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CLUSTER-TILTED ALGEBRAS

ASLAK BAKKE BUAN, BETHANY R. MARSH, AND IDUN REITEN

Dedicated to Claus Michael Ringel on the occasion of his sixtieth birthday

Abstract. We introduce a new class of algebras, which we call cluster-tilted.
They are by definition the endomorphism algebras of tilting objects in a cluster
category. We show that their representation theory is very close to the repre-
sentation theory of hereditary algebras. As an application of this, we prove a
generalised version of so-called APR-tilting.

Introduction

In [FZ] Fomin and Zelevinsky introduced a class of algebras which they called
cluster algebras. There are interesting connections to their theory in many direc-
tions (see [FZ2]), amongst them to tilting modules over hereditary algebras [MRZ].
Motivated by [MRZ], tilting theory in a particular factor category of the bounded
derived category Db(modH) of the finitely generated modules over a finite dimen-
sional hereditary algebra H over a field k was investigated in [BMRRT], along
with the relationship to tilting theory for hereditary algebras. In the triangu-
lated category Db(modH) denote by [1] the suspension functor. Since H has finite
global dimension, Db(modH) has AR-triangles [H]. Denote by τ the correspond-
ing translation functor, which is an autoequivalence. Denoting by F the composi-
tion τ−1[1], the cluster category C was defined in [BMRRT] as the factor category
Db(modH)/F . Actually, the theory holds more generally when replacing modH
with any hereditary abelian Ext-finite k-category (see [BMRRT], Section 3).

Tilting modules play an important role in the representation theory of finite
dimensional algebras, and the tilted algebras which by definition are the algebras
of the form EndH(T )op for a tilting module T over a hereditary algebra H, form a
central class of algebras. Their module theory is to a large extent determined by
the module theory of the hereditary algebra H. This motivates investigating the
cluster-tilted algebras more closely, which are those of the form EndC(T )

op, where
T is a tilting H-module, viewed as an object in C, or equivalently, T is a cluster
tilting object in C, or tilting object for short (see [BMRRT]). We also investigate
the relationship between C and the module theory of these algebras. In some sense
the relationship is even closer than is the case for tilted algebras. The following
first main result is proved in Section 2.
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Theorem A. If T is a tilting object in C, then HomC(T, ) induces an equivalence
C / add(τT ) → modEndC(T )

op.

Interesting consequences are that for finite representation type the cluster-tilted
algebras all have the same number of indecomposable modules as the hereditary
algebra H we started with, and that we get a nice description of the AR-quivers of
cluster-tilted algebras.

Also, the notion of almost complete (cluster) tilting object was investigated in
cluster categories in [BMRRT], and it was shown that there are always exactly two
complements (see Section 1 for definitions). For an almost complete tilting object
T , let M and M∗ be the two complements, and let T = T ⊕M and T ′ = T ⊕M∗.
As an application of Theorem A we prove a close connection between the modules
over Γ = EndC(T )

op and Γ′ = EndC(T
′)op. To understand this connection better is

of interest for the relationship to cluster algebras. If SM and SM∗ denote the simple
tops of the Γ-module HomC(T,M) and the Γ′-module HomC(T

′,M∗), respectively,
we have the following, which answers a conjecture in [BMRRT].

Theorem B. With the above notation the categories modΓ/ addSM and
modΓ′/ addSM∗ are equivalent.

A relevant model for our result from tilting theory is the APR-tilting modules,
which by definition, for a hereditary (basic) algebraH are of the form T = P⊕τ−1S,
where H = P ⊕ S, and S is simple projective. Then T and H are two completions
of the almost complete tilting module P , and are actually also the two completions
of the almost complete tilting object P in C. Thus, Theorem B can be regarded as
a generalisation of APR-tilting.

P. Caldero, F. Chapoton and R. Schiffler [CCS] have recently associated an
algebra to each cluster C in a cluster algebra of simply-laced Dynkin type, giving a
definition via the combinatorics of the cluster algebra. It is conjectured [BMRRT,
9.2] that this algebra coincides with the cluster-tilted algebra associated to the
tilting object in the cluster category C corresponding to the cluster C. They have
given an interesting geometric description of the module category of this algebra in
type An, and their approach enables them to generalise the denominator theorem of
Fomin and Zelevinsky [FZ2, 1.9] to an arbitrary cluster in type An. Our main aims
in this paper are to show that the representation theory of cluster-tilted algebras is
very close to the representation theory of hereditary algebras, and that the cluster-
tilted algebras satisfy a generalised version of APR-tilting.

Theorem B is proved in Section 4. In the second section we prove Theorem A,
and in the third we give some combinatorial consequences of this theorem and an
illustrative example. In the first section some necessary background material is
recalled.

1. Preliminaries

In this section we review some useful notions and results. Let A be an additive
category. We need the notion of approximations. Let X be an additive subcategory
of A, and let A be an object of A. Then a map X ′ → A withX ′ ∈ X is called a right
X -approximation if the induced map Hom(X , X ′) → Hom(X , A) is an epimorphism.
There is the dual notion of a left X -approximation. These concepts were introduced
in [AS].
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CLUSTER-TILTED ALGEBRAS 325

A map f : A → B in a category A is called right minimal, if for every g : A → A
such that fg = f , the map g is an isomorphism. There is the dual notion of a left
minimal map. A right (left) approximation that is also a right (left) minimal map,
is called a minimal right (left) approximation.

For a Λ-module T , we let addT denote the full subcategory of modΛ with objects
all direct summands of direct sums of copies of T . We let FacT denote the full
subcategory of modΛ with objects all factors of modules in addT and we let SubT
denote the full subcategory with objects all submodules of modules in addT .

1.1. Tilting modules and torsion pairs. In this section, let Λ be a, not neces-
sarily hereditary, finite dimensional algebra. Then T is called a tilting module in
modΛ if

- pdΛ T ≤ 1,
- Ext1(T, T ) = 0 and
- there is an exact sequence 0 → Λ → T0 → T1 → 0, with T0, T1 in addT .

This is the original definition of tilting modules from [HR], and it was proved
in [B] that the third axiom can be replaced by the following:

- the number of indecomposable direct summands of T (up to isomorphism)
is the same as the number of simples.

There is a dual concept of cotilting modules, and using the result of Bongartz,
it follows that for hereditary algebras a module is a tilting module if and only if it
is a cotilting module.

Let T be a tilting module. Then the category T T = FacT is closed under factors
and extensions and is hence a torsion class. The corresponding torsion-free class is
FT = {X | Hom(T T , X) = 0}. It is well known that T T = {Y | Ext1(T, Y ) = 0}
and that FT = {X | Hom(T,X) = 0} = Sub(τT ).

1.2. A factor of the derived category and tilting objects. Let H be a hered-
itary algebra and let F = τ−1[1] and C = Db(H)/F , as in the introduction.

A crucial property of C is that it has a triangulated structure induced by the
triangulated structure of Db(modH). The following is a special case of a theorem
of Keller [K].

Theorem 1.1. The category C carries a canonical triangulated structure, such that
the canonical functor

Db(modH) → C
is a triangle functor.

We use [1] also to denote the suspension functor in C.
In [BMRRT] it is proved that C has almost split triangles, induced by the almost

split triangles in D. We denote by τ the corresponding translation functor in both
categories. Then there is an isomorphism

DHomC(B, τA) � Ext1C(A,B)

for all objects A and B in C. The notion of a tilting object in C was defined
in [BMRRT], and it was shown (Proposition 2.3) that an object T in C is a tilting
object if and only if the following holds: HomC(T,X[1]) = 0 if and only if X is in
addT . The object T is called an exceptional object if HomC(T, T [1]) = 0, and it is
called an almost complete tilting object if in addition it has n− 1 indecomposable
direct summands, where n is the number of simple H-modules.
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The following summarises some results we need from [BMRRT]. If T is a module,
we also denote its image in C by T .

Proposition 1.2. a) If T is exceptional in modH, then T is also exceptional in
C.

b) If T is a tilting module in modH, then T is also a tilting object in C.
c) If T is an almost complete tilting object in C, then it has exactly two non-

isomorphic complements in C.
d) Let T be as above with two indecomposable complements M and M∗ in C.

Then there are triangles in C:
M∗ → B → M →

and
M → B′ → M∗ →

where B → M and B′ → M∗ are minimal right addT -approximations.
e) For a tilting object T in C = Db(modH)/F , there is always a hereditary

algebra H ′ derived equivalent to H, such that the image of T under this
equivalence is induced by a tilting module.

2. Cluster categories and cluster-tilted algebras

In this section we show the main result describing the connection between a
cluster category and the module theory of an associated cluster-tilted algebra.

For a hereditary algebra H and a tilting module T , there are associated torsion
theories (T ,F) in modH, where T = FacT , and (X ,Y) in modEndH(T )op, such
that there are equivalences of categories HomH(T, ) : T → Y and Ext1H(T, ) : F →
X ; see [BB]. In addition, there is an induced equivalence of derived categories
(see [H])

RHom( , ) : Db(modH) → Db(modEndH(T )op).

When T is a tilting object in a cluster category, the functor G = HomC(T, ) behaves
nicely on all of C, and is actually even dense.

Proposition 2.1. The functor G is full and dense.

Proof. Let Γ = EndC(T )
op. Then it is well known that G induces an equivalence

between the additive categories addT and P(Γ), the full subcategory of modΓ with
objects the projective modules. We first show that G is dense. So let Y be any

module in modΓ, and let P1
g→ P0 → Y → 0 be a minimal projective presentation.

Then there are modules T0 and T1 in addT and a map α : T1 → T0 such that
G(Ti) = Pi for i = 0, 1 and G(α) = g. There is a triangle

T1
α→ T0 → A →

in C. By applying HomC(T, ), we obtain an exact sequence

HomC(T, T1) → HomC(T, T0) → HomC(T,A) → HomC(T, T1[1]).

We now use that T is tilting and Proposition 1.2 a) to conclude that HomC(T, T1[1])
= 0. Hence G(A) � Y , and the functor is dense.

To show that G is full, we first give a useful property of objects C in C. Let

δ : T ′ → C be a minimal right addT -approximation, and let E → T ′ δ→ C → be
the induced triangle. Applying HomC(T, ) we see that Ext1C(T,E) = 0, and hence
E is in addT by Section 1.
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Now let A and B be objects in C, and let f : G(A) → G(B) be a map in modΓ.

By the above we have triangles T1
α→ T0 → A → and T ′

1
β→ T ′

0 → B → in C, with
Ti, T

′
i in addT . Hence we get an exact commutative diagram

HomC(T, T1) ��

h

��

HomC(T, T0) ��

g

��

HomC(T,A) ��

f

��

0

HomC(T, T
′
1) �� HomC(T, T

′
0) �� HomC(T,B) �� 0

and consequently an exact commutative diagram

T1
α ��

v

��

T0
��

u

��

A ��

γ

��
T ′
1

β �� T ′
0

�� B ��

with G(v) = h, G(u) = g, and γ the induced map. It follows that G(γ) = f , and
the functor is full. �

The functor G is not faithful. But a related functor turns out to be an equiva-
lence.

Theorem 2.2. Let T be a tilting object in C, and
G = HomC(T, ) : C → modΓ.

Then there is an induced functor G : C / add(τT ) → modΓ, which is an equivalence.

Proof. We have G(τT ) = HomC(T, τT ) = HomC(T, T [1]) = 0, where the last equal-
ity uses that τT � T [1] in C, since F = τ−1[1]. Thus, there is an induced functor
G : C / add(τT ) → modΓ.

Since G is full and dense by Proposition 2.1, it follows that G is full and dense.
To show that G is an equivalence, it remains to show that it is faithful.

Let h : A → B in C be such that G(h) = 0, that is, HomC(T, h) : HomC(T,A) →
HomC(T,B) is 0. Consider the diagram

T1
s �� T0

f �� A
r ��

h

��

T1[1] = τT

B

where T1
s→ T0

f→ A → is a triangle. Since hf = 0, there is a map t : τT → B
such that tr = h, that is, h : A → B factors through add(τT ). This shows that G
is faithful, and consequently an equivalence. �

Remark. The argument showing that G is faithful is a major simplification due to
Bernhard Keller of our original proof. We thank him for his kind permission to
include his proof.

The result has an especially nice consequence in the case of finite type.

Corollary 2.3. Let H be a hereditary algebra of finite representation type, and let
T be a tilting object in C, with Γ = EndC(T )

op. Then Γ has the same number of
non-isomorphic indecomposable modules as H.
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Proof. Let h be the number of indecomposable modules for H (up to isomorphism),
and let n be the number of simples. The number of indecomposable objects in C
is h+ n. The number of indecomposable summands of T and thus of τT is n, and
thus the number of indecomposables for Γ is h+ n− n = h. �

3. Combinatorial properties

Let H be a hereditary algebra with a tilting module T in modH. Let Λ =
EndH(T )op be the corresponding tilted algebra and Γ = EndC(T )

op the cluster-
tilted algebra. In this section we point out a nice consequence of the equivalence
of Theorem 2.2, namely that the AR-quiver of Γ can be obtained directly from the
AR-quiver of H. We illustrate this by a small concrete example. This example also
suggests that there is a combinatorially nice relationship between the AR-quivers
of Γ and of Λ, but we do not have any general result in this direction.

3.1. The AR-quiver of Γ. Here we explain why and how the AR-structure of Γ
can be obtained from the AR-structure of H. The indecomposable objects of the
derived category of a hereditary algebra are all (isomorphic to) stalk complexes.
The AR-structure of the derived category of H is well known. The AR-quiver
consists of a countable number of copies of the AR-quiver of H, glued together
using that the translate of a projective is the corresponding injective (given by the
Nakayama functor) [H]. The following is proved in [BMRRT].

Proposition 3.1. The category C has AR-triangles, induced by the AR-triangles
in Db(modH).

Proof. This is a special case of Proposition 1.3 in [BMRRT]. �

Combining this with the following observation, we see that the AR-quiver of Γ
can be obtained from the AR-quiver of H.

Proposition 3.2. The almost split sequences in C / add(τT ) � modΓ are induced
by almost split triangles in C.

Proof. By [AR], minimal right (left) almost split maps are sent to minimal right
(left) almost split maps in the factor. Let M be a non-projective indecomposable in

modΓ, and let C be the corresponding indecomposable object in C. Let A f→ B
g→

C → be the AR-triangle in C, and let ˜f : ˜A → ˜B and g̃ : ˜B → ˜C be the induced

maps in modΓ. Then it is clear that τΓ ˜C = ker g̃. Since the composition g̃ ˜f is the

zero-map, it follows that ˜f cannot be an epimorphism, and since it is left almost
split, it must be a monomorphism. It also follows that it factors through ker g̃. But

since it is irreducible, we must have ˜A � ker g̃. �

We note that since the tilted algebra Λ is a factor algebra of Γ, there is an induced
embedding modΛ → modΓ. In the example below we see that the AR-structure is
preserved by this embedding.

3.2. An example. In this section we illustrate Theorem 2.2 and the combinatorial
remarks above by a small example. Let Q be the quiver

1 �� 2 �� 3
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and let H = kQ be the path algebra, where k is a field. Then the AR-quiver of the
triangulated category Db(H) looks like this:

1
2
3

���
��

��
�

3[1]

���
��

��
�

2[1]

���
��

��
�

1[1]

· · · 2
3

���
��

��
�

��������
1
2

���
��

��
�

��������
2
3 [1]

���
��

��

��������
1
2 [1]

��������
· · ·

3

��������
2

��������
1

�������� 1
2
3
[1]

�������

The AR-quiver of C is given by

1
2
3

���
��

��
�

3[1]

���
��

��
�

2[1] � 3

���
��

��
�

2
3

���
��

��
�

��������
1
2

���
��

��
�

��������
2
3 [1]

���
��

��

��������
1
2 [1] � 2

3

���
��

��

3

��������
2

��������
1

�������� 1
2
3
[1]

�������

3[2] � 1
2
3

with identifications as indicated in the figure.
Let T be the tilting module T = T1⊕T2⊕T3 = S3⊕P1⊕S1, let Λ = EndH(T )op

be the corresponding tilted algebra and Γ = EndC(T )
op the cluster-tilted algebra.

We notice that Γ is the path algebra of the quiver

3 �� 2

����
��
��
��
��
��
�

1

���������������

with relations r2 = 0. As we expect from Theorem A, we get the AR-quiver of Γ
by deleting the vertices corresponding to τT .

2
1

���
��

��
�

•

���
��

��
�

1

���
��

��
��

		������
2

���
��

��
�

		������
3

���
��

��
��

1
3

		������
•

		�������
3
2

		������
•

The tilted algebra Λ is given by the quiver Q also with r2 = 0. We note now that
there is (in this particular example) a nice embedding of the AR-quiver of Λ in the
AR-quiver of Γ. The AR-quiver of Λ is given by deleting the module 1

3 in the AR-
quiver above. This is in contrast to the embedding of modΛ into Db(modΛ), which
we consider now. We have an equivalence of categories RHom(T, ) : Db(modH) →
Db(modΛ).
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The image of a module X in Db(modΛ) when applying RHom(T, ) is a complex
with homology in degree zero, given by HomH(T,X), and homology of degree one,
given by Ext1H(T,X) = Hom(T,X[1]). We use the numbers 1, 2, 3 to indicate the
simple tops of Hom(T, T1), Hom(T, T2) and Hom(T, T3), respectively.

2
1

���
��

��
�

•

���
��

��
��

3

���
��

��
��

•

· · · (1, 3)

���
��

��
�

								
2

���
��

��
�

									
•

���
��

��
��

									
•

									
· · ·

1

								
(0, 3)

								
3
2

								
•

									

The pair (a, b) indicates that the homology in degree zero is a, and the homology
in degree one is b. For stalk complexes in degree 0 we write a instead of (a, 0).

Now, we do not get the AR-quiver for modΛ directly when restricting from
Db(Λ) to modΛ, but have to move some of the modules, to take the place of
complexes to get the AR-quiver of modΛ. The problem is that we normally will
have some non-projective Λ-module Y for which τDb(Λ)Y is not a Λ-module. So
when we restrict, and τY gets deleted, there is then no τDb(Λ)Y -correspondent for
Y , without moving.

3.3. Some remarks. We observe that the endomorphism-ring of a tilting object
in C can both have cycles in the AR-quiver and have infinite global dimension. So
in this respect, the algebras that appear as cluster-tilted algebras are very different
from the ordinary tilted algebras.

We also make some comparison with the combinatorial setup in the classification
of selfinjective algebras of finite type [R]. To find the possible AR-quivers for
a selfinjective algebra of finite type, it was first proved that the possible stable
AR-quivers were given by ZΔ/G for a Dynkin diagram Δ and G a group acting
admissibly. Then one “filled in” extra vertices for the projectives to get a module
category. Here the situation is “opposite”. One has the translation quiver of C,
and then removes certain vertices (given by τT ) to get the translation quiver for a
module category.

It is an interesting phenomenon that one can remove a set of vertices from a
stable translation quiver, such as the AR-quiver of D /F , and then obtain an AR-
quiver. A necessary condition for this is that for any indecomposable projective P ,
we have τ2P � I ′ for an indecomposable injective I ′.

4. Generalised APR-tilting

Given a tilting module T for a hereditary algebra H, we have shown that there
is an equivalence C / add(τT ) → modΓ, where Γ = EndC(T )

op. We now apply this
to get a generalisation of the equivalence coming from APR-tilts.

Let T be an almost complete tilting object in C, with complements M and M∗.
By Proposition 1.2, there are triangles M∗ → B → M → and M → B′ → M∗ →,
with B and B′ in addT . Let T = T ⊕M , and let T ′ = T ⊕M∗. Furthermore, let
Γ = EndC(T )

op and Γ′ = EndC(T
′)op. Then HomC(T,M) and HomC(T

′,M∗) are
indecomposable projective modules over Γ and Γ′, respectively. Thus, they have
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simple tops, which we denote by SM and SM∗ . The top of a module Z is Z/rZ,
where r is the radical of the ring. We now have an exact sequence

(1) HomC(T,B) → HomC(T,M) → HomC(T, τM
∗) → HomC(T,B[1])

where the last term vanishes.

Lemma 4.1. The Γ-module HomC(T, τM
∗) is simple.

Proof. By [BMRRT], HomC(M,M∗[1]) is one-dimensional over the factor algebra
EndC(M)/Rad(M,M), and thus a simple EndC(M)-module. We have

HomC(T, τM
∗) = HomC(T ⊕M, τM∗)

� HomC(T ,M
∗[1])⊕HomC(M,M∗[1]) � HomC(M,M∗[1]).

Thus, HomC(T, τM
∗) � HomC(M,M∗[1]) as a Γ-module, and is hence simple. �

From this lemma and the exact sequence (1), it follows that SM � Hom(T, τM∗).
Similarly, we get SM∗ � Hom(T ′, τM). By Theorem 2.2 we get an equivalence
C / add τT → modΓ such that τM∗ �→ SM . We also get an equivalence C / add τT ′

→ modΓ′ such that τM �→ SM∗ . If we now let ˜T = T⊕M⊕M∗, we get equivalences

C / add ˜T → modΓ/ addSM and C / add ˜T → modΓ′/ addSM∗

Putting this together, we get the following.

Theorem 4.2. Let T be an almost complete tilting object in C with complements
M and M∗. Let T = T ⊕M , let T ′ = T ⊕M∗ and let Γ = EndC(T )

op and Γ′ =
EndC(T

′)op. Furthermore, let SM and SM∗ denote the simple tops of HomC(T,M)
and HomC(T

′,M∗), respectively. Then there is an equivalence modΓ/ addSM →
modΓ′/ addSM∗ .

Consider the following special case. Let M be an indecomposable projective H-
module, and assume H as a left H-module decomposes into P ⊕M , where M is not
in addP . Then P is an almost complete tilting module. As before, denote by M∗

the second complement to P in C. Now, we have Γ = EndC(H)op = EndH(H)op �
H. With Γ′ = EndC(P ⊕M∗), the above theorem says that there is an equivalence
modH/ addSM → modΓ′/ addSM∗ .

Example. Consider again the example in Section 3.2. With P = S3⊕P1, we have
the complements M = P2 and M∗ = S1. Letting Γ′ = EndC(P ⊕M∗)op, we have
an equivalence

mod kQ/ addSM � modΓ′/ addSM∗ ,

where SM is the simple kQ-module corresponding to vertex 2 in Q, and SM∗ is the
simple Γ′-module corresponding to vertex 2 in the quiver of Γ′.

Return now to the situation withM indecomposable projective. If in addition we
assume thatM = S is simple, we are in the classical APR-tilting setting [APR]. It is
easy to see that in this caseM∗ = τ−1S is the second complement to P . The module
T ′ = P ⊕ τ−1S is called an APR-tilting module and we have Γ′ = EndC(T )

op �
EndH(T )op. Theorem 4.2 now states that modH/ addS and modΓ′/ addSM∗ are
equivalent. A reformulation of this in terms of subcategories of indecomposable
modules is that indH \{S} and indΓ\{SM∗} are equivalent. This equivalence was
shown in [APR].

In terms of the quiver Q of a hereditary algebra H = kQ, this means that
while classical APR-tilting allows us to tilt at a vertex which is a sink, generalised
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APR-tilting allows us to tilt at any vertex. The endomorphism ring of a classical
APR-tilting module is again a hereditary algebra given as the path algebra of
the quiver Q′, obtained by reversing the arrows pointing to the vertex where we
tilt. The example of Section 3.2 gives us an indication of what to expect for the
endomorphism rings when we tilt at arbitrary vertices, but we do not at present
have a general description in terms of Q.

References

[AR] Auslander, M., Reiten, I., Representation theory of Artin algebras. V. Methods for
computing almost split sequences and irreducible morphisms, Comm. Algebra 5, no. 5
(1977) 519–554. MR0439882 (55:12763)

[APR] Auslander, M., Platzeck, M.I., Reiten, I., Coxeter functors without diagrams, Trans.
Amer. Math. Soc. 250 (1979), 1–46. MR0530043 (80c:16027)

[AS] Auslander, M., Smalø S. O., Preprojective modules over Artin algebras, J. Algebra 66,
(1980), 6–122. MR0591246 (83a:16039)

[B] Bongartz, K., Tilted algebras Representations of algebras (Puebla, 1980), Lecture Notes
in Math., 903, Springer, Berlin-New York, (1981), 26–38. MR0654701 (83g:16053)

[BB] Brenner, S., Butler, M. C. R., Generalizations of the Bernstein-Gelfand-Ponomarev
reflection functors, Representation Theory, II (Proc. Second Internat. Conf., Carleton
Univ., Ottawa, Ont., 1979), Lecture Notes in Math., 832, Springer, Berlin-New York
(1980), 103–169. MR0607151 (83e:16031)

[BMRRT] Buan, A., Marsh, B., Reineke, M., Reiten, I., Todorov, G., Tilting theory and cluster
combinatorics, preprint math.RT/0402054, (2004), to appear in Adv. Math.

[CCS] Caldero, P., Chapoton, F., and Schiffler, R., Quivers with relations arising from clus-
ters (An case), Trans. Amer. Math. Soc. 358 (2006), no. 3, 1347–1364. MR2187656

[FZ] Fomin, S., Zelevinsky, A., Cluster Algebras I: Foundations, J. Amer. Math. Soc. 15,
no. 2, (2002), 497–529. MR1887642 (2003f:16050)

[FZ2] Fomin, S., Zelevinsky, A., Cluster Algebras: Notes for the CDM-03 conference, preprint
math.RT/0311493 (2003). MR2132323

[H] Happel, D., Triangulated categories in the representation theory of finite-dimensional
algebras, London Mathematical Society Lecture Note Series, 119, Cambridge University
Press, Cambridge, (1988). MR0935124 (89e:16035)

[HR] Happel, D., Ringel, C., Tilted algebras, Trans. Amer. Math. Soc. 274, no. 2 (1982),
399–443. MR0675063 (84d:16027)

[K] Keller, B., On triangulated orbit categories, Doc. Math. 10 (2005), 551–581.
MR2184464

[MRZ] Marsh, B., Reineke, M., Zelevinsky, A., Generalized associahedra via quiver rep-
resentations, Trans. Amer. Math. Soc. 355, no. 1 (2003), 4171–4186. MR1990581
(2004g:52014)

[R] Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück Comment.
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