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Abstract. We have recently applied the R-matrix method to transfer reactions in the distorted wave
Born approximation (DWBA) framework. In our approach the wave function in the internal region is
expanded in terms of Lagrange basis, which provides a fast and efficient way to compute the matrix
elements. This paper is a short review of our work on transfer reactions. I discuss applications of our
approach by considering the 16O(d, n)17F and 12C(7Li, t)16O reactions, which are specific examples of
neutron and α transfer, respectively. In particular, I discuss the role of the remnant terms, post-prior form
equivalence, peripherality of the reaction and sensitivity of the transfer cross sections to the bound state
wave functions. Effects of the remnant terms and of the supersymmetric bound state potentials on the
extracted spectroscopic factors are also discussed.
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1 Introduction

A nuclear cluster can be defined as a subsystem of strongly
correlated nucleons having its intrinsic binding stronger
than the external binding [1]. Similar to the nucleons, clus-
ters are also considered to have their specific orbitals and
more often they are treated as a single entity without ref-
erence to their internal structure. A well-known example is
the α cluster which consists of two protons and two neu-
trons and has high binding energy. Other clusters such
as tritions and helions are also common. On the basis of
several studies, it is now established that these kind of
structures are more plausible on the nuclear surface and
therefore can easily participate in various nuclear reac-
tions.

Mahir Saleh Hussein was a great expert of the nu-
clear reaction theory and in his professional life he has
worked on various types of nuclear reactions. In this short
review, I focus on the role of nuclear transfer reactions to
the nuclear structure study, the area where Mahir Hussein
has also contributed significantly (see for example[2–4]). In
fact, nuclear reactions involving the transfer of nucleon(s)
or clusters among the projectile and target, provide a pow-
erful spectroscopic tool to probe the nuclear surface and
hence to understand the single particle or cluster charac-
ter of nuclear states [5–8]. This is due to the sensitivity
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of transfer cross sections to the structure of the projectile
and the residual nucleus (composite formed by the trans-
ferred cluster and the target). In particular, comparing the
measured angular distribution of the cross sections with
the calculated ones, the angular momentum (`) and the
spin-parity (Jπ) of a particular residual state can be fig-
ured out. With the same procedure one can also find out
the spectroscopic factor (SF) or the asymptotic normal-
ization coefficients (ANC) (defined as the amplitude of the
tail of the overlap function) of the participating state of
residual nucleus. These information are important to fur-
ther specify their single particle or the cluster structure.
In case the final state is a resonance, one can estimate the
width of the resonance by knowing the SF or the ANC.
For example, in Ref. [9], role of the ANC in determining
the radiative width was discussed. Apart from the struc-
ture studies, such information (like energies, widths, spin
etc.) are often desired in many important astrophysical
reactions.

In fact, transfer reactions provide an indirect way to
study the astrophysical reactions when at low energies it
becomes difficult to perform direct measurements [10–12].
For example, in Ref. [13], the 16O(3He, d)17F reaction was
measured to analyze the states of 17F and the deduced
ANCs were then used to determine the low energy radia-
tive capture cross sections of the 16O(p, γ)17F reaction.
Similarly, the cluster transfer reactions such as (6Li, d)
and (7Li, t), where an α cluster transfer from the projec-
tile to the target, have been used to study the important
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astrophysical reactions like 12C(α, γ)16O, 13C(α, n)16O,
22Ne(α, γ)26Mg, (for details see for example the review
article [10]). It is now well established that cross sections
of low energy peripheral radiative capture reactions are
mainly determine by the ANCs. Some recent studies are
focused in extracting the (n, γ) cross sections for the r
process nuclei using (d, p) reactions [4,14,15].

At the simplest, without referring to the internal struc-
tures of the transferred cluster, core of the projectile and
the target, one can consider transfer as a three-body re-
action. Therefore, the same approach can be used for the
single particle as well as for the cluster transfer reactions
and with this picture several theoretical models using dif-
ferent frameworks and approximations have been devel-
oped in the literature. The standard and the most widely
used framework is the ‘distorted wave Born approximation
(DWBA)’ [5]. In this approximation the transfer is con-
sidered as one-step process, weak enough to be treated
as a first order perturbation. Other methods such as the
adiabatic method [16], the continuum discretized coupled-
channel (CDCC) method [17] and the Faddeev method
[18,19] are more advanced than standard DWBA. Among
these, the Faddeev method uses the exact three-body wave
function while the adiabatic and the CDCC methods ap-
proximate it better than the DWBA by including breakup
effects. For a comparison of these methods one can see, for
example, Refs. [17,20,21]

Modern calculations, like those in the CDCC method,
are demanding in terms of computer capabilities. The avail-
ability of efficient numerical techniques is therefore an im-
portant issue. As a first step in this direction, in Refs. [22,
23] we have applied the combined R-matrix [24,25] and
the Lagrange mesh [26] methods, to the transfer reaction
study in the DWBA frame work. Apart from simplifying
the calculations, usage of these methods lead to fast and
accurate numerical computations.

This paper is a short review of our work on transfer re-
actions, where apart from the utility of the R-matrix and
the Lagrange mesh methods, I also discuss about the sensi-
tivity of the transfer cross sections to the bound state wave
functions [23]. For this, a supersymmetric bound state
partner of the Woods-Saxon potential is used, which gives
a different wave function in the nuclear interior but have
the same asymptotics. Comparing the calculated cross
section with the data for reactions under consideration,
changes in the SFs are estimated. As mentioned earlier,
the same framework can be used for the nucleon as well
as for the cluster transfer reactions, so here I consider one
example for each of them. In particular, I consider the
16O(d, n)17F and the 12C(7Li, t)16O reactions which are
the specific examples of proton and of α transfer, respec-
tively. The latter reaction we have studied in Refs. [22,23]
along with the 16O(d, p)17O, but our results for the former
have not been presented before.

The paper is organized as follows. In section 2, I present
the DWBA formalism of transfer reactions and also dis-
cuss in brief about the R-matrix and the Lagrange mesh
methods. Section 3 consists of results and discussion and
finally I summarize in section 4.
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Fig. 1. Schematic diagram of transfer process where a cluster
c is transferred from the projectile A to the target t. The angles
Ω and Ω′ are associated with the coordinates R and R′.

2 Formalism

2.1 DWBA theory of transfer reactions

I give here brief details of the DWBA formalism, which of
course has been discussed in many textbooks and reviews
[5–8,27]. For more details about the current approach one
is referred to [22]. We consider a projectile A which trans-
fers a cluster/nucleon c to the target t (spin-less in our
case) leading to the formation of a residual nucleus B and
an outgoing core a in the final channel. This rearrange-
ment reaction can be written as

A(= a+ c) + t→ B(= t+ c) + a. (1)

Fig. 1 displays the various coordinates involved in the
above process. The three-body Hamiltonian associated with
this transfer process (1) can be defined in the “prior” rep-
resentation [5,6] as

Hprior = HA(rrrA) + TRRR + Vct(rrrB) + Uat(rrrat), (2)

or, in the “post” representation, as

Hpost = HB(rrrB) + TR′R′R′ + Vac(rrrA) + Uat(rrrat), (3)

where Vij are the binding potentials between clusters i and
j and they are generally obtained by fitting the spectro-
scopic properties such as binding energies or root-mean-
square radii. Uat is the optical potential between a and
t which is generally fitted to the elastic scattering data
and is also called core-core potential. rrrat is the distance
between particles a and t. HA and HB are the internal
Hamiltonians of nuclei A and B, respectively and in the
two-body model they are given by

HA = TA + Vac(rrrA),

HB = TB + Vct(rrrB). (4)

The two-body bound state wave functions for nuclei A
and B with their respective Hamiltonians are given by

ΦIAMA

`A
(rrrA) =

1

rA
uIA`A (rA)

[
Y`A(ΩA)⊗

[
χa ⊗ χc

]SA

]IAMA

,

ΦIBMB

`B
(rrrB) =

1

rB
uIB`B (rB)

[
Y`B (ΩB)⊗ χc

]IBMB
, (5)
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where uIk`k is the radial bound state wave function of the
nucleus k with `k and Ik are its orbital angular momentum
(the parity is implied) and spin, respectively. χj is the
spinor associated with the particle j. As mentioned earlier,
we have consider the target with zero spin and further we
assume that it cannot be excited. A generalization can be
found in Ref. [28].

The post and the prior representations [Eqs. (2, 3)] in
the DWBA are known to be strictly equivalent (also true
when the exact wave function is used) and in the literature
one can find the merits of both choices (for example, see
Refs. [29,30]). For the purpose of this paper I use the post
representation, but the developments are similar for the
prior representation and we have verified their equivalence
in all our calculations which I shall also discuss in next
section.

Considering Uδ(RRR
′) as some auxiliary potential be-

tween nuclei a and B, the asymptotic Hamiltonian in the
final channel can be written as

Hβ = HB(rrrB) + TRRR′ + Uδ(RRR
′). (6)

The wave function, for the above Hamiltonian then can
be factorized as

Φ
JMπ(−)
β (rrrB ,RRR

′) =

χJπLB
(R′)

R′

[
YLB

(Ω′)⊗
[
ΦIB`B (rrrB)⊗ χa

]SB

]JM
, (7)

where J, π stands for the total angular momentum and
parity, respectively and the orbital angular momentum in
the exit channel is represented by LB . χJπLB

(R′) is the ra-
dial scattering wave function for the relative motion of a
and B which is generated by the a+B optical potential.
Note that, in our calculations all optical potentials are
considered as local. Furthermore, in DWBA, the choice of
the auxiliary potential Uδ is not arbitrary [29] and in this
case it as UaB i.e. the optical potential between a and B.

If we consider Ψ
JMπ(+)
α (rrrA,RRR) as the exact three-body

solution in the initial channel then the scattering matrix
UJπαβ for the transfer process can be defined as

UJπαβ = − i
~
〈ΦJMπ(−)
β |Vac + Uat − UaB |ΨJMπ(+)

α 〉, (8)

where labels α and β stand for (LA, `A, IA) and (LB , `B , IB),
respectively.

In the DWBA, the exact three-body wave function

Ψ
JMπ(+)
α can be approximated as

ΨJMπ(+)
α (rrrA,RRR) ≈

χJπLA
(R)

R

[
YLA

(Ω)⊗ ΦIA`A (rrrA)
]JM

, (9)

where χJπLA
(R) is the radial scattering wave function for

the relative motion of A and t. Wave functions in Eq. (7)
and Eq. (9) are therefore treated on an equal footing.

Substituting these equations [(7) and (9)] into Eq. (8),
the DWBA scattering matrix element can be simplified as

UJπαβ = − i
√
SFASFB

~

×
∫
χJπLA

(R)KJπ
αβ (R,R′)χJπLB

(R′)RR′dRdR′,(10)

where SFA and SFB are the spectroscopic factors of the
concerned bound states of nucleus A and nucleus B, re-
spectively.KJπ

αβ (R,R′) is the transfer kernel, which is given
by

KJπ
αβ (R,R′) = J 〈

[
YLA

(Ω)⊗ ΦIA`A (rrrA)
]J |V|

|
[
YLB

(Ω′)⊗ ΦIB`B (rrrB)
]J〉. (11)

In the above equation, J = [ mAmB

mc(mA+mt)
]3 (mi is the

mass of particle i) is the Jacobian [22] which is introduced
to take care of transformations from the natural sets of
independent variables (RRR,rrrA), (RRR′, rrrB) to the set (RRR,RRR′)
which is usually adopted for symmetry reasons. Calcula-
tion of the transfer kernel [Eq. (11)] involves integral over
the angles Ω and Ω′ and they were given in the Appendix
or Ref. [22]. The interaction V in Eq. (11), in the post
form is given by

Vpost = Vac + Uat − UaB . (12)

Similar procedure if followed for the prior form, then
one can get the equivalent expression for the scattering
matrix [Eq. (10)], but the interaction V in that case will
be

Vprior = Vct + Uat − UAt. (13)

In both these representations, the latter two terms
(also called remnant terms) are often neglected for the
simplicity as they appear nearly equal in many cases. How-
ever, this is true when target t is heavy in the post rep-
resentation or when core a and target t are heavier than
the transferred cluster in the prior representation. For ex-
ample, in the case of (d, p) reactions in post form, optical
potentials for the p − At and p − (At + 1) (At being the
mass number of the target) systems appear nearly same
and their difference can be neglected. On the other hand,
in the prior form the remnant term involves optical po-
tentials for the p − At and d − At systems and their dif-
ference generally can’t be neglected. This is also one of
the reasons that in the literature, for the (d, p) reactions,
the post form DWBA is mostly used without the remnant
term in the interaction. Also note that the equivalence of
these two representations hold only when remnant terms
are included in the calculations [31].

The evaluation of Eq. (10) needs scattering wave func-
tions in the incident as well as in the exit channels along
with the bound state functions. For this, we make use of
the R-matrix and the Lagrange mesh methods, which I
discuss in brief in the next section.

2.2 R-matrix and Lagrange mesh methods

For a detailed review of the R-matrix method and its ap-
plications one is referred to Ref. [24], here I shall discuss
only what is relevant in the present context. We use this
method to calculate the scattering wave functions χJπLA

(R)

and χJπLB
(R′). Following the idea of the R-matrix, we di-

vide the space in an internal and an external region at
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some radius R0. The channel radius R0 is taken large
enough, so that, beyond this the nuclear potential is neg-
ligible. In the external region (R > R0), the wave function
take the asymptotic form, which is given by

χLext(R) =
1√
v

(IL(kR)− ULOL(kR)), (14)

where k and v respectively are the wave numbers and ve-
locity of the concerned particle. IL(x) and OL(x) are the
incoming and outgoing Coulomb functions, respectively
and UL is the elastic scattering matrix which is calcu-
lated from the R-matrix. Note that, for the simplicity, in
this section I have dropped the dependency of the wave
function on other indices except the orbital angular mo-
mentum.

In the internal region (R ≤ R0), the wave function is
expanded over a set of N basis functions ϕi(R) as

χLint(R) =

N∑
i=1

cLi ϕi(R). (15)

The choice of the basis functions ϕi(R) will be dis-
cussed later. These functions are valid only in the region
[0, R0], therefore the matrix elements of the kinetic en-
ergy are not Hermitian. This problem can be solved by
introducing the Bloch operator [32], defined as

L =
~2

2µ
δ(R−R0)

(
d

dR
− B

R

)
, (16)

with B as a boundary parameter, taken as 0 here and µ
is the reduced mass. The Bloch-Schrödinger equation can
be written as(

H + L − E
)
χLint = LχLint = LχLext, (17)

where the second equality holds because of the surface
character of L. Note that apart from ensuring the her-
miticity of the Hamiltonian over the internal region the
Bloch operator also leads to the continuity of the deriva-

tive at the boundary .i.e. χLint
′
(R0) = χLext

′
(R0).

By substituting Eq. (15) into Eq. (17) one can calculate
the expansion coefficients cLi , which are given by

cLi =
∑
j

(C−1L )ij〈ϕj |L|χLext〉, (18)

with matrix CCCL as(
CCCL
)
ij

= 〈ϕi|H + L − E|ϕj〉. (19)

The R-matrix (RL) which is defined as the reciprocal
of the logarithmic derivative of the wave function at the
channel radius R0, is then given by

RL =
~2

2µR0

∑
ij

ϕi(R0)
(
CCC−1L

)
ij
ϕj(R0). (20)

Using the continuity condition χLint(R0) = χLext(R0),
the elastic scattering matrix UL can be calculated as

UL =
IL(kR0)

OL(kR0)

1− L∗RL
1− LRL

, (21)

where constant L is defined as

L = ka
O′L(ka)

OL(ka)
. (22)

At this point, it is worth mentioning that the chan-
nel radius R0 is not a parameter here and the scattering
matrix UL should not depend on it even though the R-
matrix and Coulomb functions do. It is selected to be large
enough so that the nuclear interaction becomes negligible.
But on the other hand large channel radius require a large
number of basis functions ϕi(R) which increase the com-
puter times. So to compromise here, one is recommended
to choose the channel radius as small as possible (provided
that the nuclear interactions become negligible).

In our calculations, the basis functions ϕi(R) are cho-
sen as Lagrange functions. These are N infinitely differen-
tiable functions, which form an orthonormal set and they
vanish at all mesh points except one. The other important
property of these functions is the associated Gauss quadra-
ture. For more details about this method and about the
accuracy of the Gauss approximation, one is referred to
[26].

The choice of these functions depends on the interval
considered. For a finite interval [0, R0] as in our case for
the R-matrix procedure, the N Lagrange functions are
chosen as [24,22]

ϕi(R) = (−1)N+i

√
(1− xi)
R0xi

RPN (2R/R0 − 1)

R−R0xi
, (23)

where PN (x) is the Legendre polynomial of degree N , and
xi are the zeros of PN (2xi− 1) = 0. This mesh is used for
the scattering wave functions χJπLA

(R) and χJπLB
(R′) and

these basis functions satisfy the Lagrange conditions

ϕi(axj) =
1√
R0λi

δij , (24)

where λi are the weights of the Gauss-Legendre quadra-
ture in the [0, 1] interval.

For the bound state wave functions of nucleus A and
B, where the interval range is [0,∞], the N Lagrange func-
tions are chosen as

ϕi(R) = (−1)i
R

R− xih
1
√
xi
LN (R/h) exp(−R/2h),(25)

where xi are the roots of the Laguerre polynomials LN (x)
and h is a scale parameter which is adapted to the typ-
ical dimensions of the system. In this case the Lagrange
condition is given by

ϕi(hxj) = δij/
√
hλi, (26)
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where λi are now the weights associated with the Gauss-
Laguerre quadrature.

Using these functions, matrix elements of the overlap
and of a local potential V (r) then take the form

〈ϕi|ϕj〉 ≈ δij

〈ϕi|V |ϕj〉 ≈ V (R0xi)δij for Legendre functions

≈ V (hxi)δij for Laguerre functions. (27)

Similarly, one can get simpler expressions for the ma-
trix elements of the kinetic energy and they are given in
Ref. [26]. The upshot of using the Lagrange functions is
that the value of the potential is required only at mesh
points as evident from Eq. (27).

Finally, for a sufficient large channel radius, the trans-
fer scattering matrix [Eq. (10)] in the combined R-matrix
and Lagrange mesh approach, takes the simpler form

UJπαβ = − i
√
SFASFB

~

× R3
0

N∑
i,j=1

cαi c
β
j

√
λiλjxixjK

Jπ
αβ (R0xi, R0xj),(28)

where coefficients cαi and cβj are associated with the scat-

tering wave functions χJπLA
(R) and χJπLB

(R′), respectively.
The number of basis functions has to be chosen large

enough to ensure the convergence. As discussed in Ref.
[22], typically N ≈ 30−40 are sufficient to achieve the con-
vergence and these are significantly lesser than the number
of points (of the order of ∼ 500) needed in finite-difference
methods. In our approach, most of the computation time
is consumed in the inversion of complex matrix CCCL [Eq.
(19)]. For a large channel radius one needs larger value of
N to achieve the convergence and hence the size of ma-
trix will be large. As bigger matrices need more time for
inversion, so it can slow down the computations. How-
ever, this issue can be addressed by using the propagation
techniques [33,24], where the interval [0, R0] is split into
sub-intervals so that in each sub-interval one needs only
reduced number of Lagrange functions and hence matri-
ces sizes will be small. This procedure is beneficial when
dealing with more complex situations like in case of large
number of coupled equations.

Once we calculate the scattering matrices [Eq. (28)],
the transfer cross sections can be computed from them
(see, for example, Ref. [24,22]). The integrated transfer
cross section is given by

σt =
π

k2(2IA + 1)

∑
J

(2J + 1)TJ , (29)

with

TJ =
∑
π

∑
LA,IB ,LB

|UJπIALA,IBLB
|2. (30)

3 Results and discussions

I now discuss our method using two test cases, one is of nu-
cleon transfer and the other is of α transfer. In particular,

I discuss the 16O(d, n)17F and 12C(7Li, t)16O reactions at
two different beam energies in each case. I initially focus
on the uses of the R matrix and Lagrange mesh meth-
ods and discuss about the important parameters such as
the channel radius R0 and the number of basis functions
N which are chosen to ensure the convergence of our re-
sults. Such tests were earlier performed in Ref. [22] in the
context of 16O(d, p)17O reaction and here I discuss these
briefly again while discussing the case of 16O(d, n)17F. I
then discuss about the importance of the remnant term,
peripheriality of the reaction, post-prior form equivalence
and the effects of shallow potentials on the spectroscopic
factors. Throughout this paper, I use integer masses, and
the constant ~2/2mN = 20.9 MeV·fm2 (mN is the nu-
cleon mass).

Before I start discussing our results it is important to
mention the various potentials used in the calculations to
generate the bound and scattering states wave functions.
For the bound-state calculations, we use potentials from
the literature, mainly of Woods-Saxon type, which repro-
duce the binding energy of the concerned state. With cen-
tral, Coulomb and spin-orbit terms, they are taken of the
following form

V (r) = −Vr f(r,Rr, ar) + Vc(r)

− Vso

( ~
mπ c

)2 1

r

d

dr
f(r,Rso, aso)` · s` · s` · s, (31)

where f(r,R, a) = 1/[1 + exp( r−Ra )]. Vc is the Coulomb
potential of an uniformly charged sphere with radius Rc
and mπ is the pion mass.

The deuteron ground-state wave function (s state) on
the other hand is calculated with the standard Gaussian
potential

Vnp(r) = −72.66 exp[−(r/1.484)2]. (32)

In Table 1, I give various parameters used in our calcu-
lations. In order to reproduce the experimental binding
energies, the depths of the potentials are slightly adjusted
as compared to those mentioned in the original references.

Table 1. Woods-Saxon potential parameters for bound states.

System state Vr Rr ar Vso Rso aso Rc
(MeV) (fm) (fm) (MeV) (fm) (fm) (fm)

p+16Oa 5/2+ 47.68 3.34 0.5 10.30 3.34 0.5 3.28
1/2+ 50.72 3.34 0.5 10.30 3.34 0.5 3.28

α+ tb 3/2− 94.0 2.05 0.70 2.05
α+12Cb 0+

2 71.05 4.50 0.53 5.0
2+
1 69.15 4.50 0.53 5.0

a Ref. [34].
b Refs. [35,22].

The optical potentials used to calculate the scattering
wave functions have the form

U(r) = −Vr f(r,Rr, ar) + Vc(r)

− iWv f(r,Rv, av)− iWs g(r,Rs, as), (33)
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Table 2. Optical potential parameters defined by Eqs. (33 - 34), for the various channels involved in the reactions considered
in this paper.

channel Elab Vr Rr ar Wv Rv av Ws Rs as Rc Ref.
(MeV) (MeV) (fm) (fm) (MeV) (fm) (fm) (MeV) (fm) (fm) (fm)

d+16O 7.73 109 2.52 0.80 5.10 4.79 0.60 3.28 [34]
11 106 2.52 0.68 4.60 4.54 0.76 3.28 [34]

n+17F 7.73, 11 47.0 3.15 0.65 6.0 3.15 0.47 3.34 [34]a
7Li+12C 28, 34 139.1 3.71 0.58 18.8 4.56 0.93 2.91 [35]
t+16O 28, 34 170 2.87 0.723 20 4.03 0.8 3.12 [35]
t+12C 28 138.48 2.29 0.792 2.49 3.11 0.80 11.22 1.36 0.80 2.98 [36]

34 134.41 2.31 0.792 2.76 3.11 0.80 10.92 1.36 0.80 2.98 [36]

a originally adopted from Ref. [37], where they were obtained at 14.3 MeV.

where the imaginary potential contains a volume term and
a surface term defined by

g(r,Rs, as) = −4 as
d

dr
f(r,Rs, as). (34)

We mainly use the phenomenological optical poten-
tials, unless otherwise mentioned, available in the litera-
ture and they were obtained by fitting elastic scattering
data.

In Table 2, I give parameters of various optical poten-
tials used for the 16O(d, n)17F and 12C(7Li, t)16O reac-
tions. For the 12C(7Li, t)16O reaction they are same as
given in Table II of Ref. [22] and were adopted from Refs.
[35,36]. For the sake of simplicity, spin-orbit effects are
neglected.

3.1 The 16O(d, n)17F reaction

I first start with the nucleon transfer case i.e. the 16O(d, n)
17F reaction and address the role of the R-matrix and
Lagrange mesh parameters in our approach. I consider
the transfer of a neutron to the ground (5/2+) and to
the first excited state (1/2+, Ex = 0.495 MeV) of 17F at
two different energies of deuteron Ed = 7.73 and 11 MeV.
These states of 17F are constructed by coupling the 0+

ground state of 16O with the neutron in 1d5/2 and 2s1/2
orbitals, respectively and I further assume a SF = 1 for
both these states.

In Fig. 2, I plot the angular distributions of 16O(d, n)
17F reaction and compare them with the experimental
data of Ref. [34]. Solid and dashed lines in the figure rep-
resent the calculations with and without the inclusion of
the remnant term in the interaction (12). For these calcu-
lations, the 16O + n optical potential is adopted from the
global parametrization of Ref. [38]. Comparison of these
two calculations allows us to study the importance of the
remnant term in the 16O(d, n)17F reaction and for that I
keep SFs equal to unity in Fig. 2. It is clear from the fig-
ure that both these calculations reproduce the shape of the
data at forward angles, as normally expected in DWBA
calculations. Furthermore, there is a significant difference
at larger angles (> 30◦) in both these calculations. For the
neutron transfer to the ground state (g.s.) of 17F, even at
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Fig. 2. Angular distributions of 16O(d, n)17F reaction for the
ground (5/2+) and first excited (1/2+) states of 17F at two
deuteron energies. Solid and dashed lines correspond to the
calculations (using SFs = 1) with and without the inclusion
of the remnant term in the potential. Experimental data are
taken from Ref. [34].

very forward angles this difference is around 30%. Such
a large difference can influence the SFs extracted in the
DWBA analysis. In Table 3, I give single particle SFs for
the ground and the first excited states of 17F, extracted at
both these energies with and without the remnant term
in the interaction. SFs are extracted by fitting the calcu-
lations to the experimental data up to the first minimum
(normal way to extract SFs in the DWBA analysis [31])
using chi-square minimization fitting procedure. One can
see that the inclusion of the remnant term in the inter-
action can change the extracted SFs. This change in the
SFs is less than 10% for the excited state of 17F, whereas,
it is around 20 − 30% for the ground state. I would like
to mention here that, my goal in this paper is not to pro-
vide the optimal SFs but it is to estimate the effects of
remnant term (and of the shallow potentials in the com-
ing sections) on the SFs. As discussed in Ref. [34], around
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20− 25% uncertainties are expected in the extracted SFs,
due to the ambiguities of the optical potentials.

Table 3. Single particle SFs for the ground and first excited
states of 17F and α-SFs for the 0+

2 and 2+
1 states of 16O, ex-

tracted with and without the remnant terms (RT) in Eq. (12).
The SFs for the ground state of d and of 7Li are taken as 1.
Uncertainties in the α-SFs of 16O arise due to the variations
of the angular range for the fits (see text).

Nucleus State Beam energy SFs SFs
(MeV) without RT With RT

17F 5/2+ 7.73 0.99 1.17
11.0 0.63 0.81

17F 1/2+ 7.73 1.26 1.38
11.0 1.16 1.25

16O 0+
2 28 0.14 ± 0.02 0.18 ± 0.04

16O 0+
2 34 0.16 ± 0.02 0.24 ± 0.04

16O 2+
1 28 0.16 ± 0.02 0.17 ± 0.02

16O 2+
1 34 0.14 ± 0.02 0.16 ± 0.02

Now I analyze the sensitivity of the transfer cross sec-
tion against variations of the R-matrix parameters: the
channel radius R0 and the number of basis functions N .
For this, in Fig. 3, I plot the 16O(d, n)17F(1/2+) differen-
tial cross section at Ed = 11 MeV and θ = 2◦ as a function
of (a) the number of basis functions N , for a fixed value of
R0 = 35 fm and (b) of the channel radius R0, for a fixed
value of N = 80. As mentioned earlier, the channel radius
has to be large enough so that the nuclear interactions be-
come negligible. However, large values require large bases,
and hence increase the computer times. Therefore, a com-
promise must be adopted for the R-matrix calculations.

Note that, in principle, after the application of R-
matrix method, the integral in Eq. (10) should have two
parts, the internal from 0 to R0 and the external from R0

to ∞. However, in our approach we have consider R0 as
large enough, so that the latter part contribute negligibly
small and it is rejected while deriving Eq. (28). So there-
fore, the channel radius in our approach is also serving as
an upper limit of the integral to ensure the convergence.

From Fig. 3(a) it is clear that N ≈ 40 are sufficient
to achieve a good convergence. In fact, these numbers are
much smaller than those required in finite-difference meth-
ods, such as the Numerov algorithm where hundreds of
points are needed with typical mesh size of 0.02 fm. Fig.
3(b) shows that channel radii of around 25 fm and 35 fm
are required to achieve the convergence respectively for
the ground and for the first excited states of 17F. A large
radius needed in case of 1/2+ state is due to its loosely
bound nature. In Fig. 4, the angular distribution for the
n transfer leading to the ground state of 17F at Ed = 11
MeV is plotted as a function of R0 for a fixed value of
number of basis functions, N = 80. This also confirms the
findings of Fig. 3(b) i.e. the convergence is achieved for
R0 ≈ 20 − 25 fm. Similar calculations were performed in
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Fig. 3. 16O(d, n)17F(1/2+) transfer cross section at Ed = 11
MeV and θ = 2◦ as a function of the number of basis functions
N (a) and of the channel radius (b).

Ref.[22] for the 16O(d, p)16O reaction, where R0 = 15−20
fm was found as large enough to achieve the convergence,
which is also true for the 12C(7Li, t)16O reaction.
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3.2 The 12C(7Li, t)16O reaction

I now discuss the case of cluster transfer i.e. the 12C(7Li,
t)16O reaction, where an α cluster is transferred from the
projectile 7Li to the C target. In the literature α transfer
reactions over the 12C such as (7Li, t) and (6Li, d), have
been used in many indirect measurements of the 12C(α,
γ)16O cross section (see for example [35,39]) which is an
important astrophysical reaction. Apart from determin-
ing the C/O abundance ratio after the Helium burning
stage, it also decides the fate of the stars after their death
through supernova explosion.

At stellar energies of interest (≈ 300) keV the cross
sections of 12C(α, γ)16O reaction are too small to be mea-
sured in the laboratory. Although many direct measure-
ments have been performed to study this reaction but the
cross sections down to 300 keV are still reliable on the
extrapolation procedure and are uncertain (see for exam-
ple [40]). Most fits of the available data are performed
within the phenomenological R-matrix theory, which in-
volves various parameters (such as energies, widths etc.)
of 16O states. It is well known that the reduced α widths of
bound states are proportional to the SFs or to the ANCs
and therefore, α transfer reactions such as (7Li, t) and
(6Li, d) provide an efficient way to determine them.

10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

0 10 20 30 40 50

θ (deg)

10
-1

10
0

10
1

d
σ

/d
Ω

 (
m

b
/s

r)

0 10 20 30 40 50

10
-1

10
0

10
1

E
Li

 = 28 MeV

12
C(

7
Li, t)

16
O (0

2

+
)

12
C(

7
Li, t)

16
O (2

1

+
)

12
C(

7
Li, t)

16
O (2

1

+
)

12
C(

7
Li, t)

16
O (0

2

+
)

E
Li

 = 34 MeV

E
Li

 = 28 MeV E
Li

 = 34 MeV

Fig. 5. Angular distributions of 12C(7Li, t)16O reaction at two
different energies of 7Li. Dashed and solid line are calculations
with and without the remnant terms, respectively. Thin lines
(solid as well as dashed) correspond to the calculations when
SFs are taken as 1, whereas thick lines are calculations using
α-SFs given in the Table 3. Experimental data (solid dots) are
taken from Ref. [35]. The hatched regions and upper and lower
limits, represent the uncertainties associated with the angular
range. For details see text.

I consider the α transfer leading to the 0+2 (Ex = 6.05
MeV) and 2+1 (Ex = 6.92 MeV) states of 16O at two dif-
ferent energies of 7Li, which are taken as 28 and 34 MeV,

respectively. In order to reproduce the α separation ener-
gies, the depths of the potentials are adjusted (as given in
Table 1) considering that the number of nodes n satisfies
the condition 2n + ` = 8, where ` = 0 and 2 for the 0+2
and 2+1 states, respectively. Similar to the previous case,
calculations are performed with and without the remnant
terms in the interaction. For this the t−12C potentials are
adopted from Ref. [36]. In Fig. 5, I plot the angular dis-
tributions of 12C(7Li, t)16O reaction and compare them
with the experimental data of Ref. [35]. Dashed and solid
lines in the figure represent the calculations with and with-
out the remnant terms, respectively. Thin lines (solid as
well as dashed) correspond to the calculations when SFs
are taken as 1, whereas the bands (hatched regions, up-
per and lower limits) are calculations using the extracted
α-SFs given in the table 3. These SFs are extracted by
normalizing the calculations to the data, using the chi-
square minimization fitting procedure. However, as there
is no clear minima in the data like in the previous case, I
fit the data in steps with an increment of 10◦ and extract
the SFs in each interval. This procedure we have adopted
in Ref. [23] where, the average of all these SFs obtained in
different intervals gives the final SF of a given state. This
also brings additional uncertainties in the extracted SFs
along with the existing uncertainties due to the optical
potentials, which are around 46% and 33% (see Ref. [35])
for 0+2 and 2+1 states, respectively. The extracted α SFs
in table 3 are nearly the same as those obtained in Ref.
[35] where they were reported as 0.13+0.07

−0.06 and 0.15±0.05,

respectively for the 0+2 and 2+1 state of 16O. With remnant
terms in the interaction, SFs for the 2+1 state slightly in-
crease by around 6−14%, whereas for the 0+2 state there is
an increase of around 30−50% in their values and this was
also pointed out in Ref [22]. Moreover, in Ref. [22], we have
also repeated our calculations with another t−12C poten-
tials from Ref. [41] and confirmed that our results remain
nearly same.

3.3 Post-prior equivalence

Next I discuss the post-prior form equivalence in the con-
text of examples considered here. In fact, post-prior equiv-
alence is well known and had been discussed in some text-
books, see for example [31], where it is shown that in the
DWBA, the post and the prior forms give same results
provided the remnant terms are included in the interac-
tion. Here I show it explicitly by performing calculations
with and without the remnant terms.

In Fig. 6, I plot the angular distributions of (a) 16O(d, n)
17F(5/2+) at Ed = 11 MeV and of (b) 12C(7Li, t)16O(0+2 )
at ELi = 28 MeV. Dashed and dot-dashed lines represent
calculations in the post and the prior forms, respectively
without the remnant terms in the interactions (12) and
(13). Whereas, solid and dotted lines represent calcula-
tions in the post and prior forms, respectively including
the remnant terms. One can see that, both representa-
tions give almost same results only when remnant terms
are included in the interactions in both these cases. Simi-
lar, results were obtained for the other states and energies
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Fig. 6. Angular distribution of (a) 16O(d, n)17F(5/2+) at Ed =
11 MeV and of (b) 12C(7Li, t)16O(0+

2 ) at ELi = 28 MeV in the
DWBA framework. Dashed and dot-dashed lines represent the
calculations in the post and prior forms, respectively without
the remnant terms in the interactions (12) and (13). Whereas,
solid and dotted lines represent the calculations in the post
and prior forms, respectively including the remnant terms.

in both these reactions. Furthermore, in Fig. 6 (a) one can
see that the post form calculations without the remnant
term (dashed line) are closer to the calculations with the
remnant term (solid and dotted lines) regarding the shape
as well as the magnitude. This is again due to the simi-
lar magnitude of the n−16O and n−17F optical potentials
and somewhat justify the post form DWBA calculations
without the remnant terms in case of (d, p) and (d, n) re-
actions.

3.4 Test of the peripherality

Transfer reactions are assumed peripheral for energies be-
low the barrier and even above it. This means the con-
tributions to the reaction cross section from the nuclear
interior are small or in other words, reaction probes the
long-range part of the wave function. In this region the
bound state wave function behaves like Whittaker func-
tion

uI` (r) −→ CI` W−η,`+1/2(2κr), (35)

where η and κ are the Sommerfeld parameter and bound
state wave number, respectively and CI` is the ANC of the
concerned bound state.

In fact, DWBA calculations of the peripheral trans-
fer reactions are widely used to determine the ANCs by
comparing them with the data [12]. Peripherality of the
reaction has been addressed, for example in Refs. [12,42].
However, assessing the peripherality of transfer reaction
is not trivial. This can be understood by looking at the
transfer kernel [Eq. (11)] which depends on the R and R′

i.e. the relative coordinates of the colliding nuclei, whereas
the peripheral character of the reaction is associated with
the internal coordinates rA and rB (see Fig. 1).

To address this issue and to analyze the peripheral
nature of a transfer reaction, in Ref. [22] using a cutoff
radius rmin over rA or rB , we defined a modified kernel as

K̃Jπ
αβ (rmin, R,R

′) = KJπ
αβ (R,R′) for rmin ≤ rA or rB

= 0 for rmin > rA or rB . (36)

This definition then leads to the modified scattering
matrix, given by

ŨJπαβ (rmin) = − i
~

∫
χJπLA

(R)K̃Jπ
αβ (rmin, R,R

′)χJπLB
(R′)

× RR′dRdR′, (37)

such that

ŨJπαβ (0) = UJπαβ

ŨJπαβ (∞) = 0. (38)

If a process is peripheral then one can expects a sig-
nificant value of ŨJπαβ (rmin) for large value of rmin, on the

other hand, if ŨJπαβ (rmin) rapidly tends to zero, then the
process can be considered as internal.

Note that the peripheral nature depends on the an-
gular momentum and this we have verified in Ref. [22]
We have shown that for higher J values, reaction is more
peripheral as compared to the low J values which mostly
depend on the internal contributions. In Ref. [22], we have
discussed the peripherality of the 16O(d, p)17O and 12C(7Li,
t)16O reactions and here I discuss the case of 16O(d, n)17F.

In Fig. 7, I plot the modified scattering matrix (37)
for the 16O(d, n)17F(g.s.) reaction at Ed = 11 MeV. For
a given J , I have selected LB = |J − SB |, where SB = 2,
but the similar behavior was found for the other quantum
numbers. From Fig. 7(a), one can see that for p + n dis-
tances of > 2 fm, contributions to the scattering matrix
are negligible. Same behavior was found in Ref. [22] for
the 16O(d, p)17O reaction, which justify the zero-range ap-
proximation often used for the (d, p) and (d, n). Fig. 7(b)
on the other hand confirms our previous findings about
the peripheral nature of various partial waves. It is clear
that higher partial waves are more peripheral than the
lower ones.

From the different behavior of various J values, one
can expect that the peripheral nature of the transfer cross
section depends on the angle. This can be seen in Fig.
8, where I have plotted the modified cross sections [com-
puted with the modified scattering matrices (37)] of the
16O(d, n)17F(g.s.) reaction at Ed = 11 MeV as a function
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of rmin for four different angles. All curves are normalized

to their values at rO+p
min = 0. It is clear from the figure

that at small angles cross sections are more peripheral as
compared to the large angles.

3.5 Effects of supersymmetric bound state potentials

I now discuss the effects of bound state potentials on the
transfer cross sections in the DWBA framework. In spite
of modern advancements in the reaction theory [18,19,
29,43–45], due to its simplicity DWBA is still being used
in many experimental analysis, especially to extract the
SFs or the ANCs (see for example [46–48]). However, the
extracted SFs can contain uncertainties due to the ambi-
guities in the optical potentials. To minimize these uncer-
tainties, the phenomenological optical potentials which fit
the elastic scattering data at the reaction energies are pre-
ferred and in case such data are unavailable, especially for
the exotic nuclei, simultaneous measurements of the elas-
tic and transfer cross sections serve as ideal choice [49–51].
On the other hand, for the bound states, the two-body po-
tentials such as Woods-Saxon (WS) or Gaussian type are
mainly used with their parameters chosen to reproduce the
experimental binding energies of the participating clus-
ters, the usual separation energy prescription. However,
different sets of these parameters can lead to different
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Fig. 8. Modified scattering cross sections dσ̃(rmin)/dΩ for the
16O(d, n)17F(g.s.) reaction at Ed = 11 MeV, and for different
scattering angles. All curves are normalized to their values at
rO+p
min = 0.

cross sections and hence the extracted SFs (see for ex-
ample [42]). Moreover, two-body potentials constructed in
this way for these many-body systems may contain Pauli-
forbidden states, which are unphysical and also simulate
the missing antisymmetrization effects. Such states do not
exist in the fully microscopic calculations.

On the other hand, by performing the supersymmetric
transformations [52,53] one can obtain the supersymmet-
ric (SUSY) partner potentials without these deep states.
The resultant `-dependent potentials are usually shallow
in nature with a repulsive core [53] and at positive ener-
gies, they give the same phase shifts. The wave functions
obtained from these potentials also differ in the nuclear
interior and possess a nodeless structure, however, in the
exterior region they remain the same as those obtained
from the deep potentials. In spite of these differences, both
these wave functions (from shallow SUSY and deep WS
potentials), give the similar spectroscopic properties such
as root mean square (r.m.s) radii [54].

In Ref. [23], we studied the sensitivity of the transfer
cross section to the bound state wave functions by using
WS and its SUSY partner potentials. In fact, in the super-
symmetric quantum mechanics, a Hamiltonian H0 given
by

H0 = − ~2

2µ

d2

dr2
+ V `j0 (r), (39)

can be transformed to its partner Hamiltonian H2 by per-
forming couple of transformations [53], which change the

potential to V `j2 , given by

V `j2 (r) = V `j0 (r)− ~2

µ

d2

dr2
log

∫ r

0

|u0(s)|2ds, (40)
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where µ is the reduced mass and potential V `j0 (WS type
in our case) contains all the spin-orbit, centrifugal and
Coulomb terms. u0(r) is the radial bound state wave func-

tion corresponding to the potential V `j0 . The Hamiltonian
H2 obtained in this way, possess the identical energy spec-
trum to those of H0, except for the lowest states which are
suppressed [52,53]. With repeated applications of this pro-
cedure one can remove all the unphysical states from the
spectrum of the parent Hamiltonian H0. We apply these
transformations to the bound state potentials in both the
channels to remove all the forbidden states, which are
given by a parity dependent limit N, so that states having
principle quantum number 2n+ ` < N are forbidden.
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Fig. 9. Radial bound-state wave functions of 17F(1/2+) and
16O(2+

1 ) obtained by solving the Schrödinger wave equation
with the WS potentials (dashed lines) and with the SUSY po-
tentials (solid lines).

In Fig. 9, I plot the radial bound state wave func-
tions for the 17F(1/2+) and 16O(2+1 ) states for which
the WS potentials given in Table 1 have respectively 1
and 3 Pauli-forbidden states. Dashed lines represent the
wave functions obtained with the WS potentials, whereas
solid lines are the wave functions obtained with the SUSY
partner potentials generated with the above mentioned
procedure. These two different combination of potentials
and wave functions are used to calculae the transfer cross
sections for the reactions under consideration.

I first consider the case of 16O(d, n)17F(1/2+), where
there are 0 and 1 forbidden states correspond to ` = 0 in

0 30 60 90 120 150 180

θ (deg)

10
-2

10
-1

10
0

10
1

10
2

d
σ

/d
Ω

 (
m

b
/s

r)

10
-2

10
-1

10
0

10
1

10
2

(a)

16
O(d, n)

17
F(1/2

+
)

E
d
 = 11.0 MeV

(b)

16
O(d, n)

17
F(1/2

+
)

E
d
 = 7.73 MeV

Fig. 10. 16O(d, n)17F(1/2+) angular distribution at two differ-
ent deuteron energies. The dashed and solid lines correspond to
the calculations (with SF = 1) using a WS and its SUSY part-
ner for the 17F(1/2+), respectively. Experimental data (solid
dots) are taken from Ref. [34].

the initial and final channel bound state potentials, respec-
tively. Note that for the 17F(5/2+), there is no forbidden
state in the potential, so p transfer leading to the ground
state of 17F is not considered here. In Fig. 10, I plot the
angular distribution for the 16O(d, n)17F(1/2+) reaction
at two different beam energies. The dashed and solid lines
are calculations using a WS (given in Table 1) and its
SUSY partner potential for the 17F(1/2+), respectively.
At both these energies, one can see that both calcula-
tions give nearly same results at forward angles whereas at
higher angles they differ somewhat. This suggests, a negli-
gible effect on the extracted SFs as one can see in Table 4.
Using the SUSY potential for the 17F(1/2+) state, the ex-
tracted SFs are changed by just 5%. This was expected
at such a low energy, where the process is considered as
peripheral at forward angles and also due to very small
separation energy of 17F(1/2+), most of the contributions
to the cross sections come from larger distances.

Next, I consider the α transfer reaction 12C(7Li, t)16O,
which we have studied in detail in Ref. [23] and consider
both the 0+2 and 2+1 states of 16O. In this case, there is 1
Pauli-forbidden state for ` = 1 in the α + t WS potential
in the initial channel and there are respectively, 4 and 3
forbidden states for ` = 0 and ` = 2 in the final chan-
nel WS potentials for the 0+2 and 2+1 states of 16O [23].
Therefore, in this case SUSY transformations are used to
remove these forbidden states from both the channels. Fig.
11 shows the angular distributions of 12C(7Li, t)16O reac-
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Table 4. Single particle SFs for 1/2+ state of 17F and α-SFs
(adopted from Ref.[23]) for 0+

2 and 2+
1 states of 16O extracted

using two different types of bound-state potentials. The SFs
for the ground state of d and of 7Li are taken as 1.

Nucleus State Beam energy SFs SFs
(MeV) (WS) (SUSY)

17F 1/2+ 7.73 1.38 1.46
11.0 1.25 1.31

16O 0+
2 28 0.18 ± 0.04 0.19 ± 0.02

16O 0+
2 34 0.24 ± 0.04 0.25 ± 0.03

16O 2+
1 28 0.17 ± 0.02 0.15 ± 0.02

16O 2+
1 34 0.16 ± 0.02 0.14 ± 0.03
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Fig. 11. Angular distributions of 12C(7Li, t)16O at two 7Li en-
ergies. Dashed (same as in Fig. 5) and solid lines represent cal-
culations using WS and SUSY bound-state potentials in both
channels, respectively. Experimental data are taken from Ref.
[35]. Spectroscopic factors are given in Table 4. The upper and
lower limits, and the hatched regions, represent uncertainties
associated with the angular range (see text). Reprinted from
Ref. [23].

tion at 28 and 34 MeV for both the states of 16O. Dashed
and solid lines represent calculations with the WS and the
SUSY potential, respectively including remnant terms and
they are fitted to the experimental data of Ref. [35] using
the chi-square minimization procedure we have followed
in Section 3.2. The uncertainties associated with the an-
gular range are represented with the hatched regions for
the dashed lines and the upper-lower limits for the solid
lines.

The extracted α-SFs are given in Table 4. One can see
that, α-SFs for the states of 16O remain almost unchanged
when we replace the WS potentials in both the channels
by their respective SUSY partners. On the other hand,
shapes of angular distributions are changed significantly
(see Fig. 11). To further understand these shape changes,

in Ref. [23] we have studied the variation of modified cross
sections [computed with the modified scattering matrix
Eq. (37)] as a function of cutoff radius over both the α+ t
and the 12C + α distances. It was found that at larger
angles where shapes of angular distributions are mostly
affected, cross sections are mainly governed by 12C + α
distances. Whereas, at forward angles cross sections are
equally sensitive to the α + t and 12C + α distances. For
more details one is refereed to Ref. [23]

Although in both these reactions considered here, the
SFs are not affected much when SUSY potentials are used
in place of WS, but in Ref. [23], we observed around 30%
decrease in the SF for the first excited state of 17O ex-
tracted using the 16O(d, p)17O reaction.

4 Summary

I have presented a short review of our recent work on clus-
ter transfer reactions where we have applied the R-matrix
and the Lagrange-mesh methods in the DWBA frame-
work. To discuss applications of our approach I have con-
sidered 16O(d, n)17F and 12C(7Li, t)16O reactions, which
are typical cases of nucleon and α transfer. Sensitivity of
transfer cross sections to the R-matrix parameters is dis-
cussed and it is found that only a small number of basis
∼ 40−50, much smaller than in finite-difference methods,
are sufficient to achieve the convergence. Apart from dis-
cussing the importance of the remnant terms and their ef-
fects on the extracted SFs, I have discussed the post-prior
form equivalence in the DWBA and also the peripherality
of transfer reactions with respect to the internal coordi-
nates of the projectile as well as of the residual nucleus.
Finally, supersymmetric partners of the bound state WS
potentials which give wave functions with same asymp-
totics but differ in the nuclear interior, are used. Compar-
ison of transfer calculations using both these bound state
potentials and corresponding wave functions allows us to
test the sensitivity of transfer cross sections to the nuclear
interior. Subsequently, the effects of SUSY potentials on
the extracted single particle and α-SFs are also studied.
Although the shapes of angular distributions are affected
to some extent, especially for the 12C(7Li, t)16O reaction,
the extracted SFs for the states of residual nuclei in both
the reactions considered here, remain almost same.
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