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Cluster Synchronization Algorithms

Weiguo Xia and Ming Cao

Abstract— This paper presents two approaches to achieving
cluster synchronization in dynamical multi-agent systems. In
contrast to the widely studied synchronization behavior, where
all the coupled agents converge to the same value asymptot-
ically, in the cluster synchronization problem studied in this
paper, we require that all the interconnected agents to evolve
into several clusters and each agent only to synchronize within
its cluster. The first approach is to add a constant forcing to
the dynamics of each agent that are determined by positive
diffusive couplings; and the other is to introduce both positive
and negative couplings between the agents. Some sufficient and/
or necessary conditions are constructed to guarantee n-cluster
synchronization behavior. Simulation results are presented to
illustrate the effectiveness of the theoretical analysis.

I. INTRODUCTION

Recently the study of distributed coordination of multi-

agent systems has attracted significant attention from re-

searchers in different disciplines. Simple local coordination

rules can sometimes lead to complicated collective behavior,

such as synchronization that has been discovered in natural,

social and engineering networks and systems [1], [2]. Differ-

ent types of synchronization phenomena have been investi-

gated, including, for example, complete synchronization [1]

and generalized synchronization [2]. In this line of research,

various algorithms have been successfully constructed to

cause all the agents in a group to converge to the same

value asymptotically [3], [4]. However, there is an emerging

trend to study how an interconnected group may evolve into

different sub-groups called clusters. Here we provide a few

motivating examples from diverse backgrounds.

In nature, a group of foraging animals, such as a herd of

cows, often need to make collective decisions on where and

how to move utilizing social interactions between each other.

In [5], Couzin et al. study such animal collective decision-

making behavior using the models of two types of indi-

vidual agents. One is called informed agents who have the

knowledge about the location of food sources and thus have

preferred moving directions, and the other is called naive

agents who know nothing about the food sources and have to

interact with their neighbors to follow the group. Simulation

results have been provided, which illustrate how a group

may split into subgroups under certain circumstances. In

the study of social networks, different mathematical models

have been constructed to describe opinion dynamics in social

communities. One such model is the the Krause model [6],
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[7], in which each agent updates its opinion in the form of a

scalar by computing the average of those of its neighbors. In

[7], Blondel et al. provide some theoretical analysis results

on how the agents may evolve into different clusters, where

the agents in the same cluster hold the same opinion in the

end. In addition, a lower bound on the differences between

neighboring clusters has also been provided. The clustering

behavior is also potentially useful for the formation control

problem for teams of autonomous agents. In [8], one of

the main research problems that have been surveyed is to

split a formation into sub-formations in order to accomplish

covering tasks or avoid obstacles.

Motivated by the above examples, we aim to study in

this paper the cluster synchronization problem, in which a

coupled multi-agent system is required to split into several

clusters, such that the agents synchronize with one another

in the same cluster, but differences exist between different

clusters. Such problems are beginning to attract attention. For

example, in [9] some sufficient conditions have been derived

for the coupled oscillators to realize cluster synchronization

under pinning control strategies. In this paper, we focus

on the n-cluster synchronization problem. We provide two

approaches to realizing clustering behavior. One is to add

a constant forcing to each agent; and the other is to allow

negative coupling between the agents.

The rest of the paper is organized as follows. Problem

formulation is give in Section II. The main results are

presented in Section III and IV. In Section V, we provide

some illustrative examples.

Notations. Throughout this paper, the following notations

are used: 1 = (1, · · · , 1)T with proper dimension and 1n =
(1, · · · , 1)T ∈ R

n; I denotes the identity matrix with proper

dimension; for a matrix A, we denote its spectral radius by

ρ(A); A ≤ 0 (resp. A < 0) means that A is semi-negative

(resp. negative) definite.

II. PROBLEM FORMULATION

The goal of this paper is to design algorithms to realize

n-cluster synchronization. First, we define what we mean

by n-cluster synchronization. Consider a dynamical system

consisting of N agents with dynamics

ẋ(t) = f(x(t), t), (1)

where x(t) = (x1(t), . . . , xN (t))T ∈ R
N , xi(t) is the state

of the ith agent, and f : R
N × [0,∞) → R

N is a continuous

map.

Definition 1: [9] Let {C1, C2, . . . , Cn} be a partition of the

set N = {1, 2, . . . , N} into n nonempty subsets, i.e., Ci 6= ∅,

and
⋃n

i=1 Ci = {1, . . . , N}. For i ∈ {1, . . . , N}, let î denote
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the index of the subset in which the number i lies, i.e., i ∈ Cî.

System (1) is said to realize n-cluster synchronization with

the partition {C1, C2, . . . , Cn}, if limt→∞ ||xi(t)−xj(t)|| =
0 when î = ĵ, and limt→∞ ||xi(t)−xj(t)|| 6= 0 when î 6= ĵ.

Remark 1. In [10], a similar concept called the “group

consensus” of a multi-agent system is defined, which is

weaker than the cluster synchronization defined here because

we require in addition that the differences between different

clusters do not go to 0. A different type of clustering behavior

is considered in [11], [12], where the differences between

agents in the same cluster are bounded, while the differences

between agents in different clusters grow unbounded as time

goes to infinity.

In the sequel, we say that agents i and j are in the same

cluster when î = ĵ, and denote the number of agents in the

ith cluster by li.

III. CLUSTER SYNCHRONIZATION WITH CONSTANT

FORCING

In this section, we consider the n-cluster synchronization

problem for a system consisting of both informed agents

and naive agents to capture the features presented in the

animal collective decision-making model studied in [5]. Here

the informed agents are those under some external constant

forcing, whose dynamics are described by

ẋi(t) = −xi(t) +

N∑

j=1

gijxj(t) + aî, (2)

where gij ≥ 0 for i 6= j,
∑N

j=1 gij = 0, and aî are constants

satisfying aî 6= aĵ for î 6= ĵ. The dynamics of the naive

agents are

ẋi(t) =
N∑

j=1

gijxj(t). (3)

Directed graphs are used to model communication topologies

among agents. For an N -dimensional square matrix G,

the graph G associated with G is a directed graph with

the node set V(G) = {v1, v2, . . . , vN} and the edge set

E(G) ⊂ {(vi, vj) : vi, vj ∈ V(G)} where (vi, vj) is an

edge of G if and only if gji 6= 0 with i 6= j. A directed

path in G is a sequence of distinct vertices vi1 , . . . , vik
such

that (vis
, vis+1

) ∈ V(G) for s = 1, . . . , k − 1. A directed

graph is strongly connected if there is a directed path from

every node to every other node. A graph is balanced if
∑N

j=1 gij =
∑N

j=1 gji for all i.
Next we give some sufficient and/ or necessary conditions

for systems (2) and (3) to converge to n clusters.

A. Systems of informed agents

In this subsection, we consider the simple case when the

system only consists of N informed agents described by (2)

for 1 ≤ i ≤ N. One can write the system into a compact

form

ẋ(t) = −x(t) + Gx(t) + ā = Ḡx(t) + ā, (4)

where x(t) = (x1(t), x2(t), . . . , xN (t))T ∈ R
N , ā =

(a1, . . . , a1
︸ ︷︷ ︸

l1

, · · · , an, . . . , an
︸ ︷︷ ︸

ln

)T , G = (gij)N×N , and Ḡ =

G − I . Note that the agents in the same cluster have the

same constant forcing.

Lemma 1. Let

P = (pij)N×N =








P11 P12 · · · P1n

P21 P22 · · · P2n

...
...

. . .
...

Pn1 Pn2 · · · Pnn








,

where Pii ∈ R
li×li , 1 ≤ i ≤ n, are square matrices and

Pij ∈ R
li×lj for i 6= j. Suppose P is invertible and the

inverse of P is

Q = (qij)N×N =








Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n

...
...

. . .
...

Qn1 Qn2 · · · Qnn








. (5)

If matrices Pij have constant row sums rij for 1 ≤ i, j ≤ n,

then Qij have constant row sums sij for 1 ≤ i, j ≤ n.

In addition, SR = In×n, where R = (rij)n×n and S =
(sij)n×n.

The proof will be present in the full-length version of the

paper.

Let

G =








G11 G12 · · · G1n

G21 G22 · · · G2n

...
...

. . .
...

Gn1 Gn2 · · · Gnn








, (6)

where Gii ∈ R
li×li , 1 ≤ i ≤ n, and Gij ∈ R

li×lj for

i 6= j. Since the row sums of Ḡ are equal to −1 and Ḡ has

positive off-diagonal elements, we know Ḡ is invertible and

the eigenvalues of Ḡ are all located in the left half plane.

The equilibrium of system (4) is x∗ = −Ḡ−1ā. Let y(t) =
x(t) − x∗, then one has ẏ(t) = Ḡy(t). It is obvious that

y(t) → 0 as t → ∞. Thus x∗ is a global stable equilibrium

of system (4).

Theorem 1. The system (4) of informed agents achieves

n-cluster synchronization for almost all (in the sense of

Lebesgue measure) ai with 1 ≤ i ≤ n and ai 6= aj for

i 6= j, if the block matrices Gij , with 1 ≤ i, j ≤ n and

i 6= j, have constant row sums.

Proof. Let Q = (qij)N×N defined in (5) be the inverse of

Ḡ. Since Ḡij , i 6= j, have constant row sums rij and the row

sums of Ḡ are −1, it follows from Lemma 1 that Qij have

constant row sums sij for 1 ≤ i, j ≤ n, and S = R−1, where

R = (rij)n×n, and S = (sij)n×n. Then all the agents in the

ith cluster have the same asymptotic value −
∑n

j=1 sijaj .

Next we show that all the ai’s that do not lead to n-cluster

synchronization come from a set which has zero Lebesgue

measure. Let S = {x = (x1, . . . , xn)T ∈ R
n : xi =

xj for some i 6= j with 1 ≤ i, j ≤ n}, and a smooth map

g : R
n → R

n is defined by g(x) = Rx. Then it is easy

to check that S has zero Lebesgue measure, so does g(S).
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Let U = {a = (a1, . . . , an)T ∈ R
n : ai 6= aj for i 6=

j; (R−1a)i = (R−1a)j for some i 6= j and 1 ≤ i, j ≤
n}, one has U ⊂ g(S), which implies that U has zero

Lebesgue measure. If a /∈ U , system (4) realizes n-cluster

synchronization, which completes the proof. ¤

Remark 2. When we look at the interaction topology of

the directed graph G associated with G, we can regard the

uth row sum of the matrix Gji, i 6= j, as the weighted

information received by the (l1+ · · ·+ lj−1+u)th node from

the ith cluster. The fact that the block matrices Gij , i 6= j,
have constant row sums implies that every agent in the same

cluster receives the same weighted information from every

other cluster.

For the special case when n = 2, we have the following

result.

Corollary 1. System (4) achieves 2-cluster synchronization

if and only if the block matrices Gij , 1 ≤ i, j ≤ 2 and i 6= j,
have constant row sums.

Proof. (Sufficiency). Let Q = (qij)N×N =(
Q11 Q12

Q21 Q22

)

be the inverse of Ḡ. It follows from

the fact that Ḡij have constant row sums rij and Lemma 1

that Qij have constant row sums sij and

S =

(
− r21+1

r12+r21+1 − r12

r12+r21+1

− r21

r12+r21+1 − r12+1
r12+r21+1

)

.

Thus system (4) converges to

x∗ = −Ḡ−1ā =













−a1s11 − a2s12

...

−a1s11 − a2s12

−a1s21 − a2s22

...

−a1s21 − a2s22













.

It is easy to check that −a1s11 − a2s12 6= −a1s21 − a2s22

since a1 6= a2. Thus a two-cluster synchronization has been

realized.

(Necessity). Suppose system (4) realizes two cluster syn-

chronization with final values x̄1 and x̄2. Let K = {k ∈ N ,
the final value of xk(t) is x̄1}. We first show that every

agent with the same constant forcing is in the same cluster.

Suppose on the contrary the ith and jth agents both with

constant forcing a1 have different final values x̄1 and x̄2,

then one has

0 = −x̄1 + a1 +
∑

k∈N/K,k 6=i

gik(x̄2 − x̄1),

0 = −x̄2 + a1 +
∑

k∈K,k 6=j

gjk(x̄1 − x̄2).

It follows that (x̄2 − x̄1)(1 +
∑

k∈N/K,k 6=i gik +
∑

k∈K,k 6=j gjk) = 0, which contradicts x̄2 − x̄1 6= 0
and 1 +

∑

k∈N/K,k 6=i gik +
∑

k∈K,k 6=j gjk > 0.

From the proof of sufficiency, we find the equilibrium of

system (4) is

x∗ = −

(
a1Q111l1 + a2Q121l2

a1Q211l1 + a2Q221l2

)

.

Let the ith row sums of Q11 and Q12 be ti1 and ti2
respectively. Then for any 1 ≤ i, j ≤ l1 and a1 6= a2,

we have −a1ti1 − a2ti2 = −a1tj1 − a2tj2. It follows that

ti1 = tj1 and ti2 = tj2 for 1 ≤ i, j ≤ l1. Thus, Q11 and Q12

have constant row sums. Applying similar arguments to Q21

and Q22, one can conclude that G12 and G21 have constant

row sums in view of Lemma 1. ¤

B. Systems with informed and naive agents

In this section, we consider the system consisting of n−1
clusters of informed agents and one cluster of naive agents,

which is described by

ẋi(t) = −xi(t) +
N∑

j=1

gijxj(t) + aî, (7)

1 ≤ i ≤ l1 + · · · + ln−1,

and

ẋi(t) =
N∑

j=1

gijxj(t), l1 + · · · + ln−1 + 1 ≤ i ≤ N, (8)

or in a compact form

ẋ(t) = Ḡx(t) + ā, (9)

where

Ḡ =








G11 − I · · · G1,n−1 G1n

...
. . .

...
...

Gn−1,1 · · · Gn−1,n−1 − I Gn−1,n

Gn1 · · · Gn,n−1 Gnn








,

ā = (a1, . . . , a1
︸ ︷︷ ︸

l1

, . . . , an−1, . . . , an−1
︸ ︷︷ ︸

ln−1

, 0, . . . , 0
︸ ︷︷ ︸

ln

)T , l1 + · · · +

ln = N . In this case, we also call the clusters of informed

agents the leader clusters and call an agent in a leader cluster

a leader.

Lemma 2. Ḡ is invertible if and only if for any naive agent,

there is a directed path from some leader.

The proof is omitted here due to the length limit. In

the following discussion, we assume that for any naive

agent there is a directed path from some leader. Since Ḡ is

invertible, the equilibrium x∗ of system (9) is x∗ = −Ḡ−1ā.
Let y(t) = x(t) − x∗, then one has ẏ(t) = Ḡy(t). It is

obvious that y(t) → 0 as t → ∞. Thus x∗ is a global stable

equilibrium of system (9).

In order to ensure that agents in the same cluster have

the same final values, we make the following requirements.

Suppose Ḡij have constant row sums rij for i = 1, . . . , n−
1, j = 1, . . . , n, and the ith row sums of Gn1, . . . , Gn,n−1

are mih1, . . . ,mihn−1 for 1 ≤ i ≤ ln, which can be

regarded as the weighted information received from leader

clusters, where mi are positive constants. We require that

there is at least one hi 6= 0 with 1 ≤ i ≤ n−1. Without loss

of generality, suppose h1, . . . , hk 6= 0, 1 < k ≤ n − 1, and

hk+1 = · · · = hn−1 = 0, it is easy to see that the row sums
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of Gnn are −mi

∑n−1
j=1 hj . Expanding the equation QḠ = I ,

one has







r11

∑l1
j=1 qij + · · · + qi,N−ln+1m1h1

+ · · · + qiNmlnh1 = 1,

r12

∑l1
j=1 qij + · · · + qi,N−ln+1m1h2

+ · · · + qiNmlnh2 = 0,
...

r1n

∑l1
j=1 qij + · · · − qi,N−ln+1m1

∑n−1
j=1 hj

− · · · − qiNmln

∑n−1
j=1 hj = 0,

where 1 ≤ i ≤ l1. Let

M =














h2r11 − h1r12 · · · h2rn−1,1 − h1rn−1,2

... · · ·
...

hkr11 − h1r1k
. . . hkrn−1,1 − h1rn−1,k

...
. . .

...

r1,n−1 · · · rn−1,n−1

−1 · · · −1














,

one has

M









∑l1
j=1 qij

∑l1+l2
j=l1+1 qij

...
∑N

j=N−ln+1 qij









=













h2

...

hk

...

0
1













.

M is invertible because of the invertibility of Ḡ. By some

simple calculations, it is easy to derive that Qij , 1 ≤ i ≤
n, 1 ≤ j ≤ n − 1, have constant row sums sij , and






s11 · · · s1,n−1

...
. . .

...

sn1 · · · sn,n−1






=





h2 · · · hk 0 · · · 0 1
−h1I 0 1

0 I 1



 M−T .

For 1 ≤ i ≤ n−1,
∑n

j=1 rij = −1, and
∑n

j=1 rnj = 0, it is

easy to show that
∑n−1

j=1 sij = −1, for 1 ≤ i ≤ n. Moreover,

for 1 ≤ i ≤ n−1, 1 ≤ k ≤ ln, one can derive from ḠQ = I
that

mkh1s1i + · · · + mkhn−1sn−1,i − mk

n−1∑

j=1

hjsni = 0.

It follows that

sni =

∑n−1
k=1 hkski

∑n−1
j=1 hj

.

Suppose x̄1, . . . , x̄n are the final values for the n clusters,

then each cluster converges to x̄i = −
∑n−1

j=1 sijaj , and in

addition

x̄n = −
n−1∑

t=1

sntat = −
n−1∑

t=1

n−1∑

k=1

hkskt
∑n−1

j=1 hj

at

=

n−1∑

k=1

hk
∑n−1

j=1 hj

(−
n−1∑

t=1

sktat) =

n−1∑

k=1

hkx̄k
∑n−1

j=1 hj

which implies that the final values of the naive agents are a

linear combination of the final values of the leader clusters.

The coefficients hk
∑ n−1

j=1
hj

are determined by the row sums of

Gn1, . . . , Gn,n−1. If x̄i, 1 ≤ i ≤ n, are not equal to each

other, then the n-cluster synchronization of system (10) is

realized.

Note that these final values only depend on the row sums

of the sub-matrices of Ḡ, i.e., the weighted information

received by each leader cluster or by each naive agent. It

does not depend on the number of agents and the proportion

of informed agents in the system.

In the next section, we present a different approach to

achieving cluster synchronization.

IV. CLUSTER SYNCHRONIZATION WITH NEGATIVE

WEIGHTS

Consider the linear time-invariant multi-agent system

ẋ(t) = Gx(t), (10)

where G ∈ R
N×N is in the form of (6). It is well-

known that if the interaction topology associated with

G contains a directed spanning tree, then the system

achieves consensus [4]. Here we discuss the n-cluster

synchronization problem for system (10). Let η1 =
(1, . . . , 1
︸ ︷︷ ︸

l1

, 0, . . . , 0)T , η2 = (0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

l2

, 0, . . . , 0)T ,

. . ., ηn = (0, . . . , 0, 1, . . . , 1
︸ ︷︷ ︸

ln

)T be n independent right

eigenvectors associated with 0, and α1, . . . , αn be the corre-

sponding n left eigenvectors satisfying ηT
i αj = 1, if i = j

and ηT
i αj = 0, if i 6= j. Since the solution of (10) is

x(t) = eGtx(0), it is obvious that if the following matrix

equation

lim
t→∞

eGt =
n∑

i=1

ηiα
T
i (11)

holds, then n-cluster synchronization is achieved provided

that we have some constraints on the initial conditions. We

obtain the following necessary and sufficient condition under

which (11) holds. The proof will be present in the full-length

version of the paper.

Lemma 3. (11) holds if and only if

Gηi = 0, αT
i G = 0, (12)

where i = 1, . . . , n, and G has exactly n zero eigenvalues

and all the other eigenvalues have negative real parts.

Remark 3. From Lemma 3, one can see that in order to

realize n-cluster synchronization, it is required that Gij have
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zero row sums, which means that the coupling between clus-

ters need to be canceled out after n-cluster synchronization

is realized.

In the following discussion, suppose G satisfies the con-

dition that the row sums of Gij , 1 ≤ i, j ≤ n, are 0, then

G has a zero eigenvalue with the geometric multiplicity at

least n.

Theorem 2. Suppose the initial values of system (10)

satisfy that αT
i x(0) with 1 ≤ i ≤ n are not equal to each

other, then n-cluster synchronization can be achieved if and

only if G has exactly n zero eigenvalues and all the other

eigenvalues have negative real parts.

Remark 4. Similar result has been given in [10], where a

weaker notion of cluster synchronization is considered. Com-

pared to the conditions in [10], the additional requirement in

Theorem 2 is that αT
i x(0), 1 ≤ i ≤ n, are not equal to each

other.

The condition given in Theorem 2 for achieving n-cluster

synchronization is an algebraic condition, which is difficult to

check in application. Our aim then is to develop algorithms to

construct proper coupling topologies that satisfy the algebraic

condition.

Lemma 4. [13] Let A and B be N×N Hermitian matrices

and let the eigenvalues λi(A), λi(B), and λi(A + B) be

arranged in decreasing order as

λN (·) ≤ λN−1(·) ≤ · · · ≤ λ1(·).

For each k = 1, 2 · · · , N we have

λk(A) + λN (B) ≤ λk(A + B) ≤ λk(A) + λ1(B).

Intuitively, if the inner couplings within the clusters are

strong enough, system (10) can achieve cluster synchroniza-

tion. In fact, we have the following result.

Proposition 1. Let

G = diag{c1G11, . . . , cnGnn}

+








0 G12 · · · G1n

G21 0 · · · G2n

...
...

. . .
...

Gn1 Gn2 · · · 0








be a symmetric matrix, G1 = diag{c1G11, . . . , cnGnn},

G2 = G − G1. Suppose Gij have zero row sums, matrices

Gii are irreducible and the off-diagonal elements of Gii are

nonnegative. If ci > ρ(G2)
−max1≤i≤n λ2(Gii)

, then G has exactly

n zero eigenvalues and all the other eigenvalues are negative.

Proof. Since Gij have zero row sums, G has at least n
zero eigenvalues. Using Lemma 4, one has

λN (G2) ≤ λi(G) − λi(G1) ≤ λ1(G2),

which leads to |λi(G) − λi(G1)| ≤ ρ(G2). It follows from

ci > ρ(G2)
−max1≤i≤n λ2(Gii)

that max1≤i≤n ciλ2(Gii)+ρ(G2) <

0. From the assumptions, one has −Gii are irreducible Lapla-

cian matrices. It follows that λ1(G1) = · · · = λn(G1) = 0,

and λn+1(G1) = max1≤i≤n ciλ2(Gii). Thus one concludes

λn+1(G) ≤ max1≤i≤n ciλ2(Gii) + ρ(G2) < 0. ¤

Proposition 2. Suppose the graphs G1, . . . ,Gn associated

with G1, . . . , Gn are balanced and strongly connected, then

for any positive definite matrix S with proper dimension,

zero is an eigenvalue of Sdiag{G1, . . . , Gn} of algebraic

and geometric multiplicity n, and all the other eigenvalues

of Sdiag{G1, . . . , Gn} have negative real parts.

The Proposition can be proved using a similar argument

as the proof of Theorem 4.5 in [14].

Proposition 2 provides a way to construct a graph satis-

fying the condition in Theorem 2. Let G′ be a graph with

n disconnected components, which are strongly connected

and balanced. Let the matrix associated with G′ be G′, then

multiplying from the left a positive definite matrix S gives

us a matrix G = SG′ satisfying the condition in Theorem 2.

V. ILLUSTRATIVE EXAMPLES

In this section, several examples are given to illustrate

the theoretical analysis results. First, consider the system

consisting of two clusters of informed agents and one cluster

of naive agents with l1 = l2 = l3 = 2 and a1 = 1, a2 = 7.

The coupling matrix is given by

G =











−2 0 1 1 0 0
0 −2 2 0 0 0
1 0 −1 0 0 0
0 1 0 −1 0 0
1 0 1 1 −3 0
0 2 4 0 0 −6











,

Since the final value for the first and second clusters are 4

and 5.5, respectively, the values of the naive agents converge

to 4 × 1
3 + 5.5 × 2

3 = 5. Fig. 1 shows the evolution of the

three clusters.

Let

G′ =









−1 0 1 0 0
1 −1 0 0 0
0 1 −1 0 0
0 0 0 −1 1
0 0 0 1 −1









.

Obviously the associated graph G′ contains two disconnected

components, which are balanced and strongly connected.

Multiplying from the left a positive definite matrix S leads

to the matrix G = SG′









−1.3992 −0.0542 1.4534 0.6371 −0.6371
2.2438 −1.6874 −0.5563 0.2567 −0.2567
0.6106 0.1734 −0.7839 −0.0629 0.0629
0.7467 −0.2281 −0.5186 −1.5581 1.5581
−0.1471 −0.0343 0.1814 0.3770 −0.3770









.

G has exactly two zero eigenvalues and the rest three eigen-

values have negative real parts. Fig. 2 shows the evolution

of the system states, from which we find that 2-cluster

synchronization is achieved.

An interesting graph that realizes 2-cluster synchronization

has the topology shown in Fig. 3. The associated matrix G
has two zero eigenvalues and the rest eigenvalues have neg-

ative real parts. Let groups 1, 2, 3 be {1, 2}, {3, 4}, {5, 6},
respectively. It is easy to find from Figs. 3 and 4 that,
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Fig. 1. The evolution of the system states.
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Fig. 2. The evolution of the system states.

although there is no direct connection between groups 1 and

2, the states of the agents in these two groups finally achieve

the same value via the interconnection with agents in group

3, which have a different final state.

VI. CONCLUDING REMARKS

This paper has investigated the approaches for realizing n-

cluster synchronization in multi-agent systems. First, some

sufficient conditions for the system containing informed and

naive agents to achieve n-clusters are given. Second, we

provide a systematic way to construct the coupling matrix

with negative weights. Numerical examples are given to

verify the effectiveness of our methods. The two approaches

presented in this paper are just examples for constructing

cluster synchronization algorithms. It is envisioned that more

Fig. 3. The communication topology of a network.
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Fig. 4. State trajectories. (Agents 1,2,3,4 are in the same cluster)

such algorithms may appear and then their advantages and

disadvantages can be compared. The constructed algorithms

might lead to insight into the clustering behavior in natural

and man-made systems, and in the end help to design

efficient coordination algorithms for dynamic multi-agent

systems.
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