1 by Proposition III.1.3. Applying
HomΛ( , Λ) to the exact sequence 0→ Ii→ Λ→ Si→ 0, we get HomΛ(Ii, Λ) = Λ.
Applying HomΛ(Ii, ), we get an exact sequence 0→ EndΛ(Ii)→HomΛ(Ii, Λ)→HomΛ(Ii, Si).
Since HomΛ(Ii, Si) = 0, we have EndΛ(Ii) = HomΛ(Ii, Λ) = Λ.

Applying ⊗ΛSi to the exact sequence in Proposition III.1.3(a) we have a projective resolution

0→ Λei
g
→ P

f
→ Λei→ Si→ 0 (2)

with Im f = Iiei and P ∈ add Λ(1− ei). In particular, Ii = Im f ⊕ Λ(1− ei) is a finitely
presented Λ-module with pd Ii ≤ 1.

We have Ext1Λ(Ii, Ii)≃ Ext2Λ(Si, Ii)≃D HomΛ(Ii, Si) = 0. Using (2), we have an exact
sequence

0→ Λ→ P ⊕ Λ(1− ei)→ Iiei→ 0

such that the middle and the right terms belong to add Ii. Thus Ii is a tilting Λ-module. ✷

Proposition III.1.5. Let T be a tilting Λ-module of projective dimension at most one.

(a) If TorΛ1 (Si, T ) = 0, then Ii
L

⊗Λ T = Ii ⊗Λ T = IiT is a tilting Λ-module of projective
dimension at most one.

(b) IiT is always a tilting Λ-module of projective dimension at most one, and EndΛ(IiT )≃
EndΛ(T ).
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Proof. (a) TorΛ1 (Ii, T ) = TorΛ2 (Si, T ) = 0 because pd T ≤ 1, so we have Ii
L

⊗Λ T = Ii ⊗Λ T . Since
there is an exact sequence

0 = TorΛ1 (Si, T )→ Ii ⊗Λ T → Λ⊗Λ T → Si ⊗Λ T → 0,

we have Ii ⊗Λ T = IiT . Thus Ii
L

⊗Λ T = IiT is a tilting Λ-module by Lemma III.1.2 and
Proposition III.1.4. Since pd T ≤ 1 and pd T/IiT ≤ 2 by Proposition III.1.3, we have pd IiT ≤ 1.

(b) By Lemma III.1.1, either Si ⊗Λ T = 0 or TorΛ1 (Si, T ) = 0. If Si ⊗Λ T = 0, then IiT = T
holds. If TorΛ1 (Si, T ) = 0, then we apply (a). For the rest we use Lemma III.1.2. ✷

A left ideal I of Λ is said to be cofinite if Λ/I ∈ f. l.Λ and tilting (respectively, partial tilting)
if it is a tilting (respectively, partial tilting) Λ-module. A cofinite, tilting or partial tilting right
ideal of Λ can be defined similarly. An ideal I of Λ is called cofinite tilting if it is cofinite tilting as
a left and as a right ideal. We denote by 〈I1, . . . , In〉 the ideal semigroup generated by I1, . . . , In.
Then we have the following result.

Theorem III.1.6.

(a) Any T ∈ 〈I1, . . . , In〉 is a cofinite tilting ideal and satisfies EndΛ(T ) = Λ.

(b) Any cofinite tilting ideal of Λ belongs to 〈I1, . . . , In〉.

(c) Any cofinite partial tilting left or right ideal of Λ is a cofinite tilting ideal.

(d) If two cofinite tilting ideals are isomorphic as left or as right Λ-modules, then they coincide.

Proof. (a) This is a direct consequence of Propositions III.1.4 and III.1.5.

(b) and (c) Let T be a cofinite partial tilting left ideal of Λ. If T 6= Λ, then there exists
a simple submodule Si of Λ/T . Since HomΛ(Si, Λ) = 0, we have Ext1Λ(Si, T ) 6= 0. Therefore
TorΛ1 (Si, T )≃D Ext1Λ(T, Si)≃ Ext1Λ(Si, T ) 6= 0. From Lemma III.1.1 it follows that Si ⊗Λ T = 0.

Now put U = R HomΛ(Ii, T ). By Lemma III.1.2, we have that U ≃R HomΛ(Ii, Λ)
L

⊗Λ T is a
partial tilting complex of Λ. Because pd Ii ≤ 1 and Ext1Λ(Ii, T )≃ Ext2Λ(Si, T )≃D HomΛ(T, Si)≃
Si ⊗Λ T = 0, we have U = HomΛ(Ii, T ), which is a partial tilting Λ-module. Since we have a
commutative diagram

0 = HomΛ(Si, Λ) → Λ → HomΛ(Ii, Λ) → Ext1Λ(Si, Λ) = 0
∪ ∪
T → HomΛ(Ii, T ) → Ext1Λ(Si, T ) → 0

of exact sequences, U is a cofinite partial tilting left ideal of Λ containing T properly such that
U/T is a direct sum of copies of Si. By Si ⊗Λ T = 0, we have T = IiU . Thus T ∈ 〈I1, . . . , In〉 by
induction on the length of Λ/T .

(d) Assume that f : T → U is an isomorphism of Λ-modules for T, U ∈ 〈I1, . . . , In〉, and
let g = f−1. Since Ext1Λ(Λ/T, U) = 0, we can extend f and g to morphisms f, g : Λ→ Λ. Since
(fg)|T = idT and (gf)|T = idU , one can easily check that fg = idΛ = gf . Thus there exists an
invertible element x ∈ Λ such that f is right multiplication with x. We then have U = f(T ) =
Tx= T . ✷

We pose the following question, for which there is a positive answer in the extended Dynkin
case [IR08].

Question III.1.7. For any tilting Λ-module T of projective dimension at most one, does there
exist some U in 〈I1, . . . , In〉 such that add T = add U?
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We have some stronger statements concerning products of the ideals Ii, which generalize
results for the noetherian case from [IR08].

Proposition III.1.8. The following equalities hold for multiplication of ideals.

(a) I2
i = Ii.

(b) IiIj = IjIi if there is no arrow between i and j in Q.

(c) IiIjIi = IjIiIj if there is precisely one arrow between i and j in Q.

Proof. The equality in (a) is obvious.

Parts (b) and (c) are proved in [IR08, Proposition 6.12] for module-finite 2-CY algebras. Here
we give a direct proof for an arbitrary preprojective algebra Λ associated with a finite quiver Q
without loops. Let Ii,j = Λ(1− ei − ej)Λ. Then any product of ideals Ii and Ij contains Ii,j . If
there is no arrow from i to j, then Λ/Ii,j is semisimple. Thus IiIj and IjIi are contained in Ii,j ,
and we have IiIj = Ii,j = IjIi.

If there is precisely one arrow from i to j, then Λ/Ii,j is the preprojective algebra of type A2.
Hence there are two indecomposable projective Λ/Ii,j-modules, whose Loewy series are

(
i
j

)
and(

j
i

)
. Thus IiIjIi and IjIiIj are contained in Ii,j , and we have IiIjIi = Ii,j = IjIiIj . ✷

Now let W be the Coxeter group associated to the quiver Q; so W has generators s1, . . . , sn

with relations s2i = 1, sisj = sjsi if there is no arrow between i and j in Q, and sisjsi = sjsisj if
there is a precisely one arrow between i and j in Q.

Theorem III.1.9. There exists a bijection W → 〈I1, . . . , In〉. It is given by w 7→ Iw = Ii1Ii2 ...Iik
for any reduced expression w = si1si2 ...sik .

Proof. The corresponding result was proved in [IR08] for the noetherian case, using a partial
order of tilting modules. Here we use, instead, properties of Coxeter groups.

First, we show that the map is well-defined. Take two reduced expressions w = si1si2 ...sik =
sj1sj2 ...sjk

. By [BB05, Theorem 3.3.1(ii)], two words si1si2 ...sik and sj1sj2 ...sjk
can be connected

by a sequence made up of the following operations: (i) replace sisj by sjsi (there is no arrow
from i to j); (ii) replace sisjsi by sjsisj (there is precisely one arrow from i to j). Consequently,
by Proposition III.1.8 parts (b) and (c), we have Ii1Ii2 ...Iik = Ij1Ij2 ...Ijk

. Thus the map is well-
defined.

Next, we show that the map is surjective. For any I ∈ 〈I1, . . . , In〉, take an expression
I = Ii1Ii2 ...Iik with a minimal number k. Let w = si1si2 ...sik . By [BB05, Theorem 3.3.1(i)], a
reduced expression of w is obtained from the word si1si2 ...sik by a sequence made up of the
operations (i) and (ii) above along with: (iii) remove sisi. By Proposition III.1.8, the operation
(iii) cannot appear since k is minimal. Thus w = si1si2 ...sik is a reduced expression, and we have
I = Iw.

Finally, we show that the map is injective, using a similar argument as in [IR08]. Let

E = Kb(pr Λ). For any i, we have an autoequivalence Ii
L

⊗Λ of E and an automorphism [Ii
L

⊗Λ ] of

the Grothendieck group K0(E). By [IR08, proof of Theorem 6.6], we have the action si 7→ [Ii
L

⊗Λ ]
of W on K0(E)⊗Z C, which is known to be faithful [BB05, Theorem 4.2.7].

For any reduced expression w = si1si2 ...sik we have Iw = Ii1
L

⊗Λ ...
L

⊗Λ Iik , by Proposi-
tion III.1.5(a) and the minimality of k. Thus, the action of w on K0(E)⊗Z C coincides with
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[Iw
L

⊗Λ ]. In particular, if w, w′ ∈W satisfy Iw = Iw′ , then the actions of w and w′ on K0(E)⊗Z C

coincide, so we have w = w′ by the faithfulness of the action. ✷

We denote by l(w) the length of w ∈W . We say that an infinite expression si1si2 · · · sik · · ·
is reduced if the expression si1si2 · · · sik is reduced for any k.

Proposition III.1.10. Let w ∈W and i ∈ {1, . . . , n}. If l(wsi)> l(w), then we have IwIi =
Iwsi

( Iw. If l(wsi)< l(w), then we have IwIi = Iw ( Iwsi
.

Proof. Let w = si1 · · · sik be a reduced expression. If l(wsi)> l(w), then wsi = si1 · · · siksi is a
reduced expression, so the assertion follows from Theorem III.1.9. If l(wsi)< l(w), then u= wsi

satisfies l(usi)> l(u), so IuIi = Iusi
= Iw ( Iu. ✷

Let si1si2 · · · sik · · · be a (finite or infinite) expression such that ik ∈ {1, . . . , n}. Let

wk = si1si2 · · · sik , Tk = Iwk
= Ii1Ii2 · · · Iik and Λk = Λ/Tk.

We have a descending chain

Λ = T0 ⊇ T1 ⊇ T2 ⊇ · · ·

of cofinite tilting ideals of Λ, as well as a chain

Λ1← Λ2← Λ3← · · ·

of surjective ring homomorphisms. The chains have the following properties.

Proposition III.1.11.

(a) If Tm−1 6= Tm, then Λm differs from Λm−1 in exactly one indecomposable summand Λmeim .

(b) Let k ≤m. Then Λkeik is a projective Λm-module if and only if ik /∈ {ik+1, ik+2, . . . , im}.

(c) T1 ) T2 ) T3 ) · · · holds if and only if si1si2 · · · is reduced.

Proof. (a) This follows from Tm(1− eim) = Tm−1Iim(1− eim) = Tm−1(1− eim).

(b) If ik /∈ {ik+1, . . . , im}, then Λkeik is a summand of Λm by (a), so it is a projective Λm-
module. Otherwise, take the smallest k′ with k < k′ ≤m that satisfies ik = ik′ . Then we have
Λkeik = Λk′ −1eik and that Λkeik is a proper factor module of Λk′eik , by (a). Hence Λkeik is not
a projective Λm-module.

(c) This follows from Proposition III.1.10. ✷

Our next goal is to show that Ext1Λ(Tk, Tm) = 0 for k ≤m. For this the following result will
be useful.

Lemma III.1.12. Let the notation and assumptions be as above. Then ⊥>0Tm−1 ⊆
⊥>0Tm, where

⊥>0T = {X ∈mod Λ | Exti
Λ(X, T ) = 0 for all i > 0}.

Proof. We can assume that Tm−1 6= Tm. Then we have that Tm−1 ⊗Λ Sim 6= 0. Hence
TorΛ1 (Tm−1, Sim) = 0 by Lemma III.1.1, and so Tm−1 ⊗Λ Iim = Tm−1Iim = Tm by Proposi-
tion III.1.5. Let 0→ P1→ P0→ Iim → 0 be a projective resolution. We have TorΛ1 (Tm−1, Iim)≃
TorΛ2 (Tm−1, Sim) = 0. Applying Tm−1⊗Λ , we have an exact sequence 0→ Tm−1 ⊗Λ P1→
Tm−1 ⊗Λ P0→ Tm→ 0. This immediately implies that ⊥>0Tm−1 ⊆

⊥>0Tm. ✷

We now have the following consequence.

Proposition III.1.13. With the above notation and assumptions, we have Ext1Λ(Tk, Tm) = 0
for k ≤m.
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Proof. By Lemma III.1.12 we have ⊥>0Tk ⊆
⊥>0 Tk+1 ⊆ · · · ⊆

⊥>0 Tm. Since Tk is in ⊥>0Tk, we
then have that Tk is in ⊥>0Tm. Hence Ext1Λ(Tk, Tm) = 0 for k ≤m. ✷

Later we will use the following observation.

Lemma III.1.14. Assume that the expression si1si2 · · · is reduced. Let Tk,m = Iik · · · Iim if
k ≤m and Tk,m = Λ otherwise. Then we have HomΛ(Tk, Tm)≃ Tk+1,m = {x ∈ Λ | Tkx⊆ Tm} and
HomΛ(Λk, Λm)≃ Tk+1,m/Tm.

Proof. Let U = {x ∈ Λ | Tkx⊆ Tm} ⊇ Tk+1,m.

If k ≥m, then clearly U = Λ = Tk+1,m holds and, by Theorem III.1.6, HomΛ(Tk, Tm)⊆
EndΛ(Tk)≃ Λ. Thus HomΛ(Tk, Tm)≃ Λ.

Now assume that k <m. Since Tm = Tk

L

⊗Λ Tk+1,m holds by Proposition III.1.5(a) and

Lemma III.1.2, we have R HomΛ(Tk, Tm) = R HomΛ(Tk, (Tk

L

⊗Λ Tk+1,m)) = R HomΛ(Tk, Tk)
L

⊗Λ

Tk+1,m = Λ
L

⊗Λ Tk+1,m = Tk+1,m. In particular, HomΛ(Tk, Tm) = Tk+1,m. On the other hand,
there is a commutative diagram

Λ → HomΛ(Tk, Λ)
∪ ∪
U → HomΛ(Tk, Tm) ≃ Tk+1,m

where the horizontal map is given by x 7→ (·x) for any x ∈ Λ, which is injective. Thus we have
U ⊆ Tk+1,m, and so U = Tk+1,m.

To show the second equality, note that for any f ∈HomΛ(Λk, Λm), there exists a unique
element x ∈ Λm such that f(y) = yx for any y ∈ Λ. Since Tkx⊆ Tm holds, we have x ∈ U . Thus
HomΛ(Λk, Λm)≃ U/Tm = Tk+1,m/Tm. ✷

III.2 Cluster-tilting objects for preprojective algebras

Again, take Λ to be the completion of the preprojective algebra of a finite connected non-Dynkin
quiver without loops over the field K. We show that for a large class of cofinite tilting ideals I
in Λ, Λ/I is a finite-dimensional K-algebra which is Gorenstein of dimension at most one,
and the categories Sub Λ/I and Sub Λ/I are stably 2-CY and 2-CY, respectively. We describe
some cluster-tilting objects in these categories, by using tilting ideals. We also describe cluster-
tilting subcategories in the derived 2-CY abelian category f. l. Λ which have an infinite number of
nonisomorphic indecomposable objects. Hence we get examples of cluster structures with infinite
clusters (see [KR08] for other examples).

We start by investigating Λ/T for our special cofinite tilting ideals T as a module over Λ and
over the factor ring Λ/U for a cofinite tilting ideal U contained in T .

Lemma III.2.1. Let T and U ′ be cofinite tilting ideals in Λ, and let U = TU ′. Then
Ext1Λ(Λ/T, Λ/U) = 0 = Ext1Λ(Λ/U, Λ/T ).

Proof. Consider the exact sequence 0→ U → Λ→ Λ/U → 0. Applying HomΛ(Λ/T, ), we have
an exact sequence

Ext1Λ(Λ/T, Λ)→ Ext1Λ(Λ/T, Λ/U)→ Ext2Λ(Λ/T, U).

By Proposition III.1.3, Ext1Λ(Λ/T, Λ) = 0. It follows from Corollary III.1.13 that Ext1Λ(T, U) = 0.
Since Ext2Λ(Λ/T, U)≃ Ext1Λ(T, U) = 0, we have Ext1Λ(Λ/T, Λ/U) = 0. Because Λ is derived 2-CY,
it follows that also Ext1Λ(Λ/U, Λ/T ) = 0. ✷

Using this lemma, we can obtain more information on Λ/T .
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Proposition III.2.2.

(a) For a cofinite ideal T in Λ with Ext1Λ(Λ/T, Λ/T ) = 0, the algebra Λ/T is Gorenstein of
dimension at most one.

(b) For a cofinite tilting ideal T in Λ, the factor algebra Λ/T is Gorenstein of dimension at
most one.

Proof. (a) Consider the exact sequence 0→ ΩΛ(D(Λ/T ))→ P →D(Λ/T )→ 0 with a
projective Λ-module P . Using Lemma III.2.1 and [CE56], we obtain TorΛ1 (Λ/T, D(Λ/T ))≃
D Ext1Λop(Λ/T, Λ/T ) = 0. Applying Λ/T⊗Λ to the above exact sequence, we get the exact
sequence 0→ Λ/T ⊗Λ ΩΛ(D(Λ/T ))→ Λ/T ⊗Λ P → Λ/T ⊗Λ D(Λ/T )→ 0. The Λ/T -module
Λ/T ⊗Λ P is projective. To see that Λ/T ⊗Λ ΩΛ(D(Λ/T )) is also a projective Λ/T -module, we
show that the functor HomΛ/T (Λ/T ⊗Λ ΩΛ(D(Λ/T )), )≃HomΛ(ΩΛ(D(Λ/T )), ) is exact on
mod Λ/T . This follows from the functorial isomorphisms

Ext1Λ(ΩΛ(D(Λ/T )), ) ≃ Ext2Λ(D(Λ/T ), )

≃ D HomΛ( , D(Λ/T ))

≃ D HomΛ/T ( , D(Λ/T ))≃ idmod Λ/T .

Hence we conclude that pdΛ/T D(Λ/T )≤ 1. It is then well-known and easy to verify that
pd(Λ/T )op D(Λ/T )≤ 1; so, by definition, Λ/T is Gorenstein of dimension at most one.

(b) This is a direct consequence of (a) and Lemma III.2.1. ✷

When Λ/T is Gorenstein of dimension at most one, the category of Cohen–Macaulay modules
is the category Sub Λ/T of first syzygy modules (see [AR91, Hap91]). It is known that Sub Λ/T
is a Frobenius category, with add Λ/T being the category of projective and injective objects, and
that the stable category Sub Λ/T is triangulated [Hap88]. Moreover, by Corollary II.2.7, Sub Λ/T
is an extension-closed subcategory of mod Λ/T , since idΛ/T Λ/T ≤ 1 and Ext1Λ/T (Λ/T, Λ/T ) = 0.
However, to show that the stably 2-CY property can be deduced from f. l. Λ being derived 2-CY,
we need Sub Λ/T to be extension-closed also in f. l. Λ.

Proposition III.2.3. Let T be a cofinite ideal with Ext1Λ(Λ/T, Λ/T ) = 0 (e.g. a cofinite tilting
ideal).

(a) Ext1Λ(Λ/T, X) = 0 = Ext1Λ(X, Λ/T ) for all X in Sub Λ/T .

(b) Sub Λ/T is an extension-closed subcategory of f. l. Λ.

(c) Sub Λ/T and Sub Λ/T are stably 2-CY and 2-CY, respectively.

Proof. (a) ForX in Sub Λ/T we have an exact sequence 0→X → P → Y → 0 with Y in Sub Λ/T
and P in add Λ/T . Upon applying HomΛ(Λ/T, )≃HomΛ/T (Λ/T, ), the sequence does not

change. Since Ext1Λ(Λ/T, Λ/T ) = 0, we conclude that Ext1Λ(Λ/T, X) = 0. Hence Ext1Λ(X, Λ/T ) =
0 by the derived 2-CY property of f. l. Λ.

(b) Let 0→X → Y → Z→ 0 be an exact sequence in f. l. Λ, with X and Z in Sub Λ/T . Then
we have a monomorphism X → P , with P in add Λ/T . Since Ext1Λ(Z, P ) = 0 by (a), we have a
commutative diagram of exact sequences as follows.

0 // X� _

��

// Y � _

��

// Z // 0

0 // P // P ⊕ Z // Z // 0

Thus Y is a submodule of P ⊕ Z ∈ Sub Λ/T , and we have Y ∈ Sub Λ/T .

1058

https://doi.org/10.1112/S0010437X09003960 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003960


Cluster structures for 2-Calabi–Yau categories and unipotent groups

(c) Since Sub Λ/T is extension-closed in f. l. Λ, we have Ext1Sub Λ/T (X, Y ) = Ext1Λ(X, Y ). As

Sub Λ/T is Frobenius, it follows from Proposition II.1.1 that Sub Λ/T is stably 2-CY because
f. l. Λ is derived 2-CY, and so Sub Λ/T is 2-CY. ✷

We now want to investigate the cluster-tilting objects in Sub Λ/T and Sub Λ/T for certain
tilting ideals T ; later we shall also investigate the cluster-tilting subcategories of f. l. Λ. The next
observation will be useful.

Lemma III.2.4. Let ∆ be a finite-dimensional algebra and M a ∆-module which is a generator.
Let Γ = End∆(M), and assume gl. dim Γ≤ 3 and pdΓ D(M)≤ 1. Then for any X in mod ∆
there is an exact sequence 0→M1→M0→X → 0, with M0 and M1 in add M .

Proof. Let X be in mod ∆, and consider the exact sequence 0→X → I0→ I1 where I0 and I1
are injective. Apply Hom∆(M, ) to get an exact sequence 0→Hom∆(M, X)→Hom∆(M, I0)→
Hom∆(M, I1). Since, by assumption, pdΓ Hom∆(M, Ii)≤ 1 for i= 0, 1 and gl. dim Γ≤ 3, we
obtain pdΓ Hom∆(M, X)≤ 1. Hence we have an exact sequence 0→ P1→ P0→Hom∆(M, X)→
0 in mod Γ with P0 and P1 projective. This sequence is the image under the functor Hom∆(M, )
of the complex 0→M1→M0→X → 0 in mod ∆, with M0 and M1 in add M . Since M is
assumed to be a generator, this complex must be exact, and we have our desired exact sequence. ✷

Now let Λ = T0 ) T1 ) T2 ) · · · be a strict descending chain of tilting ideals corresponding to
a (finite or infinite) reduced expression si1si2si3 · · · . We wish to describe some natural cluster-
tilting objects for the algebras Λm = Λ/Tm. Let

Λk = Λ/Tk, Mm =

m⊕

k=0

Λk

and Γ = EndΛm(Mm). The following proposition will be essential.

Proposition III.2.5. With the above notation, the following properties hold.

(a) For X in mod Λm there is an exact sequence 0→N1→N0→X → 0 in mod Λm, with Ni

in add Mm for i= 1, 2.

(b) gl. dim Γ≤ 3.

Proof. We prove (a) and (b) by induction on m. Assume first that m= 1. Then Λ1 = Λ/T1, which
is a simple Λ1-module. Since M1 = Λ/T1, (a) and (b) are trivially satisfied in this case.

Assume now that m> 1 and that (a) and (b) have been established for m− 1. Let us prove
that (b) holds for m. Note that since there are no loops for Λ, we have Tm−1J ⊆ Tm, where J is
the Jacobson radical of Λ so that JΛm is a Λm−1-module (∗). For an indecomposable object X
inMm = add Mm, let f : C0→X be a minimal right almost-split map inMm.

Suppose that X is not a projective Λm-module. Then f must be surjective. An
indecomposable object which is inMm but not inMm−1 is a projective Λm-module, so we can
write C0 = C ′

0 ⊕ P where C ′
0 ∈Mm−1 and P is a projective Λm-module. Since f is right minimal,

we have Ker f ⊆ C ′
0 ⊕ JP so that Ker f is a Λm−1-module by (∗). It follows by the induction

hypothesis that there is an exact sequence 0→ C2→ C1→Ker f → 0 with C1 and C2 inMm−1.
Hence we have an exact sequence 0→ C2→ C1→ C0→X → 0. Applying HomΛ(Mm, ) gives an
exact sequence

0→HomΛ(Mm, C2)→HomΛ(Mm, C1)→HomΛ(Mm, C0)→HomΛ(Mm, X)→ S→ 0.
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Then the module S, which is a simple module in the top of HomΛ(Mm, X) in mod Γ, has
projective dimension at most three.

Suppose now that X is a projective Λm-module. Then, by (∗), we have that JX is in
mod Λm−1. By the induction hypothesis, there is then an exact sequence 0→ C1→ C0→ JX →
0 with C0 and C1 in Mm−1. Hence we have an exact sequence 0→ C1→ C0→X. Applying
HomΛ(Mm, ) gives the exact sequence

0→HomΛ(Mm, C1)→HomΛ(Mm, C0)→HomΛ(Mm, X)→ S→ 0,

where S is the simple top of HomΛ(Mm, X), and hence pdΓ S ≤ 2. It now follows that
gl. dim Γm ≤ 3.

Finally, we show that (a) holds for m. By Proposition III.2.2 we have an exact sequence
0→ P1→ P0→D(Λm)→ 0 in mod Λm, where P0 and P1 are projective Λm-modules. From
Lemma III.2.1 we have Ext1Λ(Mm, Λm) = 0. Applying HomΛ(Mm, ) gives the exact sequence

0→HomΛ(Mm, P1)→HomΛ(Mm, P0)→HomΛ(Mm, D(Λm))→ 0.

Since HomΛ(Mm, D(Λm))≃D(Mm), we have pdΓm
D(Mm)≤ 1. Now our desired result follows

from Lemma III.2.4. ✷

We can now describe some cluster-tilting objects in Sub Λm and Sub Λm.

Theorem III.2.6. With the above notation, Mm is a cluster-tilting object in Sub Λm and in
Sub Λm.

Proof. We already have that Ext1Λ(Mm, Mm) = 0 by Lemma III.2.1, so Ext1Λm
(Mm, Mm) = 0.

Note that Sub Λm = {X ∈mod Λm | Ext1Λm
(X, Λm) = 0}, because Λm is a cotilting module with

id Λm ≤ 1. Since Λm is a summand of Mm, we have that Mm is in Sub Λm. Assume then that
Ext1Λm

(X,Mm) = 0 for X in mod Λm. By Proposition III.2.5(a), there is an exact sequence
0→ C1→ C0→X → 0 with C1 and C0 in add Mm, which must split by our assumption. HenceX
is in add Mm, and it follows that Mm is a cluster-tilting object in Sub Λm. It then follows, as
usual, that it is a cluster-tilting object also in Sub Λm. ✷

We have now obtained a large class of 2-CY categories Sub Λ/Iw and Sub Λ/Iw defined via
elements w of the associated Coxeter group W , along with cluster-tilting objects associated with
reduced expressions of elements in W . We call these standard cluster-tilting objects for Sub Λ/Iw
or Sub Λ/Iw. We can also describe cluster-tilting subcategories with an infinite number of non-
isomorphic indecomposable objects in the categories f. l. Λ.

Theorem III.2.7. With the above notation, assume that each i occurs an infinite number of
times in i1, i2, . . .. ThenM= add{Λm | 0≤m} is a cluster-tilting subcategory of f. l. Λ.

Proof. We already know that Ext1Λ(Λk, Λm) = 0 for all k and m. Now let X be indecomposable
in f. l. Λ. Then X is a Λ/Jk-module for some k. We have J = I1 ∩ · · · ∩ In ⊇ I1 · · · In, where
1, . . . , n are the vertices in the quiver. By our assumptions, we have Jk ⊇ Tm for some m so
that X is a Λm-module. Consider the exact sequence 0→ C1→ C0→X → 0 in mod Λm, with C1

and C0 in add Mm, obtained from Proposition III.2.5. Assume that Ext1Λ(X,M) = 0. Since also
Ext1Λm

(X,Mm) = 0, the sequence splits, so X is inMm and hence inM.
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It only remains to show that M is functorially finite; so let X be in f. l. Λ. Using the above
exact sequence 0→ C1→ C0→X → 0, we get the exact sequence

0→ (C, C1)→ (C, C0)→ (C, X)→ Ext1Λ(C, C1) = 0

for C inM. Hence M is contravariantly finite.

For X in f. l. Λ, take the left (SubM)-approximation X → Y and choose m such that Y ∈
Sub Λm. For any Y ∈ Sub Λm, there exists an exact sequence 0→ Y → C0→ C1→ 0 with
Ci ∈Mm by Proposition II.1.7(a). Then the compositionX → Y → C0 is a leftM-approximation
since Ext1Λ(C1,M) = 0; thereforeM is also covariantly finite. ✷

Summarizing our results, we state the following.

Theorem III.2.8.

(a) For any w ∈W , we have a stably 2-CY category Cw = Sub Λ/Iw.

(b) For any reduced expression w = si1 · · · sim of w ∈W , we have a cluster-tilting object⊕m
k=1 Λ/Isi1

···sik
in Cw. In particular, the number of non-isomorphic indecomposable

summands in any cluster-tilting object is l(w).

(c) For any infinite reduced expression si1si2 · · · such that each i occurs an infinite number of
times in i1, i2, . . ., we have a cluster-tilting subcategory add{Λ/Isi1

···sik
| 0≤ k} in f. l. Λ.

We end this subsection by showing that the subcategories Sub Λ/Iw can be characterized by
means of torsionfree classes.

Theorem III.2.9. Let Λ be the completed preprojective algebra of a connected non-Dynkin
quiver without loops. Let C be a torsionfree class in f. l. Λ with some cluster-tilting object. Then
C = Sub Λ/Iw for some element w in the Coxeter group associated with Λ.

Proof. We first prove that if M is a cluster-tilting object in C, then C = Sub M . We only
need to show that C ⊂ Sub M . For any X ∈ C, take a projective resolution HomΛ(M, N)→
Ext1Λ(M, X)→ 0 (∗) of EndΛ(M)-modules with N ∈ add M . Replacing M in (∗) by N , we get an
exact sequence 0→X → Y →N → 0 as the image of the identity 1N ∈ EndΛ(N) in Ext1Λ(N, X).
Since C is extension-closed, Y ∈ C. We have an exact sequence HomΛ(M, N)→ Ext1Λ(M, X)→
Ext1Λ(M, Y )→ Ext1Λ(M, N) = 0. Since (∗) is exact, Ext1Λ(M, Y ) = 0. Thus we have Y ∈ add M
and X ∈ Sub M .

Now let I be the annihilator ann ΛM of M in Λ. Then I is clearly a cofinite ideal in Λ, and
ann Λ/IM = 0. Further, Sub M is extension-closed also in mod Λ/I. Hence the direct sum A
comprising one copy of each of the non-isomorphic indecomposable Ext-injective Λ/I-modules
in Sub M is a cotilting Λ/I-module satisfying id Λ/IA≤ 1 and Sub M = Sub A, by [Sma84].
Since Sub M is extension-closed in the derived 2-CY category f. l. Λ, the Ext-injective Λ/I-
modules in Sub M coincide with the Ext-projective ones, which are the projective Λ/I-modules.
Hence we have that A is a progenerator of Λ/I and that Sub M = Sub Λ/I. Since Sub Λ/I is
extension-closed in f. l. Λ, we have Ext1Λ(Λ/I, Λ/I) = 0.

By Theorem III.1.6, we only have to show that I is a partial tilting left ideal. By
Bongartz completion, we need only show Ext1Λ(I, I) = 0. The natural surjection Λ→ Λ/I
clearly induces a surjection HomΛ(Λ/I, Λ/I)→HomΛ(Λ, Λ/I). Since Λ is derived 2-CY, we
have injectionsExt2Λ(Λ/I, Λ)→ Ext2Λ(Λ/I, Λ/I) and Ext1Λ(I, Λ)→ Ext1Λ(I, Λ/I). Using the exact
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sequence 0→ I → Λ→ Λ/I → 0, we obtain a commutative diagram

Ext1Λ(Λ/I, Λ/I) = 0
↑

HomΛ(I, Λ) → HomΛ(I, Λ/I) → Ext1Λ(I, I) → Ext1Λ(I, Λ)→ Ext1Λ(I, Λ/I)
↑ ↑ ↑
Λ → Λ/I → 0

of exact sequences. Thus we have Ext1Λ(I, I) = 0. ✷

Note that we have proved that an extension-closed subcategory of f. l. Λ of the form Sub X
for some X in f. l. Λ with some cluster-tilting object must be Sub Λ/Iw for some element w in
the Coxeter group associated with Λ.

We point out that there are other extension-closed subcategories of f. l. Λ with some cluster-
tilting object. Let Q be an extended Dynkin quiver and Q′ a Dynkin subquiver, and let Λ and
Λ′ be the corresponding completed preprojective algebras. Then, clearly, mod Λ′ = f. l. Λ′ is an
extension-closed subcategory of f. l. Λ. Any extension-closed subcategory of mod Λ′ is therefore
extension-closed in f. l. Λ, so Example 1 in § II.3 is an example of an extension-closed stably 2-CY
subcategory of f. l. Λ with some cluster-tilting object, but which is not closed under submodules.

III.3 Realization of cluster categories and stable categories for preprojective

algebras of Dynkin type

In this section we show that for an appropriate choice of T as a product of tilting ideals
Ij = Λ(1− ej)Λ, any cluster category is equivalent to some Sub Λ/T . In particular, any cluster
category can be realized as the stable category of a Frobenius category with finite-dimensional
homomorphism spaces. We also show that the stable categories for preprojective algebras of
Dynkin type can be realized in this way.

Let Q be a finite connected quiver without loops, KQ the associated path algebra, and Λ
the completion of the preprojective algebra of Q. Choose a complete set of orthogonal primitive
idempotents e1, . . . , en of KQ. We can assume that ei(KQ)ej = 0 for any i > j. We regard
e1, . . . , en as a complete set of orthogonal primitive idempotents of Λ, and we take, as before,
Ii = Λ(1− ei)Λ.

Assume first that Q is not Dynkin. We consider a stably 2-CY category associated to
the square w2 of a Coxeter element w = s1s2 · · · sn ∈W . Let Λi = Λ/I1I2 · · · Ii and Λi+n =
Λ/I1I2 · · · InI1 · · · Ii for 1≤ i≤ n. We have seen in § III.2 that Sub Λ2n, and also Sub Λ2n, has
a cluster-tilting object M =

⊕2n
i=1 Λi.

We will need the following lemma.

Lemma III.3.1. Assume that Q is not Dynkin. Then I1 · · · InI1 · · · InI1 · · · gives rise to a strict
descending chain of tilting ideals. In particular, s1 · · · sns1 · · · sns1 · · · is reduced.

Proof. Assume to the contrary that the descending chain of ideals is not strict. Let Ti =
I1 · · · Ii and Ui = I1 · · · Ii−1Ii+1 · · · In for i= 1, . . . , n. Then we have T k

nTi−1 = T k
nTi for some

i= 1, . . . , n and k ≥ 0, where T0 = Λ. Hence we obtain T k+1
n = T k

nUi. Then we get T k+m
n = T k

nU
m
i

for any m> 0. Since Uiei = Λei and J ⊇ Tn, we have Jm+kei ⊇ T
m+k
n ei = T k

nU
m
i ei = T k

nei. Since
(Λ/T k

n )ei has finite length, we have Jm+kei = T k
nei for m sufficiently large. Thus T k

nei = 0,
which is a contradiction since Λei has infinite length. The latter assertion follows from
Proposition III.1.11. ✷

Using Lemma III.3.1, we obtain the following.

1062

https://doi.org/10.1112/S0010437X09003960 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003960


Cluster structures for 2-Calabi–Yau categories and unipotent groups

Proposition III.3.2. Let Q be a finite connected non-Dynkin quiver without loops and with
vertices 1, . . . , n ordered as above. Let Λ2n = Λ/(I1 · · · In)2. Then Λn = Λ/I1 · · · In is a cluster-
tilting object in Sub Λ2n with EndSubΛ2n

(Λn)≃KQ.

Proof. Since the associated chain of ideals is strict descending by Lemma III.3.1, our general
theory applies. We have a cluster-tilting object

⊕2n
i=1 Λi in Sub Λ2n by Theorem III.2.6. We also

have add
⊕2n

i=1 Λi = Λn ⊕ Λ2n in f. l. Λ by Proposition III.1.11. Thus Λn is a cluster-tilting object
in Sub Λ2n.

Note that the path algebra KQ is, in a natural way, a factor algebra of Λ; hence KQ is a
Λ-module. We want to show that the Λ-modules Λn and KQ are isomorphic.

Let Pj be the indecomposable projective Λ-module corresponding to the vertex j. Then
Ij+1 · · · InPj = Pj and IjPj = JPj , the smallest submodule of Pj such that the corresponding
factor has only composition factors Sj . Further, Ij−1IjPj is the smallest submodule of IjPj = JPi

such that the factor has only composition factors Sj−1, and so on. By our choice of ordering,
this means that the paths starting at j, with decreasing indexing on the vertices, give a basis
for Pj/I1 · · · InPj . In other words, we have Pj/I1 · · · InPj ≃ (KQ)ej . Hence the Λ-modules
Λn = Λ/I1 · · · In and KQ are isomorphic, and so EndΛ(Λn)≃KQ.

It remains to show that EndΛ2n
(Λn)≃ EndSub Λ2n

(Λn). By Lemma III.1.14, any morphism
from Λn to Λ2n is given by a right multiplication of an element in (I1 · · · In)/(I1 · · · In)2. This
implies that HomΛ(Λn, Λ2n) HomΛ(Λ2n, Λn) = 0, and the assertion follows. ✷

We now show that we have the same kind of result for Dynkin quivers.

Proposition III.3.3. Let Q′ be a Dynkin quiver with vertices 1, . . . , m contained in a finite
connected non-Dynkin quiver Q without oriented cycles and with vertices 1, . . . , n ordered as
before. Let Λ be the preprojective algebra of Q and let Λn+m = Λ/(I1 · · · InI1 · · · Im). Then
Λm = Λ/I1 · · · Im is a cluster tilting object in Sub Λn+m with EndSub Λn+m

(Λm)≃KQ′.

Proof. Since, as seen in Lemma III.3.1, the product (I1 · · · In)2 gives rise to a strict descending
chain of ideals, the same must hold for I1 · · · InI1 · · · Im. The assertions then follow as in the
proof of Proposition III.3.2. ✷

Recall from [KR08] that if a connected algebraic triangulated 2-CY category has a cluster-
tilting object M whose quiver Q has no oriented cycles, then C is triangle-equivalent to the
cluster category CKQ. We then have the following consequence of the previous two results.

Theorem III.3.4. Let Q′ be a finite connected quiver without oriented cycles. Let Q=Q′ if Q′

is not Dynkin, and let Q be as in Proposition III.3.3 if Q′ is Dynkin. Let Λ be the preprojective
algebra of Q. Then there is a tilting ideal I in Λ such that Sub Λ/I is triangle-equivalent to the
cluster category CKQ′ of Q′.

Finally, we show that the categories mod Λ′, where Λ′ is the preprojective algebra of a Dynkin
quiver Q′, can also be realized in this way.

Theorem III.3.5. Let Q′ be a Dynkin quiver contained in a finite connected non-Dynkin
quiver Q without loops. Let Λ′ denote the preprojective algebra of Q′, W ′ the subgroup of
W generated by {si | i ∈Q

′
0}, and w0 the longest element in W ′. Then Λ′ is isomorphic to Λ/Iw0

and mod Λ′ = Sub Λ/Iw0 .
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Proof. Let IQ′ = Λ(
∑

i∈Q0\Q′
0
ei)Λ. Since we have Λ/IQ′ ≃ Λ′, we only have to show that

Iw0 = IQ′ . We use the fact that IQ′ is maximal amongst all two-sided ideals I of Λ such that any
composition factor of Λ/I is Si for some i ∈Q′

0.

Since w0 is a product of si (i ∈Q′
0), any composition factor of Λ/Iw0 is Si for some i ∈Q′

0.
Thus we have Iw0 ⊇ IQ′ . On the other hand, since w0 is the longest element of W ′, we have
l(siw0)< l(w0) for any i ∈Q′

0. By Proposition III.1.10, we have IiIw0 = Iw0 for any i ∈Q′
0. This

implies Iw0 = IQ′ . ✷

Using Theorem III.3.5, we see that our theory applies also to preprojective algebras of Dynkin
type. In particular, we can specialize Theorem III.2.8 to recover a result from [GLS06], which is
stated as part (a) of the corollary below.

Corollary III.3.6.

(a) For a preprojective algebra Λ′ of a Dynkin quiver, the number of non-isomorphic
indecomposable summands in a cluster-tilting object is equal to the length l(w0) of the
longest element in the associated Weyl group, which is equal to the number of positive
roots.

(b) Statements (a) and (b) of Theorem III.2.8 hold also for Dynkin quivers.

We also obtain a large class of cluster-tilting objects associated with the different reduced
expressions of w0.

Moreover, our results can be viewed as giving an interpretation in terms of tilting theory of
some functors Ei used in [GLS08, Proposition 5.1].

III.4 Quivers of cluster-tilting subcategories

In this subsection, we show that the quivers of standard cluster-tilting subcategories associated
with a reduced expression can be described directly from the reduced expression.

Let si1si2 · · · sik · · · be a (finite or infinite) reduced expression associated with a graph ∆
with vertices 1, . . . , n. We associate with this sequence a quiver Q(i1, i2, . . .) as follows, where
the vertices correspond to the sik .

• For two consecutive i (i ∈ {1, . . . , n}), draw an arrow from the second one to the first one.

• For each edge i
dij

− j, pick out the expression consisting of the ik which are i or j, so that we
have · · · ii · · · ijj · · · jii · · · i · · · . Draw dij arrows from the last i in a connected set of i to
the last j in the next set of j, and do the same from j to i. (Note that since, by assumption,
both i and j occur an infinite number of times if the expression is infinite, each connected
set of i or set of j is finite.)

Note that in the Dynkin case, essentially the same quiver has been used in [BFZ05].

For a finite reduced expression si1 · · · sik , we denote by Q(i1, . . . ik) the quiver obtained from
Q(i1, . . . ik) by removing the last i for each i in Q0.

We denote by Λ = T0 ) T1 ) · · · the associated strict descending chain of tilting ideals. Then
we have a cluster-tilting subcategoryM(i1, i2, . . .) = add{Λk | k > 0} for Λk = Λ/Tk.

Theorem III.4.1. Let the notation be as above.

(a) The quiver of the cluster-tilting subcategoryM(i1, i2, . . .) is Q(i1, i2, . . .).

(b) The quiver of EndΛ(M(i1, . . . ik)) is Q(i1, . . . ik).
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Before presenting the proof, we give some examples and consequences.

It follows from the definition that we get the same quiver if we interchange two neighbors in
the expression of w which are not connected with any edge in ∆. But if we take two reduced
expressions in general, we may get different quivers, as the following examples show.

Let ∆ be the graph 2
KK

KK

1
ssss

3

and let w = s1s2s1s3s2 = s2s1s2s3s2 = s2s1s3s2s3 be

expressions which are clearly reduced. The first expression gives the quiver

1 // 2 // 661
ww 55// 3 // 2ss

1 2
1

1
2

3
2 1

1 2

2
1 3

2 1
2

while the second one gives the quiver

2 // 1 33662
ww // 3 // 2

uu

2 1
2

2
1

3
2 1

1 2

2
1 3

2 1
2

and the third one gives the quiver

2 // 661 55 333 // 2ss // 3
tt

2 1
2

3
2 1

2

2
1 3

2 1
2

3
2 1

1 2

We now investigate the relationship between the cluster-tilting objects given by different
reduced expressions of the same element.

Lemma III.4.2. Let w = si1 · · · sim = si′
1
· · · si′

m
be reduced expressions and let Λ = T0 ) T1 )

· · · and Λ = T ′
0 ) T ′

1 ) · · · be corresponding tilting ideals.

(a) Assume that for some k we have ik = i′
k+1, i

′
k = ik+1 and ij = i′

j for any j 6= k, k + 1. Then
the corresponding cluster-tilting objects are isomorphic.

(b) Assume that for some k we have ik−1 = i′
k = ik+1, i

′
k−1 = ik = i′

k+1 and ij = i′
j for any

j 6= k, k ± 1. Then the corresponding cluster-tilting objects are in the relationship of
exchanges of Tk−1eik−1

and T ′
k−1ei′

k−1
.

Proof. (a) Obviously, we have Tj = T ′
j for any j < k. Since siksik+1

= si′

k
si′

k+1
, we have Iik Iik+1

=

Ii′

k
Ii′

k+1
. Thus Tj = T ′

j for any j > k + 1. In particular, Tjeij = T ′
jei′

j
for any j 6= k, k + 1. Since

Iikeik = Ii′

k
Ii′

k+1
ei′

k+1
, we have Tkeik = T ′

k+1ei′

k+1
. Similarly, we have Tk+1eik+1

= T ′
kei′

k
. Thus the

assertion follows.

(b) Since Iik−1
IikIik+1

= Ii′

k−1
Ii′

k
Ii′

k+1
, we have Tjeij = T ′

jei′
j

for any j 6= k, k ± 1. Since

Iik−1
Iikeik = Ii′

k−1
Ii′

k
Ii′

k+1
eik+1

, we have Tkeik = T ′
k+1ei′

k+1
. Similarly, we have Tk+1eik+1

= T ′
kei′

k
.

Thus the assertion is proved. ✷

As an illustration, note that in the above example we obtain the second quiver from the first
by mutation at the left vertex. Immediately, we obtain the following conclusion.

Proposition III.4.3. All cluster-tilting objects in Sub(Λ/Iw) obtained from reduced
expressions of w can be obtained from each other under repeated exchanges.
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Proof. This is immediate from Lemma III.4.2 and [BB05, Theorem 3.3.1], since we get from one
reduced expression to another by applying the operations described in Lemma III.4.2. ✷

Using Theorem III.3.5, it can be seen that for preprojective algebras of Dynkin quivers, we
get the quivers of the endomorphism algebras of cluster-tilting objects associated with reduced
expressions of the longest element w0.

For a stably 2-CY category or a triangulated 2-CY category C with cluster-tilting
subcategories, we have an associated cluster tilting graph that is defined as follows. The vertices
correspond to the non-isomorphic basic cluster-tilting objects, and two vertices are connected
with an edge if the corresponding cluster-tilting objects differ in exactly one indecomposable
summand. For cluster categories this graph is known to be connected [BMRRT06], but this
is an open problem in general. For the categories Sub Λ/Iw or Sub Λ/Iw, it follows from
Proposition III.4.3 that all standard cluster-tilting objects belong to the same component of
the cluster-tilting graph, and we call this the standard component.

We now exhibit some classes of examples. Let Q be a connected non-Dynkin quiver without
oriented cycles and with vertices 1, . . . , n, where there is no arrow i→ j for j > i.

(a) Let w = s1s2 · · · sns1s2 · · · sn. The last n vertices correspond to projectives, so the quiver
for the cluster-tilting object in the stable category Sub Λ/Iw is Q, which has no oriented cycles.
Thus we get an alternative proof of Proposition III.3.2.

(b) Choose w = s1s2 · · · sns1s2 · · · sn · · · . Ordering the indecomposable preprojective
modules as P1, . . . , Pn, τ

−1P1, . . . , τ
−1Pn, . . . , τ

−iP1, . . . , τ
−iPn, . . ., where Pi is the projective

module associated with vertex i, we have a bijection between the indecomposable
preprojective modules and the terms in the expression for w. Then the quiver of the corresponding
cluster-tilting subcategory is the preprojective component of the AR-quiver of KQ, with an
additional arrow from X to τX for each indecomposable preprojective module X. This is a
direct consequence of our rule, since we know by Lemma III.3.1 that the expression for w is
reduced.

(c) Now take a part P of the AR-quiver of the preprojective component, closed under
predecessors. Consider the expression obtained from s1s2 · · · sns1s2 · · · sn · · · by keeping only
the terms corresponding to the objects in P under our given bijection. We show below that
this new expression is reduced. It then follows directly from our rule that upon adding arrows
X → τX when X is non-projective in P, we get the quiver of the cluster-tilting object given
by the above reduced expression. That this quiver is the quiver of a cluster-tilting object was
also shown in [GLS07a] for P being the AR-quiver of a Dynkin quiver, and in [GLS07C] for the
general case.

Lemma III.4.4. The word associated with P obtained in this way is reduced.

Proof. The word satisfies the following conditions.

(a) For each pair (i, j) of vertices connected by some edge, i and j occur every other time after
removing the other vertices.

(b) w =A1A2 · · ·At, where each As is a strictly increasing sequence of numbers in {1, . . . , n}
such that if j /∈As, then j /∈As+1, and if i < j are connected with an edge and i /∈As

(respectively, j /∈As), then j /∈As (respectively, i /∈As+1).
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Condition (a) is immediate from the construction. For each pair (i, j) connected by some edge,
we have in the AR-quiver the part

· · · j
$$II

II
j

$$II
II

· · ·

i

::uuuu
i

::uuuu
i

involving i and j; hence i and j must occur every other time to give this quiver. Thus condition
(a) is satisfied.

If A1 6= (1, . . . , n), then w is a subsequence of (1, . . . , n). So the word is clearly reduced in
this case. Thus we can assume that A1 = (1, . . . , n). We show that for any word satisfying the
conditions (a), (b) and A1 = (1, . . . , n), the corresponding descending chain Λ = T0 ⊇ T1 ⊇ · · ·
is strict. Then the word is reduced by Proposition III.1.11.

We assume that Tk−1 = Tk for some k. So Ii1 · · · Iik = Ii1 · · · Iik−1
. Take s minimal such that

As 6= (1, . . . , n), and take i minimal such that i /∈As. By condition (b), all terms appearing after
the position of i in As are not connected with i by an edge in ∆. In particular, the corresponding
ideals commute with Ii. Upon multiplying byIi from the right and using commutative relations,
we get an equality where i is inserted in As after 1, . . . , i− 1. By repeating this process, we get
an equality

I1 · · · InI1 · · · In · · · I1 · · · Iik = I1 · · · InI1 · · · In · · · I1 · · · Iik −1.

This contradicts Lemma III.3.1. ✷

In the rest of this subsection we give a proof of Theorem III.4.1. Note that statement (b) of
the theorem follows directly from statement (a) and Proposition III.1.11(b).

To prove (a), let J be the Jacobson radical of Λ, let M=M(i1, i2, . . .), and let Tl,k =
Iil Iil+1

· · · Iik . For l > k, this means that Tl,k = Λ. In what follows we will often use the equalities

ei J ei′ =

{
ei Ii ei′ (i= i′)
ei Λ ei′ (i 6= i′),

Ii ei′ =

{
J ei′ (i= i′)
Λ ei′ (i 6= i′),

and ei′ Ii =

{
ei′ J (i= i′)
ei′ Λ (i 6= i′).

We have HomΛ(Λl eil , Λk eik) = eil (Tl+1,k/Tk) eik , by Lemma III.1.14, and radM(Λl eil , Λk eik) =
eil (T(l+1−δl,k),k/Tk) eik . Moreover,

rad2
M(Λl eil , Λk eik) = eil

((
Tk +

∑

j>0

T(l+1−δl,j),j eij T(j+1−δj,k),k

)
/Tk

)
eik .

To get the quiver ofM, we have to compute (radM / rad2
M)(Λl eil , Λk eik) = El,k/Dl,k for

El,k = eil T(l+1−δl,k),k eik ⊇Dl,k = eil Tk eik +
∑

j>0

eil T(l+1−δl,j),j eij T(j+1−δj,k),k eik .

We denote by k+ the minimal number that satisfies k < k+ and ik = ik+ , if it exists.

(i) Consider the case where there are no arrows in Q from l to k. We shall show that
El,k =Dl,k.

If l > k and il = ik, then we have l > k+ > k and thus

El,k = eil Λ eik = eil Λ ei
k+ Λ eik ⊆Dl,k.

For the rest we shall assume that either l ≤ k or il 6= ik holds. First, let us show that

El,k = eil Tl+1,k−1 (1− eik) Λ eik =
∑

a 6=ik

eil Tl+1,k−1 ea Λ eik
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by the following case by case study.

• If l < k, then El,k = eil Tl+1,k−1Iik eik = eil Tl+1,k−1 (1− eik) Λ eik .

• If l = k, then El,k = eil Iik eik = eil Λ (1− eik) Λ eik .

• If l > k and il 6= ik, then El,k = eil Λ eik = eil Iik eik = eil Λ (1− eik) Λ eik .

Thus we only have to show that eil Tl+1,k−1 ea Λ eik ⊆Dl,k for any a 6= ik. The following
three possibilities exist.

• If a /∈ {i1, i2, . . . , ik−1}, then Tl+1,k−1 ea = Iil+1
· · · Iik−1

ea = Λea = Ii1 · · · Iik−1
ea = Tk−1ea

and thus

eil Tl+1,k−1 ea Λ eik = eil Tk−1 ea Λ eik ⊆ eil Tk eik ⊆Dl,k.

• If a /∈ {ik+1, ik+2, . . . , ik+−1}, then ea Λ = ea Iik · · · Iik+ = ea Tk,k+ and thus

eil Tl+1,k−1 ea Λ eik = eil Tl+1,k−1 ea Tk,k+ eik ⊆ eil Tl+1,k+ eik = eil Tl+1,k+ ei
k+ Λ eik ⊆Dl,k

since l 6= k+ 6= k.

• Otherwise, there is an arrow j→ k with ij = a. Since a /∈ {ij+1, ij+2, . . . , ik−1}, we have
Tj+1,k−1 ea Λ = Iij+1 · · · Iik−1

ea Λ = Λ ea Λ = Λ ea Iij+1 · · · Iik−1
= Λ eaTj+1,k−1 and thus

eil Tl+1,k−1 ea Λ eik = eil Tl+1,j Tj+1,k−1 ea Λ eik = eil Tl+1,j eij Tj+1,k eik ⊆Dl,k

since l 6= j 6= k.

In each case, we have eil Tl+1,k−1 ea Λ eik ⊆Dl,k for any a 6= ik.

(ii) Consider the case l = k+. We have Ek+,k = ei
k+ Λ eik , and we shall show that Dk+,k =

eil J eik .

Clearly, Dk+,k ⊆ eik+ J eik . Conversely, we have

ei
k+ J eik = ei

k+ Iik eik = ei
k+ Λ (1− eik) Λ eik =

∑

a 6=ik

ei
k+ Λ ea Λ eik .

Thus we need only show that ei
k+ Λ ea Λ eik ⊆Dk+,k for any a 6= ik. The following two

possibilities exist.

• If a /∈ {i1, i2, . . . , ik−1}, then Λea = Ii1 · · · Iik−1
ea = Tk−1 ea and thus

ei
k+ Λ ea Λ eik = ei

k+ Tk−1 ea Iik eik ⊆ eik+ Tk eik ⊆Dk+,k.

• If a ∈ {i1, i2, . . . , ik−1}, then take the largest j such that ij = a. We then have Λ = Tk++1,j

and ea Λ = ea Iij+1 · · · Iik = ea Tj+1,k. Thus

ei
k+ Λ ea Λ eik = ei

k+ Tk++1,j eij Tj+1,k eik ⊆Dk+,k

since k+ 6= j 6= k.

In each case, we have ei
k+ Λ ea Λ eik ⊆Dk+,k for any a 6= ik.

(iii) Finally, consider the case where l 6= k+ and there is an arrow in Q from l to k. Then
l < k, and we have El,k = eil J eik . We shall show that Dl,k = eil J

2 eik .

First, we show that Dl,k ⊆ eil J
2 eik . We have eil Tk eik ⊆ eil Iil Iik eik = eil J

2 eik , and the
following three possibilities exist.

• Suppose l ≤ j ≤ k; then eil T(l+1−δl,j),j eij T(j+1−δj,k),k eik ⊆ eil J eij J eik ⊆ eil J
2 eik .
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• Suppose k < j. If ij 6= ik, then eil Tl+1,j eij Tj+1,k eik ⊆ eil Iij eij J eik ⊆ eil J
2 eik . If

ij = ik, then j ≥ k+. Since there is an arrow l→ k, we have il ∈ {ik+1, ik+2, . . . , ik+−1} ⊆
{il+1, il+2, . . . , ij−1} and thus eil Tl+1,j eij Tj+1,k eik ⊆ eil Iil Iij eij Λ eik ⊆ eil J

2 eik .

• Suppose l > j. If ij 6= il, then eil Tl+1,j eij Tj+1,k eik ⊆ eil J eij Ik eik ⊆ eil J
2 eik . If ij = il,

then eil Tl+1,j eij Tj+1,k eik ⊆ eil Λ eij Iil Iik eik ⊆ eil J
2 eik .

Next, we show that eil J
2 eik ⊆Dl,k. We have

eil J
2 eik = eil J (1− eik) Λ eik =

∑

a 6=ik

eil J ea Λ eik .

Thus we need only show that eil J ea Λ eik ⊆Dl,k for any a 6= ik. The following two possibilities
exist.

• If a /∈ {i1, i2, . . . , ik−1}, then eil J ea = eil Λ ea = eil Ii1 · · · Iik−1
ea = eil Tk−1 ea and thus

eil J ea Λ eik = eil Tk−1 ea Iik eik ⊆ eil Tk eik ⊆Dl,k.

• If a ∈ {i1, i2, . . . , ik−1}, then take the largest j such that ij = a. We therefore have
ea Λ = ea Iij+1 · · · Iik = ea Tj+1,k. Moreover, if j = l, then eil J ea = eil T(l+1−δl,j),j ea;
if j 6= l, then eil J ea ⊆ eil Iil+1

· · · Iij ea = eil Tl+1,j ea. Thus

eil J ea Λ eik = eil T(l+1−δl,j),j eij Tj+1,k eik ⊆Dl,k

since j 6= k.

In each case, we have eil J ea Λ eik ⊆Dl,k for any a 6= ik. ✷

III.5 Substructure

Here we point out that the work in § III provides several illustrations of substructures of cluster
structures. We also give some concrete examples of 2-CY categories and their cluster tilting
objects, to be discussed in § IV.

Let si1si2 · · · sit · · · be an infinite reduced expression which contains each i ∈ {1, . . . , n}
an infinite number of times. Let Tt = Ii1 · · · Iit and Λt = Λ/Tt. Recall that for t < m we have
Sub Λt ⊆ Sub Λm ⊆ f. l. Λ. We then have the following result.

Theorem III.5.1. Let the notation be as above.

(a) Sub Λm, Sub Λm and f. l. Λ have a cluster structure using the cluster-tilting subcategories
with the indecomposable projectives as coefficients.

(b) For t < m, the cluster-tilting object Λ1 ⊕ · · · ⊕ Λt in Sub Λt can be extended to a cluster-
tilting object Λ1 ⊕ · · · ⊕ Λt ⊕ · · · ⊕ Λm in Sub Λm, and it determines a substructure of
Sub Λm.

(c) The cluster-tilting object Λ1 ⊕ · · · ⊕ Λt in Sub Λt can be extended to the cluster-tilting
subcategory {Λi | i≥ 0} in f. l. Λ, and it determines a substructure of f. l. Λ.

Proof. (a) Since Sub Λm and Sub Λm are stably 2-CY and triangulated 2-CY, respectively, they
have a weak cluster structure. It follows from Proposition II.1.11 that we have no loops or
2-cycles, using the cluster-tilting objects. Then it follows from Theorem II.1.6 that we have a
cluster structure for Sub Λm and Sub Λm.

That f. l. Λ also has a cluster structure comes from the fact that this is the case for all the
Sub Λm.

Parts (b) and (c) follow directly from the definition of substructure and previous results. ✷
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We now consider the Kronecker quiver 1
//// 0 and let Λ be the associated preprojective

algebra over the field K. The only strict descending chains are

I0 ) I0I1 ) I0I1I0 ) · · · (I0I1)
j ) (I0I1)

jI0 ) · · · and

I1 ) I1I0 ) I1I0I1 ) · · · (I1I0)
j ) (I1I0)

jI1 ) · · · .

We let Tt be the product of the first t ideals, and let Λt = Λ/Tt. Both I0 and I1 occur an infinite
number of times in each chain. The indecomposable projective Λ-modules P0 and P1 have the
structure

P0 =

0
1 1

0 0 0
·
·
·

P1 =

1
0 0

1 1 1
·
·
·

where radical layer number 2i has 2i copies of 1 for P0 and 2i copies of 0 for P1, while radical
layer number 2i+ 1 has 2i+ 1 copies of 0 for P0 and 2i+ 1 copies of 1 for P1. We write
P0,t = P0/J

tP0 and P1,t = P1/J
tP1. It is then easy to see that for the chain I0 ) I0I1 ) · · · , we

have Λ1 = Λ/I0 = P0,1 = (0), Λ2 = Λ/I0I1 = P0,1 ⊕ P1,2 = (0)⊕ ( 1
0 0 ), Λ3 = Λ/I0I1I0 = P0,3 ⊕

P1,2, . . . , Λ2t = P0,2t+1 ⊕ P1,2t, Λ2t+1 = P0,2t−1 ⊕ P1,2t, and so on.

Note that this calculation also shows that both our infinite chains are strict descending.

It follows from § III.4 (and is also easily seen directly) that the quiver of the cluster-tilting
subcategory {Λi | i≥ 1} is the following.

P1,2

$$II
I

$$II
I

P1,4oo
$$II

I

$$II
I

··· P1,2t+2

$$II
I

$$II
I

···

P0,1

::uuu ::uuu
P0,3oo

::uuu ::uuu
P0,5oo ··· P0,2t+1

::uuu ::uuu
P0,2t+3oo ···

In particular, we have the cluster-tilting object P0,1 ⊕ P1,2 ⊕ P0,3 for Sub Λ3, where the last two
summands are projective. Hence P0,1 is a cluster-tilting object in Sub Λ3. The quiver of the
endomorphism algebra consists of one vertex and no arrows. Hence Sub Λ3 is equivalent to
the cluster category CK , which has exactly two indecomposable objects. The other one is JP0,3,
obtained from the exchange sequence 0→ JP0,3→ P0,3→ P0,1→ 0. Note that it is also easy to
see directly that there are no other indecomposable rigid non-projective objects in Sub Λ3.

For Λ4, we have the cluster-tilting object P0,1 ⊕ P1,2 ⊕ P0,3 ⊕ P1,4 for Sub Λ4. Again, the last
two Λ4-modules are projective, so P0,1 ⊕ P1,2 is a cluster-tilting object in Sub Λ4. The quiver of
the endomorphism algebra is · //// · , which has no oriented cycles; hence Sub Λ4 is triangle-
equivalent to the cluster category C

K( · //// · ). In particular, the cluster-tilting graph is connected.

We can use this fact to get a description of the rigid objects in Sub Λ4.

Proposition III.5.2. Let Λ4 = Λ/I0I1I0I1 be the algebra defined above. Then the
indecomposable rigid Λ4-modules in Sub Λ4 are exactly the ones of the form Ωi

Λ4
(P0,1) and

Ωi
Λ4

(P1,2) for i ∈ Z.

Proof. For C
K( · //// · ), the indecomposable rigid objects are the τ -orbits of the objects induced

by the indecomposable projective K( · //// · )-modules. Here τ = [1], and for Sub Λ4, Ω−1 = [1].
This proves the claim. ✷

The cluster-tilting graphs for Sub Λ3 and Sub Λ4 are · · and · · · · · · · · · · · .

We end with the following problem.

Conjecture III.5.3. For any w ∈W , the cluster-tilting graph for Sub Λ/Iw is connected.
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IV. Connections to cluster algebras

While the theory of 2-CY categories is interesting in itself, one of the motivations for
investigating 2-CY categories comes from the theory of cluster algebras initiated by Fomin and
Zelevinsky [FZ02]. In many situations, the 2-CY categories can be used to construct new examples
of cluster algebras and also to give a new categorical model for already known examples. This
has been done in, for example, [CK08, CK06] and [GLS06]. In this section, we discuss some
connections with the theory developed in §§ II–III. We make explicit the notion of subcluster
algebra and observe that a substructure of a (stably) 2-CY category together with a cluster map
gives rise to a subcluster algebra. This provides a way of constructing new cluster algebras in
the Dynkin case, or of modelling old ones, as we illustrate in § IV.2 with examples. In § IV.3 we
discuss a conjecture on modelling cluster algebras by the 2-CY categories investigated in § III.

IV.1 Cluster algebras, subcluster algebras and cluster maps

We recall the notion of cluster algebras from [FZ02] and make explicit a notion of subcluster
algebras. Actually, we shall extend the definition of cluster algebras to include the possibility of
clusters with countably many elements. The coordinate rings of unipotent groups of non-Dynkin
diagrams are candidates for containing such cluster algebras. We also introduce certain maps,
called (strong) cluster maps, defined for categories with a cluster structure. The image of a
cluster map gives rise to a cluster algebra. Cluster substructures on the category side give rise
to subcluster algebras.

First we recall the definition of a cluster algebra, allowing countable clusters. Note that the
setting we use here is not the most general one. Let m≥ n be positive integers or countable
numbers. Let F = Q(u1, . . . , um) be the field of rational functions over Q in m independent
variables. A cluster algebra is a subring of F that is constructed in the following way. A seed
in F is a triple (x, c, B̃), with x and c being non-overlapping sets of elements in F, where we let
x̃= x ∪ c; we sometimes denote the seed by the pair (x̃, B̃). Here x̃= {x1, . . . , xm} should be a
transcendence basis for F and B̃ = (bij) is a locally finite m× n matrix with integer elements

such that the submatrix B of B̃ consisting of the first n rows is skew-symmetric.

The set x= {x1, . . . , xn} is called the cluster of the seed, and the set c= {xn+1, . . . , xm} is
the coefficient set of the cluster algebra. The set x̃= x ∪ c is called an extended cluster.

For a seed (x̃, B̃) with B̃ = (bij) and for k ∈ {1, . . . , n}, a seed mutation in direction k

produces a new seed (x̃′, B̃′) with x̃′ = (x̃ \ {xk}) ∪ {x
′
k}, where

x′
k = x−1

k

( ∏

bik>0

xbik

i +
∏

bik<0

x−bik

i

)
.

This is called an exchange relation and {xk, x
′
k} is called an exchange pair. Furthermore,

b′
ij =




−bij if i= k or j = k,

bij +
|bik| bkj + bik |bkj |

2
otherwise.

Fix an (initial) seed (x̃, B̃), and consider the set S of all seeds obtained from (x̃, B̃) by a
sequence of seed mutations. The union X of all elements in the clusters in S is called the set
of cluster variables, and for a fixed subset of coefficients c0 ⊆ c, the cluster algebra A(S) with
the coefficients c0 inverted is the Z[c, c0

−1]-subalgebra of F generated by X. Note that, unlike
in the original definition, we do not necessarily invert all coefficients. This is to enable us to
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catch examples such as the coordinate ring of a maximal unipotent group in the Dynkin case
and the homogeneous coordinate ring of a Grassmannian. Note that we often extend the scalars
for cluster algebras to C.

We now make explicit the notion of subcluster algebras. Let A be a cluster algebra with
cluster variables X, coefficients c and ambient field F = Q(u1, . . . , um). A subcluster algebra A′

of A is a cluster algebra such that there exists a seed (x, c, Q) for A and a seed (x′, c′, Q′) for A′

such that:

(S1) x′ ⊆ x and c′ ⊆ x ∪ c;

(S2) for each cluster variable xi ∈ x
′, the set of arrows entering and leaving i in Q lie in Q′;

(S3) the invertible coefficients c′
0 ⊆ c

′ satisfy c0 ∩ c
′ ⊆ c′

0.

Note that a subcluster algebra is not necessarily a subalgebra, since some coefficients may
be inverted. Note also that A′ is determined by the seed (x′, c′, Q′) and the set c′

0 of invertible
coefficients.

The definition implies that clusters in the subcluster algebra can be uniformly extended. The
following useful fact follows from the definition.

Proposition IV.1.1.

(a) Seed mutation in A′ is compatible with seed mutation in A.

(b) There is a set v consisting of cluster variables and coefficients in A such that for any
extended cluster x′ in A′, x′ ∪ v is an extended cluster in A.

Inspired by [GLS06, GLS07b] and [CC06, CK08, CK06], we introduce certain maps, which we
call (strong) cluster maps, that are defined for a 2-CY category with a (weak) cluster structure
in such a way that the image gives rise to a cluster algebra. We show that such maps preserve
substructures as defined above and in § II.2.

Recall that a category C is stably 2-CY if it is either a Frobenius category where C is
triangulated 2-CY or a functorially finite extension-closed subcategory B of a triangulated 2-CY
category C.

Let C be a stably 2-CY category with a cluster structure defined by cluster-tilting objects,
where projectives are coefficients. We assume that the cluster-tilting objects have n cluster
variables and c coefficients, where 1≤ n≤∞ and 0≤ c≤∞. For a cluster-tilting object T , we
denote by BEndC (T ) the m× n matrix obtained by removing the last m− n columns of the skew-
symmetric m×m matrix corresponding to the quiver of the endomorphism algebra EndC (T ),
where the columns are ordered such that those corresponding to projective summands of T come
last. We can also think of this as dropping the arrows between vertices in EndC (T ) corresponding
to indecomposable projective summands of T from the quiver of EndC (T ).

Let F = Q(u1, . . . , um). Given a connected component ∆ of the cluster-tilting graph of C,
a cluster map (respectively, strong cluster map) for ∆ is a map ϕ : E = add{T | T ∈∆}→ F

(respectively, ϕ : C → F) such that isomorphic objects have the same image, and which satisfies
the following three conditions.

(M1) For a cluster-tilting object T in ∆, ϕ(T ) is a transcendence basis for F.

(M2) (respectively, (M2′)) For all indecomposable objects M and N in E (respectively, C) with
dimk Ext1(M, N) = 1, we have ϕ(M)ϕ(N) = ϕ(V ) + ϕ(V ′) where V and V ′ are in the
middle of the non-split triangles or short exact sequences N → V →M and M → V ′ →N .
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(M3) (respectively, (M3′)) ϕ(A⊕A′) = ϕ(A)ϕ(A′) for all A, A′ in E (respectively, C).

Note that a pair (M, N) of indecomposable objects in E is an exchange pair if and
only if Ext1(M, N)≃K (see [BMRRT06]). A map ϕ : C → F satisfying (M2′) and (M3′)
was called a cluster character in [Pal08]. Important examples of (strong) cluster maps have
appeared in [CK08, CK06, GLS06] and, more recently, in [GLS07C, Pal08, FK07]. The following
proposition is easily seen to hold.

Proposition IV.1.2. With C and E as above, let ϕ : E → F be a cluster map. Then the
following hold.

(a) Let A be the subalgebra of F generated by ϕ(X) for X ∈ E . Then A is a cluster algebra
and (ϕ(T ), BEndC (T )) is a seed for A for any cluster-tilting object T in ∆.

(b) Let B be a subcategory of C with a substructure, and let E ′ be a subcategory of B defined
by a connected component of the cluster-tilting graph of B. Then ϕ(X) for X ∈ E ′ generates
a subcluster algebra of A.

For any subset c0 of coefficients of A, we have a cluster algebra A[c−1
0 ]. We say that the

cluster algebra A[c−1
0 ] is modelled by the cluster map ϕ : E → F.

IV.2 Applications to the Dynkin case

In this section we discuss the GLS-map ϕ, which is an important example of a strong cluster
map. Using examples from § II.3, we illustrate how, via this map, the image of a substructure
gives rise to a subcluster algebra.

For a Dynkin quiver Q, let U be a maximal unipotent subgroup of the complex semisimple
Lie group G associated with Q, and let Uw be the unipotent cell associated with an element w of
the associated Coxeter group W . In [GLS06], a map ϕ : mod Λ→ C[U ] was constructed for this
case, where Λ is the preprojective algebra of Q; we call ϕ the GLS-map. We let C(U) denote the
function field of U .

Part (a) of the following result is proved in [GLS07b], and (b) in [GLS06, GLS05].

Theorem IV.2.1.

(a) The GLS-map ϕ : mod Λ→ C[U ]⊂ C(U) satisfies conditions (M2′) and (M3′).

(b) The coordinate ring C[U ] (respectively, C[Uw0 ] for the longest element w0) is a cluster
algebra modelled by a strong cluster map ϕ : mod Λ→ C(U) for the standard component
of the cluster-tilting graph of mod Λ with no (respectively, all) coefficients inverted.

The image of a substructure B of mod Λ gives a subcluster algebra of C[U ], and we
illustrate this with the examples from § II.3. We omit the calculation involved in proving the
isomorphisms between the subcluster algebras arising from B and the coordinate rings of the
varieties under consideration. See [BL00] for general background on Schubert varieties and
(isotropic) Grassmannians. For a subset J of size k in [1 . . . n], the symbol [J ] will denote
the k × k matrix minor of an n× n matrix with row set [1 . . . k] and column set J . In the first
example, G is SLn(C) and U is the subgroup of all upper triangular n× n unipotent matrices.

Example 1 (Gr2,5-Schubert variety). Let Λ be of type A4, and let B be the full additive
subcategory of mod Λ from Example 1 in II.3. The associated algebraic group is then SL5(C).
Consider the Grassmannian Gr2,5 and the Schubert variety X3,5 associated with the subset {3, 5}
of {1, 2, 3, 4, 5}. Let w3,5 =

(
1 2 3 4 5
3 4 1 5 2

)
be the associated Grassmann permutation in S5, and let
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Uw3,5 be the unipotent cell in U associated to w3,5. Note that the Schubert variety X3,5 is
birationally isomorphic to the unipotent cell Uw3,5 (see [BZ97]). Then C[Uw3,5 ] is known to be a
subcluster algebra of C[U ] (see [BFZ05]).

Under the GLS-map ϕ from mod Λ to C[U ], one can check that ϕ(Mx) = [x], with Mx as
defined in Example 1 of II.3. Since B has a cluster substructure of mod Λ, we know that the
image gives rise to a subcluster algebra of C[U ]. Then the image of B under the strong cluster
map ϕ is precisely C

[
Uw3,5

]
. To see this, we mutate a seed from [BFZ05] that generates the

cluster algebra structure for C[U ] to get a new seed which contains ϕ(T ) for the cluster-tilting
object T in B in Example 1 of II.3. Then one proves that the image is C[Uw3,5 ] after a proper
choice of coefficients to invert.

Example 2 (The SO8(C)-isotropic Grassmannians; see also [GLS08, § 10.4.3]). Let Λ be the
preprojective algebra of the Dynkin quiver D4, let ̺ be the 4× 4 anti-diagonal matrix whose
(i, j) entry is (−1)iδi,5−j , and let J be the 8× 8 anti-diagonal matrix, written in block form as(

0 ̺

̺T 0

)
.

The even special orthogonal group SO8(C) is the group of 8× 8 matrices
{
g ∈ SL8(C) | gTJg =

J
}
. The maximal unipotent subgroup U of SO8(C) consists of all 8× 8 matrices in SO8(C) which

are upper triangular and unipotent, i.e. having all diagonal entries equal to 1. A more explicit
description in terms of matrices in block form is

U =







u u̺v

0 ̺T
(
u−1

)T
̺




∣∣∣∣
u is upper triangular and unipotent in SL4(C),
v is skew-symmetric in M4(C)



 . (3)

The isotropic Grassmannian Griso2,8 is the closed subvariety of the classical Grassmannian Gr2,8

that consists of all isotropic two-dimensional subspaces of C8. Let Ĝr
iso

2,8 be the corresponding

affine cone. Let q : U → Ĝr
iso

2,8 denote the map given by q(u) = u1 ∧ u2, where u1 and u2 are the

first two rows of u in U , and let q∗ : C
[
Ĝr

iso

2,8

]
−→ C

[
U

]
be the associated homomorphism of

coordinate rings.

Let ϕ : mod Λ→ C[U ] be the GLS ϕ-map. Then one can show that

ϕ
(
M16

)
= [16], ϕ

(
M24

)
= [24], ϕ

(
M25

)
= [25], ϕ

(
M26

)
= [26],

ϕ
(
M68

)
= [68], ϕ

(
M18

)
= [18], ϕ

(
M−

)
= ψ−, ϕ

(
M+

)
= ψ+,

ϕ
(
P1

)
= [8], ϕ

(
P2

)
= [78], ϕ

(
P3

)
=

[678]

Pfaff [1234]
, ϕ

(
P4

)
= Pfaff [1234] .

Here Pfaff [1234] denotes the Pfaffian of the 4× 4 skew-symmetric part v, appearing in (3),
of the unipotent element, and ψ± =

(
[18]− [27] + [36]± [45]

)
/2. The functions [678]/ Pfaff [1234]

and Pfaff [1234] are examples of generalized minors of type D (see [FZ99]).

In the notation of Example 2 in § II.3, we have seen that

T =M16 ⊕M24 ⊕M25 ⊕M26 ⊕M68 ⊕M18 ⊕M− ⊕M+ ⊕ P2
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is a cluster-tilting object in B = Sub P2, which can be extended to a cluster-tilting object T̃ =
T ⊕ P1 ⊕ P3 ⊕ P4 for mod Λ. One shows that the initial seed used in [BFZ05], which determines
a cluster algebra structure for C[U ], is mutation-equivalent to the initial seed determined by T̃ ,
and hence generates the same cluster algebra. Since the subcategory B of mod Λ in Example 2
of § II.3 has a substructure as defined in § II, the connected component of the cluster-tilting
graph of B containing T determines a subcluster algebra A′ of C[U ] (where [18], ψ± and [78] are
taken as noninverted coefficients). Then we can prove that A′ coincides with Im q∗ (which we
conjecture to be true more generally).

Notice that we have the cluster algebra structure for Ĝr
iso

2,8 by adjoining the coefficient [12]
to Im q∗.

IV.3 The non-Dynkin case

Let Q be a non-Dynkin quiver without loops, Λ the associated completed preprojective algebra
and W the associated Coxeter group. Let G be the associated Kac–Moody group with a maximal
unipotent subgroup U , and let Uw be the unipotent cell associated with an element w in W . In
this final subsection, we pose some problems concerning the relationship with the stably 2-CY
categories that correspond to the same w.

The GLS-map ϕ : f. l. Λ→ C[U ] is defined also in the non-Dynkin case [GLS07C], and the
restriction map C[U ]→ C[Uw] defines a map

ϕw : Sub Λ/Iw ⊂ f. l. Λ
ϕ
→ C[U ]→ C[Uw].

Using our results from § III, we know that the transcendence degree l(w) of C(Uw) is equal to the
number of non-isomorphic summands of a cluster-tilting object in Sub Λ/Iw. It is then natural
to pose the following conjecture.

Conjecture IV.3.1. For any w ∈W , the coordinate ring C[Uw] is a cluster algebra modelled
by a strong cluster map ϕw : Sub Λ/Iw→ C[Uw] for the standard component of the cluster-tilting
graph of Sub Λ/Iw with all coefficients inverted.

Recall that any infinite reduced expression where all generators occur an infinite number
of times gives rise to a cluster-tilting subcategory with an infinite number of non-isomorphic
indecomposable objects. Since the GLS-map ϕ : f. l. Λ→ C[U ] satisfies (M2′) and (M3′), it is
natural to ask the following.

Question IV.3.2. Does the coordinate ring C[U ] contain a cluster algebra modelled by
ϕ : f. l. Λ→ C[U ] for any connected component of the cluster-tilting graph of f. l. Λ?

As support for Conjecture IV.3.1, we checked that this is true when Q is the Kronecker quiver

1
//// 0 and the length of w is at most 4. For the case w3 = s0s1s0 and w4 = s0s1s0s1, we have

cluster-tilting objects T3 = P0,1 ⊕ P1,2 ⊕ P0,3 in Sub Λ/Iw3 and T4 = P0,1 ⊕ P1,2 ⊕ P0,3 ⊕ P1,4 in
Sub Λ/Iw4 , where Pi,k = Pi/J

kPi for i= 0, 1 and k > 0.

One can check that C[Uw3 ] and C[Uw4 ] have seeds whose quiver is the same as the quiver of
End(T3) and End(T4) (see § III.5), obtained by dropping the arrows between projective vertices,
and that the cluster graphs coincide with the cluster-tilting graphs in this case.

Note that this gives an example of a substructure of a cluster structure coming from the
inclusion Sub Λ/Iw3 ⊂ Sub Λ/Iw4 and a cluster map such that we get a subcluster algebra of a
cluster algebra, namely C[Uw3 ] as a subcluster algebra of C[Uw4 ].
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We remark that, recently, our conjecture has been verified more generally in [GLS07C] for
adaptable elements in the Coxeter group, thus providing stronger evidence for the truth of the
conjecture.

References
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Schröer ϕ-map, Preprint (2007), arXiv:0707.3046.

Sma84 S. O. Smalö, Torsion theories and tilting modules, Bull. London Math. Soc. 16 (1984),
518–522.

Tab07 G. Tabuada, On the structure of Calabi–Yau categories with a cluster tilting subcategory,
Documenta Math. 12 (2007), 193–213.

Yek99 A. Yekutieli, Dualizing complexes, Morita equivalence and the derived Picard group of a
ring, J. London Math. Soc. (2) 60 (1999), 723–746.

Yos90 Y. Yoshino, Cohen–Macaulay modules over Cohen–Macaulay rings, London Mathematical
Society Lecture Note Series, vol. 146 (Cambridge University Press, Cambridge, 1990).

A. B. Buan aslakb@math.ntnu.no

Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim,
Norway

O. Iyama iyama@math.nagoya-u.ac.jp

Graduate School of Mathematics, Nagoya University, Chikusa-ku, 464-8602 Nagoya, Japan

I. Reiten idunr@math.ntnu.no

Institutt for matematiske fag, Norges teknisk-naturvitenskapelige universitet, N-7491 Trondheim,
Norway

J. Scott jscott@maths.leeds.ac.uk

Department of Pure Mathematics, University of Leeds, Leeds LS2 9JT, UK

1079

https://doi.org/10.1112/S0010437X09003960 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X09003960

	I Introduction
	II 2-CY categories and substructures
	II.1 Cluster structures
	II.2 Substructures
	II.3 Preprojective algebras of Dynkin type

	III Preprojective algebras for non-Dynkin quivers
	III.1 Tilting modules over preprojective algebras
	III.2 Cluster-tilting objects for preprojective algebras
	III.3 Realzations of categories
	III.4 Quivers of cluster-tilting subcategories
	III.5 Substructure

	IV Connections to cluster algebras
	IV.1 Cluster algebras, subcluster algebras and cluster maps
	IV.2 Applications to the Dynkin case
	IV.3 The non-Dynkin case

	References

