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This article proposes a new quantity for assessing the number of groups or clusters in
a dataset. The key idea is to view clustering as a supervised classification problem, in which
we must also estimate the “true” class labels. The resulting “prediction strength” measure
assesses how many groups can be predicted from the data, and how well. In the process, we
develop novel notions of bias and variance for unlabeled data. Prediction strength performs
well in simulation studies, and we apply it to clusters of breast cancer samples from a DNA
microarray study. Finally, some consistency properties of the method are established.
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1. INTRODUCTION

Cluster analysis is an important tool for “unsupervised” learning—the problem of find-
ing structure in data without the help of a response variable. A major challenge in cluster
analysis is estimation of the appropriate number of groups or clusters. Many existing meth-
ods for this problem focus on the within-cluster dispersion Wk, resulting from a clustering
of the data into k groups. The error measure Wk tends to decrease monotonically as the
number of clusters k increases, but from some k on the decrease flattens markedly. Statis-
tical folklore has it that the location of such an “elbow” indicates the appropriate number
of clusters.

A number of methods have been proposed for estimating the number of clusters, some
of which exploit this elbow phenomenon. Many proposals were summarized in the com-
prehensive survey by Milligan and Cooper (1985), and Gordon (1999) discussed the best
performers. More recent proposals include Tibshirani, Walther, and Hastie (2001), Sugar
(1998), and Sugar, Lenert, and Olshen (1999). It is not clear, however, if these methods are
widely used; this may be because they are difficult to intrepret.

In this article we take a different approach. We view estimation of the number of
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512 R. TIBSHIRANI AND G. WALTHER

clusters as a model selection problem. In classification problems with labeled data, model
selection is usually done by minimization of prediction error. This is compelling, and also
provides an estimate of the prediction error for individual observations. Here we develop a
corresponding method for estimating the number of clusters by adapting prediction ideas
to clustering. By focusing on prediction error rather than the within-cluster sum of squares
Wk, the results of the procedure are directly interpretable and information about the cluster
membership “predictability” of individual observations is available.

There are several recent proposals for inference on clustering in a high-dimensional
setting, such as microarrays. Kerr and Churchill (2001) used an analysis of variance model to
estimate differential expression of genes across multiple conditions and to account for other
sources of variation in microarray data. Residuals from the fitted ANOVA model provide
an estimate of the error distribution, which allows us to resample gene expression and thus
obtain a number of bootstrap clusterings. Clusters are obtained by correlating genes to one
out of a number of temporal profiles. A match of a gene to a profile is declared 95% stable if
it occurs in the analysis of the original data and in at least 95% of the bootstrap clusterings.

Yeung, Haynor, and Ruzzo (2001) provided a framework for comparing different clus-
tering algorithms for gene expression data. They defined a “Figure of Merit” for assessing
the predictive power of an algorithm by leaving out one experimental condition in turn, clus-
tering genes based on the remaining data, and then measuring the within-cluster similarity
of expression values in the experimental condition left out. The Figures of Merit are plotted
over a range of different numbers of clusters. Typically, some clustering algorithms exhibit
Figure of Merit curves that dominate other algorithms, yielding a criterion for choosing the
most appropriate algorithm. It is not clear, however, if and how this methodology can be
extended for inference on the number of clusters.

If a parametric model for the cluster components is appropriate, such as the normal
model, then model-based clustering allows inference about the number of clusters; see, for
example, Fraley and Raftery (1998). Model-based clustering employs the EM algorithm to
estimate the parameters in a Gaussian mixture, where the covariance matrix is appropriately
restricted to keep the number of parameters manageable. The Bayesian information criterion
(BIC) can be used to select the model, that is, the number of components in the mixture.
An important advantage of this model-based approach is that it allows principled inference
about various quantities, such as the number of clusters or the uncertainty in classifying
individual observations. Yeung et al. (2001) successfully applied model-based clustering to
gene expression data.

Ben-Hur, Elisseeff, and Guyon (2002) proposed a stability-based criterion for deter-
mining the number of clusters. One hundred pairs of subsamples of the data are generated,
and each subsample is clustered into k clusters with average-link hierarchical clustering.
For each of the 100 pairs, the observations contained in both subsamples are extracted, and
a similarity measure (such as the Jaccard coefficient) is computed for their two clustering
outcomes. The similarity measure takes values between 0 and 1, with a value close to 1
indicating that the two clusterings are the same for most observations in the joint subsam-
ple. The histogram for the 100 similarity measures is plotted, and the process is repeated
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CLUSTER VALIDATION BY PREDICTION STRENGTH 513

for a range of clusters k. The estimated number of clusters is then taken to be that value
of k where a transition occurs from similarity values concentrated near 1 to a distribution
with wider spread below 1. The idea of examining the stability of clusters is similar to the
prediction strength idea presented here. However, it was pointed out by Ben-Hur, Elisseeff,
and Guyon (2002) that a trial value k smaller than the true value ko can readily lead to a
premature spread in the distribution of the similarity measure, resulting in an underestimate
of the number of clusters. Likewise, if the procedure is applied to the trial value ko + 1,
then we expect that one cluster will be split into two, while the clustering outcomes for the
other ko−1 clusters will be same. Hence the similarity measure will be about (ko − 1)/ko,
which for ko > 9 is close enough to 1 to result in an overestimate of the number of clusters.
Indeed, no theoretical justification of that methodology was provided by Ben-Hur, Elisseeff,
and Guyon (2002). The prediction strength idea introduced here employs a quite different
criterion, and we are able to provide a theoretical justification as well as a formal connection
to the theory of supervised learning.

Section 2 describes the basic procedure for estimating prediction strength. Section 3
gives background motivation for the method. We define new notions of bias, variance, and
prediction error for clustering, and show that prediction strength essentially estimates the
variance term. Section 4 examines how well the procedure estimates the “true” prediction
strength. Up to this point, K-means clustering is the focus. Section 5 discusses application of
the technique to hierarchical clustering. Section 6 describes a simulation study, comparing
the method to other competing methods for estimating the number of clusters. Finally,
Section 7 establishes consistency of the method in a simple but informative case.

2. PREDICTION STRENGTH OF CLUSTERING

Our training data Xtr = {xij}, i = 1, 2, . . . n; , j = 1, 2, . . . p consist of p features
measured on n independent observations. Let dii′ denote the distance between observations
i and i′. The most common choice for dii′ is the squared Euclidean distance

∑
j(xij−xi′j)2.

Suppose we cluster the data into k clusters. For example, we might use k-means cluster-
ing based on Euclidean distance, or hierarchical clustering. Denote this clustering operation
by C(Xtr, k).

Now when we apply this clustering operation to the training data, each pair of observa-
tions either does or does not fall into the same cluster. To summarize this, let D[C(. . .), Xtr]
be an n×n matrix, with ii′th element D[C(. . .), Xtr]ii′ = 1 if observations i and i′ fall into
the same cluster, and zero otherwise. We call these entries “co-memberships.” In general,
the clustering C(. . .) need not be derived from Xtr . For example, we can apply the k-means
algorithm to some dataset Y, which will result in a partition of the observation space into k

polygonal regions. If we denote this clustering by C(Y, k), then D[C(Y, k), Xtr]ii′ = 1 if
observations i and i′ of Xtr fall into the same polygonal region of C(Y, k).

Our proposal for real data uses repeated cross-validation. To motivate this approach,
consider the conceptually simpler scenario in which an independent test sample Xte of size
m is available, drawn from the same population as the training set. As above, we can cluster
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514 R. TIBSHIRANI AND G. WALTHER

Figure 1. Illustration of prediction strength idea. Data are simulated in two well-separated clusters. In the top
row k-means clustering with two centroids is applied to both the training and test data. In the top right panel, the
training centroids classify the test points into the same two green and red clusters that appear in the middle panel.
In the bottom row, however, when three centroids are used, the classifications by test and training centroids differ
considerably.

Xte into k clusters via an operation C(Xte, k), and summarize the cluster co-memberships
via the m×m matrix D[C(Xte, k), Xte].

The main idea of this article is to (1) cluster the test data into k clusters; (2) cluster the
training data into k clusters, and then (3) measure how well the training set cluster centers
predict co-memberships in the test set. For each pair of test observations that are assigned
to the same test cluster, we determine whether they are also assigned to the same cluster
based on the training centers.

Figure 1 illustrates this idea. The data lie in two clusters. In the top row two-means
clustering is applied to both the training and test data. In the top right panel, the training
centroids classify the test points into the same two green and red clusters that appear in the
middle panel. But in the bottom row when three centroids are used, the classifications by
test and training centroids differ substantially. Here is the idea in detail. For a candidate
number of clusters k, let Ak1, Ak2, . . . Akk be the indices of the test observations in test
clusters 1, 2, . . . k. Let nk1, nk2, . . . nkk be the number of observations in these clusters.

We define the “prediction strength” of the clustering C(·, k) by

ps(k) = min
1≤j≤k

1
nkj(nkj − 1)

∑
i /=i′∈Akj

D[C(Xtr, k), Xte]ii′ . (2.1)

For each test cluster, we compute the proportion of observation pairs in that cluster that are
also assigned to the same cluster by the training set centroids. The prediction strength is the
minimum of this quantity over the k test clusters.

Here is the intuition behind this idea. If k = k0, the true number of clusters, then the k
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CLUSTER VALIDATION BY PREDICTION STRENGTH 515

training set clusters will be similar to the k test set clusters, and hence will predict them well.
Thus ps(k) will be high. Note that ps(1) = 1 in general, because both the training and test
set observations all fall into one cluster. However, when k > k0, the extra training set and
test set clusters will in general be different, and thus we expect ps(k) to be much smaller.
Using the minimum rather than the average in expression (2.1) makes the procedure more
sensitive in many-cluster situations, in accordance with the theory developed in Section 7.

Note that in general it would be difficult to compare the training and test clusterings
by associating each of the k training clusters with one of the test clusters. By focusing only
on the pairwise co-memberships in (2.1), we finesse this problem. The identity of the cluster

Figure 2. Results for one-, two-, and three-cluster examples. The test data are on the left, and prediction strength on
the right. The vertical bars on the right give the standard error of the prediction strength over five cross-validation
folds.
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516 R. TIBSHIRANI AND G. WALTHER

Figure 3. Individual prediction strengths, when the data shown are clustered into two clusters. Green: ps < .90
(prediction strength indicated); Red: ps > .9. We used the test sample shown, and five randomly generated training
samples from the same population. The predictions strengths were estimated from averages over the five training
samples.

containing each observation is not considered: only its co-memberships in some cluster are
used.

Figure 2 shows examples with one, two, and three clusters. This and other experiments
suggest that we choose the optimal number of clusters k̂ to be the largest k such that ps(k)
is above some threshold. Experiments reported later in the article show that a threshold in
the range .8–.9 works for well separated clusters. We think of k̂ as the largest number of
clusters that can be reliably predicted in the dataset.

Now in the absence of a test sample, we instead use repeated r-fold cross-validation
to estimate the prediction strength (2.1). The first r− 1 folds represent the training sample,
while the last fold is the test sample. In experiments reported in Section 4 we investigate
two-fold and five-fold cross-validation. Their performance is quite similar, and we settle on
two-fold cross-validation for the rest of the article.

Prediction strengths for individual observations can also be defined. Specifically, we
define the prediction strength for observation i as

ps(i, k) =
1

#Ak(i)
·

∑
i′∈Ak(i)

1
(
D[C(Xtr, k), Xte]ii′ = 1

)
, (2.2)
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CLUSTER VALIDATION BY PREDICTION STRENGTH 517

where Ak(i) are the observations indices i′ such that i /= i′ and D[C(Xte, k), Xte]ii′ = 1.
Figure 3 shows an example with two centroids fit to two fairly well-separated clusters. The
red points have prediction strength greater than .90, while the green points lying in the
overlap region have lower prediction strength (marked on the plot).

3. BIAS, VARIANCE, AND PREDICTION STRENGTH FOR
CLUSTERING

This section provides background motivation for the prediction strength idea. In the
process we formulate novel notions of bias, variance, and prediction error for clustering,
analogous to the definitions for supervised learning.

Let C∗(X) denote the true grouping of the data X , that is, D[C∗(X), X]ij = 1 iff
Xi and Xj are from the same group. Define the prediction error (loss) of the clustering
procedure C by

errC(k) =
1
n2

n∑
i,j=1

|D[C∗(X), X]ij −D[C(X, k), X]ij | . (3.1)

As all matrix entries are either 0 or 1, one sees that errC(k) decomposes into two parts:

errC(k) =

⎛
⎜⎜⎝

proportion of pairs
(Xi, Xj) that C(X, k)
erroneously assigns to
the same group

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

proportion of pairs
(Xi, Xj) that C(X, k)
erroneously assigns to
different groups

⎞
⎟⎟⎠ . (3.2)

The first term tends to decrease as k increases (as fewer groups are erroneously aggregated
into one big group), and the second term tends to increase with k (as more groups are
erroneously split up into several groups). Thus, the two terms have the analogous qualitative
behavior of the bias and variance terms of a prediction error when the smoothing parameter
is varied. We can try to mimic this decomposition to estimate k, by letting C(Xte, k) and
C(Xtr, k) take the roles of C∗(X) and C(X, k), respectively.

The resulting estimate of variance in the bottom panel of Figure 4 is a reasonable
approximation to the variance in the top panel, but this is not the case for the estimate of
bias. Substitution of C(Xte, k) in place of the true labels C∗(X) leads to a poor estimate
of bias when k is less than the true number of clusters. Although we would ideally like to
estimate prediction error, we instead restrict attention to the variance—the only component
we can estimate well. Rather than seek the minimum point of prediction error, we seek the
point at which the variance starts to rise significantly. Prediction strength, defined above,
equals one minus the variance.

If the trial value k is chosen too large, then we expect the variance in at least one
cluster to be significantly larger than zero. Thus, we consider the worst performance of the
procedure among the k clusters and hence seek k to minimize

max
1≤j≤k

1
nkj(nkj − 1)

∑
i /=i′∈Akj

1
(
D[C(Xtr, k), Xte]ii′ = 0

)
, (3.3)
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518 R. TIBSHIRANI AND G. WALTHER

Figure 4. Bias and variance for the three-cluster example in Figure 2. The top panel shows the actual bias and
variance using the real class labels, as in (3.2). The bottom panel uses C(Xte, k) in place of the true labels
C∗(X).

or alternatively, we choose k to maximize the prediction strength

ps(k) = cv-ave min
1≤j≤k

1
nkj(nkj − 1)

∑
i /=i′∈Akj

1
(
D[C(Xtr, k), Xte]ii′ = 1

)
,

where we modified the preliminary definition (2.1) by averaging over several random splits

of the data into Xte and Xtr , denoted by cv-ave. Thus, for each test set cluster j, we compute

the proportion of pairs in Akj that are assigned to the same group by the training set based

clustering. We estimate the number of groups k̂ in X by the largest k that maximizes ps(k);

taking k̂ to be the largest k such that ps(k) ≥ .8 or .9 works well in practice. We think of k̂

as the largest number of clusters that can be accurately predicted in the dataset.
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CLUSTER VALIDATION BY PREDICTION STRENGTH 519

Figure 5. Bias in prediction strength estimates, for the experiments described in the text. The left panel shows the
error psn/2,n/2− psn,∞ plotted as a function of the “true” prediction strength psn,∞. The right panel assesses
five-fold cross-validation, and hence ps4n/5,n/5− psn,∞ is shown.

4. EFFECTS OF REDUCED SAMPLE SIZE

There is a potential problem in using two-fold (or other r-fold) cross-validation in
estimating prediction strength. With n = 100 observations say, two-fold cross-validation
uses training sets of size 50. The prediction strength for n = 50 is probably lower than that
for n = 100, and hence our estimate will tend to be biased downward. Here we investigate
this bias, and also consider five-fold cross-validation as an alternative strategy.

We need some additional notation. Let psn1,n2
be the prediction strength using training

and test sets of size n1 and n2, respectively. Then given a training set of size n, the “true”
prediction strength is psn,∞ while two-fold cross-validation estimates this quantity using
psn/2,n/2.

We carried out a simulation study to assess the error psn/2,n/2− psn,∞. The data were
generated in two standard Gaussian classes, with independent components in d dimensions,
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520 R. TIBSHIRANI AND G. WALTHER

d = 1, 5, 1000. The first class has its centroid at the origin. For d = 1, 5 the second class
is shifted by an amount Δ, with Δ taking values 3, 2, 1, .75, .5, .25. For d = 1000, 5% of
the data are randomly selected, and only those centroid components are shifted by Δ. With
n = 50, the left panel of Figure 5 shows the error psn/2,n/2−psn,∞ plotted as a function of
the “true” prediction strength psn,∞. In the right panel we assess five-fold cross-validation,
and hence we have plotted ps4n/5,n/5 − psn,∞. In each case we show the mean over 10

Figure 6. Dendrogram from breast cancer study, with the estimated prediction strength at the upper branches.
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CLUSTER VALIDATION BY PREDICTION STRENGTH 521

simulations, with one standard-error bands. There appears to be no advantage in using
five-fold over two-fold cross-validation, and hence we used the latter in this article.

5. APPLICATIONS TO HIERARCHICAL CLUSTERING

One of the main motivations for this work is the widespread use of hierarchical clus-
tering for DNA microarrays. Clustering of gene expression profiles is often used to try to
discover subclasses of disease. Validation of these clusters is important for accurate sci-
entific interpretation of the results. Clustering DNA microarray data is considered a hard
problem not only because of the large dimension of the data, but also because there may be
no underlying “true” number of clusters; the expression levels of some genes may not vary
consistently with other genes, and clusters may have varying widths.

Figure 6 shows a dendrogram from hierarchical clustering of the gene expression of 85
breast cancer patients. These data are taken from Perou et al. (1999). In these applications
the hierarchical clustering is performed “bottom-up”, starting with individual samples, and
agglomerating them. The dendrogram in figure 6 is plotted upside down relative to the
usual plot, so the individual samples are actually at the top. The study of Perou et al. (1999)
discovered at least four interesting classes of breast cancer, labeled in the dendrogram.
[This example is for illustration purposes. Our dendrogram is not the same as that of Perou
et al. (1999). They used a nonstandard form of average linkage clustering applied to a
selected list of 450 genes. We did not have easy access their algorithm, so instead used the
standard clustering procedure in S-Plus. We also used a smaller subset of genes, so that our
dendrogram looked roughly like theirs.] Hierarchical clustering is preferred to K-means in
this context, because it shows the whole spectrum of different K all in the same picture.

The question that arises is: how different are these four groups? To help answer this,
we can apply the prediction strength idea, for example, to study the two main branches
in Figure 6. One could apply hierarchical clustering to define the clustering operation
C(Xtr, k), cutting off the resulting dendrogram at a height that produces k clusters. We
tried this, and it produced prediction strengths (1.00, .53, .42, .34) for k = 1, 2, . . . 4. Thus
we would conclude that none of the clusters is significant. However, this may not be the
best strategy, as hierarchical clustering is performed bottom-up, and the resulting groups
might look nothing like the original ones. As an alternative, we tried the following strategy:
use hierarchical clustering to find potential clusters as in Figure 6, but then use the k-means
clustering as C(Xtr, k) in the calculation of prediction strength. k-means clustering is a
top-down method, and is better suited to finding large groups.

Using this idea, we can estimate the prediction strength of any two-class division in
the dendrogram. In Figure 6, we have labeled the splits at the first two levels with the
estimated prediction strength. For example, the (Luminal B/C and A) versus (Normal and
Basal/ERBB2) has a prediction strength of only .59. We can look deeper by computing the
prediction strength of all pairs of the four groups by using only the corresponding data. The
results are given in Table 1. We see that the luminal B/C group is well separated, especially
from the Normal group. Most other pairs are not that well separated.
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522 R. TIBSHIRANI AND G. WALTHER

Table 1. Prediction Strength for All Pairs of the Four Groups From Figure 6. The last column contains
the averages for each row.

Lum B/C Lum A Normal Basal Average

Lum B/C .80 .92 .71 .81
Lum A .80 .59 .77 .72
Normal .92 .59 .62 .71
Basal .71 .77 .64 .71

6. A SIMULATION STUDY

In this section we replicate the simulation study done by Tibshirani, Walther, and Hastie
(2001), comparing a number of different methods for estimating the number of clusters. We
now include the prediction strength method in the comparison. We also add three difficult
cluster scenarios to show the limits of the prediction strength methodology as well as its
performance in high-dimensional settings, such as microarray analyses.

We thus generated datasets in eight different scenarios:

1. Null (single cluster) data in 10 dimensions: 200 data points uniformly distributed
over the unit square in 10 dimensions.

2. Three clusters in two dimensions: the clusters are standard normal variables with
(25, 25, 50) observations, centered at (0,0), (0,5), and (5, −3).

3. Four clusters in three dimensions: each cluster was randomly chosen to have 25
or 50 standard normal observations, with centers randomly chosen as N(0, 5 · I). Any
simulation with clusters having minimum distance less than 1.0 units between them was
discarded.

4. Four clusters in 10 dimensions: each cluster was randomly chosen to have 25 or 50
standard normal observations, with centers randomly chosen as N(0, 1.9·I). Any simulation
with clusters having minimum distance less than 1.0 units between them was discarded.
In this and the previous scenario, the settings are such that about one-half of the random
realizations were discarded.

5. Four clusters in two dimensions that are not well separated. each cluster has 25
standard normal observations, centered at (0, 0), (0, 2.5), (2.5, 0) and (2.5, 2.5).

6. Two elongated clusters in three dimensions. Each cluster is generated as follows:
set x1 = x2 = x3 = t with t taking on 100 equally spaced values from −.5 to .5 and then
Gaussian noise with standard deviation .1 is added to each feature. Cluster 2 is generated
in the same way, except that the value 10 is then added to each feature. The result is two
elongated clusters, stretching out along the main diagonal of a three-dimensional cube.

7. Two close and elongated clusters in three dimensions. As in the previous scenario,
with cluster 2 being generated in the same way as cluster 1, except that the value 1 is then
added to the first feature only.
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CLUSTER VALIDATION BY PREDICTION STRENGTH 523

8. Three clusters in a microarray-like setting. Each of the three clusters has 33 standard
normal observations in 1,000 dimensions, with each of the first 100 coordinates shifted by
−2, 0, and 2, respectively.

Fifty realizations were generated from each setting.
In Tibshirani, Walther, and Hastie (2001) a number of different methods for assessing

the number of clusters were compared, and the Gap test performed best. Here we enter the
prediction strength estimate into the comparison: we select the number of clusters to be
the largest k such that the ps(k) + se(k) ≥ .80, where se(k) is the standard error of the
prediction strength over the five cross-validation folds. (Threshold values in the range .8
to .9 gave identical results.) We compare two applications of the prediction strength, one
to k-kmeans (“Pred str”) and one to hierarchical clustering (“Pred str/hc”), to the Gap test
with uniform reference distribution (“Gap/unif”) and principal component parameterization
(“Gap/pc”), and to the methods due to Calinski and Harabasz (1974) and Krzanowski and
Lai (1985). The first method uses

CH(k) =
B(k)/(k − 1)
W (k)/(n− k)

, (6.1)

where B(k) and W (k) are the between and within cluster sums of squares, with k clusters.
CH(k) is maximized over the number of clusters k. CH(1) is not defined; even if it were
modified by replacing k − 1 with k, its value at 1 would be zero. Because CH(k) > 0 for
k > 1, the maximum would never occur at k = 1. Krzanowski and Lai (1985) defined

DIFF(k) = (k − 1)2/pWk−1 − k2/pWk, (6.2)

and chose k to maximize the quantity

KL(k) =
∣∣∣∣ DIFF(k)
DIFF(k + 1)

∣∣∣∣ . (6.3)

The results of the simulation study are given in Table 2. The Gap/pc method was not
evaluated on the microarray example, as it is not clear how to apply it with the number of
variables larger than the sample size.

6.1 DISCUSSION OF THE SIMULATION RESULTS

The prediction strength estimate does well compared to the other methods in all sce-
narios except for the elongated clusters in scenario 6, where the KL and Gap/pc methods
are the best performers. In that scenario, the clusters are long and narrow, and use of the
principal component parameterization dramatically improves the Gap test (see Tibshirani,
Walther, and Hastie 2001). The not-well-separated clusters in scenarios 5 and 7 proved
too challenging for all methods; the CH criterion has the largest number of correct results
in scenario 5, but this corresponds to a success rate of only 26%, with a large number of
simulations resulting in a considerable overestimate.

Overall, the simulation study shows that the prediction strength estimate compares
well to the other methods except for strongly elongated clusters. Also, in that scenario the
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524 R. TIBSHIRANI AND G. WALTHER

Table 2. Results of Simulation Study. Numbers are counts out of 50 trials. Counts for estimates larger
than 10 are not displayed. “*” indicates column corresponding to correct number of clusters.

Estimate of number of clusters k̂
Method 1 2 3 4 5 6 7 8 9 10

Null model in 10 dimensions
Gap/unif 49∗ 1 0 0 0 0 0 0 0 0
Gap/pc 50∗ 0 0 0 0 0 0 0 0 0
CH 0∗ 50 0 0 0 0 0 0 0 0
KL 0∗ 29 5 3 3 2 2 0 0 0
Pred str 50∗ 0 0 0 0 0 0 0 0 0
Pred str/hc 50∗ 0 0 0 0 0 0 0 0 0

Three-cluster model
Gap/unif 1 0 49∗ 0 0 0 0 0 0 0
Gap/pc 2 0 48∗ 0 0 0 0 0 0 0
CH 0 0 50∗ 0 0 0 0 0 0 0
KL 0 0 39∗ 0 5 1 1 2 0 0
Pred str 0 0 49∗ 1 0 0 0 0 0 0
Pred str/hc 0 0 46∗ 4 0 0 0 0 0 0

Random four-cluster model in three dimensions
Gap/unif 0 1 2 47∗ 0 0 0 0 0 0
Gap/pc 2 2 4 42∗ 0 0 0 0 0 0
CH 0 0 0 42∗ 8 0 0 0 0 0
KL 0 0 0 35∗ 5 3 3 3 0 0
Pred str 0 0 0 50∗ 0 0 0 0 0 0
Pred str/hc 0 0 0 34∗ 16 0 0 0 0 0

Random four-cluster model in 10 dimensions
Gap/unif 0 0 0 50∗ 0 0 0 0 0 0
Gap/pc 0 0 4 46∗ 0 0 0 0 0 0
CH 0 1 4 44∗ 1 0 0 0 0 0
KL 0 0 0 45∗ 3 1 1 0 0 0
Pred str 0 0 0 49∗ 1 0 0 0 0 0
Pred str/hc 0 0 0 31∗ 13 4 0 0 0 0

prediction strength performs better when applied to hierarchical clustering rather than k-
means. This can be explained by the fact that k-means is implicitly biased towards spherical
clusters, so when the prediction strength is applied to k-means, it selects the best model for
the data from among models consisting of unions of spheres. As one referee pointed out,
an elongated structure is perhaps best modeled as a union of spheres, so this approach is
not inappropriate. Thus, although the choice of the clustering algorithm clearly needs to
take into account the structure of the clusters, the prediction strength has proven effective
in selecting an appropriate model from those under consideration.

7. ASYMPTOTIC PROPERTIES OF PREDICTION STRENGTH

This section gives a theoretical justification for prediction strength, in the context of
the k-means clustering algorithm. We consider k0 populations that are given by uniform
distributions on k0 unit balls in d-space (d > 1), whose centers have pairwise distances of at
least four. Considering such well-separated simple clusters allows us to clearly present the
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CLUSTER VALIDATION BY PREDICTION STRENGTH 525

Table 2. Continued.

Estimate of number of clusters k̂
Method 1 2 3 4 5 6 7 8 9 10

Four not well-separated clusters in two dimensions
Gap/unif 50 0 0 0∗ 0 0 0 0 0 0
Gap/pc 49 1 0 0∗ 0 0 0 0 0 0
CH 0 0 1 13∗ 7 4 4 2 8 11
KL 0 13 4 7∗ 4 2 9 5 0 0
Pred str 35 12 2 1∗ 0 0 0 0 0 0
Pred str/hc 48 2 0 0∗ 0 0 0 0 0 0

Two elongated clusters
Gap/unif 0 0∗ 17 16 2 14 1 0 0 0
Gap/pc 0 50∗ 0 0 0 0 0 0 0 0
CH 0 0∗ 0 0 0 0 0 7 16 27
KL 0 50∗ 0 0 0 0 0 0 0 0
Pred str 0 27∗ 2 19 0 0 0 0 0 0
Pred str/hc 0 42∗ 8 0 0 0 0 0 0 0

Two close and elongated clusters
Gap/unif 5 0∗ 0 0 7 32 6 0 0 0
Gap/pc 50 0∗ 0 0 0 0 0 0 0 0
CH 0 0∗ 0 0 0 27 8 14 1 0
KL 0 0∗ 0 19 1 12 8 6 0 0
Pred str 9 7∗ 1 31 0 2 0 0 0 0
Pred str/hc 44 6∗ 0 0 0 0 0 0 0 0

Three clusters in microarray setting
Gap/unif 30 12 8∗ 0 0 0 0 0 0 0
CH 0 50 0∗ 0 0 0 0 0 0 0
KL 0 24 26∗ 0 0 0 0 0 0 0
Pred str 0 0 50∗ 0 0 0 0 0 0 0
Pred str/hc 0 0 50∗ 0 0 0 0 0 0 0

main arguments without obscuring them with lengthy technicalities. The following result
shows that ps(k) exhibits indeed a sharp drop from 1 at k0:

Theorem 1.

ps(k0) = 1 + op(1)

sup
k0+1≤k≤M

ps(k) ≤ 2
3

+ op(1).

Thus k̂ is consistent for estimating k0.
The dependence of ps(k) on the sample size n is suppressed in the notation. Also, it is

possible to extend the theorem to let M increase with n.
Proof: Denote the k0 population means by m1, . . . , mk0 , and the k0 optimal k-means

centroids for the training and test sets by {m̂tr
i } and {m̂te

i }, respectively. The theorem in
Pollard (1982) with a simple modification (see the example following said theorem) implies
that for an appropriate labeling of the centroids

sup
1≤i≤k0

|m̂tr
i −mi| = op(1), sup

1≤i≤k0

|m̂te
i −mi| = op(1). (7.1)
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526 R. TIBSHIRANI AND G. WALTHER

But as soon as the above suprema are small enough (under the assumptions made for
this theorem it is enough if the sup are smaller than 1), then all test data from the ith
population (1 ≤ i ≤ k0) are assigned to a common training centroid and to a common test
centroid. But then ps(k0) = 1. Together with (7.1) this shows ps(k0) = 1 + op(1).

Next let k > k0. Considerations similar to those leading to (7.1) show that for n

large enough, one of the k0 populations, say the first, will have two test data centroids. For
simplicity we consider only the case where there are exactly two such centroids. Then the
test data falling into the support B(m1) of the first population are split into two clusters by
the boundary of a halfspace Hte. Likewise, one population is split into two clusters by a
halfspace Htr from the training data clustering. We consider now the important case where
the splits of the training and test clustering occur in the same population. The other cases
are dealt with similarly.

From the definition of ps(k),

ps(k) ≤ cv-ave
1

nk1(nk1 − 1)

∑
i /=j∈Ak1

1
(
D[C(Xtr, k), Xte]ij = 1

)

= cv-ave
(n/2)2∑

1≤i /=j≤n/2 1
(
both X te,i and X te,j fall into B(m1) ∩Hte

)

×
∑

1≤i /=j≤n/2 1
(
both X te,i and X te,j fall into B(m1) ∩Hte ∩Htr or

(n/2)2

or B(m1) ∩Hte ∩Hc
tr

)
. (7.2)

The random halfspaces Hte and Htr are independent; by a symmetry argument, their
normal directions are distributed uniformly on the unit sphere, and the distance of the
bounding hyperplane to m1 converges to zero. By the uniform strong law for U -statistics (see
Nolan and Pollard 1997, theorem 7), 1

(n/2)2

∑
1≤i /=j≤n/2 1

(
both X te,i and X te,j fall into

B(m1) ∩H
)

converges almost surely to P 2(X te,1 ∈ B(m1) ∩ H) uniformly over all
halfspaces H ⊂ Rd. Hence (7.2) equals

E P 2(X te,1 ∈ B(m1) ∩H1 ∩H2|H1, H2)
E P 2(X te,1 ∈ B(m1) ∩H1|H1)

+
E P 2(X te,1 ∈ B(m1) ∩H1 ∩Hc

2 |H1, H2)
E P 2(X te,1 ∈ B(m1) ∩H1|H1)

+ op(1) (7.3)

as both n and the number of cross-validation splits becomes large. Here H1 and H2 are
halfspaces whose bounding hyperplanes contain m1 and whose normal vectors are inde-
pendently distributed on the unit sphere.

Clearly P (X te,1 ∈ B(m1) ∩H1|H1) = (1/2k0). Further P (X te,1 ∈ B(m1) ∩H1 ∩
H2|H1, H2) = (1− θ/π)/(2k0), where θ ∈ (0, π) is the angle between the normals of H1

and H2, and P (X te,1 ∈ B(m1)∩H1∩Hc
2 |H1, H2) = (θ/π)/(2k0). It follows from Watson

(1983, formula (2.2.7)) that said angleθ has densityg(θ) = (Γ(d
2 ))/(Γ(d−1

2 )
√

π)(sin θ)d−2.
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CLUSTER VALIDATION BY PREDICTION STRENGTH 527

Hence the numerator in (7.3) equals

1
4k2

0

∫ π

0
(1− θ/π)2g(θ)dθ +

1
4k2

0

∫ π

0
(θ/π)2g(θ)dθ =

1
4k2

0

∫ π

0
p(θ)g(θ)dθ, (7.4)

where p(θ) := (1− θ/π)2 + (θ/π)2 is symmetric around θ = π/2 and strictly decreasing
on (0, π/2). Thus, there is a θ̄ ∈ (0, π/2) such that p̄(θ) := p(θ)− 1

π

∫ π

0 p(θ)dθ is negative
in (θ̄, π− θ̄) and positive outside this interval. ḡ(θ) := g(θ)− g(θ̄) is positive in (θ̄, π− θ̄)
and negative outside this interval, by symmetry. So

∫ π

0 p̄(θ)ḡ(θ)dθ ≤ 0 and hence (7.4)
equals

1
4k2

0

(∫ π

0
p̄(θ)ḡ(θ)dθ + g(θ̄)

∫ π

0
p̄(θ)dθ +

1
π

∫ π

0
p(θ)dθ

∫ π

0
g(θ)dθ

)

≤ 1
4k2

0π

∫ π

0
p(θ)dθ as

∫ π

0
p̄(θ)dθ = 0,

∫ π

0
g(θ)dθ = 1

=
1

2k2
0π

∫ π

0
(θ/π)2dθ

=
1

6k2
0

.

Thus, (7.3) is not larger than 2
3 +op(1). It follows from the above arguments that this bound

is uniform over k ∈ {k0 + 1, . . . , M}, where M can also be allowed to grow appropriately
with n. �
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