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Abstract For cluster analysis based on mixed-type data (i.e. data consisting
of numerical and categorical variables), comparatively few clustering meth-
ods are available. One popular approach to deal with this kind of problems
is an extension of the k-means algorithm (Huang, 1998), the so-called k-
prototype algorithm, which is implemented in the R package clustMixType
(Szepannek and Aschenbruck, 2019).

It is further known that the selection of a suitable number of clusters k is
particularly crucial in partitioning cluster procedures. Many implementations of
cluster validation indices in R are not suitable for mixed-type data. This paper
examines the transferability of validation indices, such as the Gamma index,
Average Silhouette Width or Dunn index to mixed-type data. Furthermore, the
R package clustMixType is extended by these indices and their application
is demonstrated. Finally, the behaviour of the adapted indices is tested by a short
simulation study using different data scenarios.
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1 Introduction

In practice, users are often confronted with mixed-type data (i.e. data consisting
of numerical and categorical variables), while in theoretical development this
data situation is neglected in many cases. In cluster analysis based on mixed-type
data only few cluster methods are available (a comprehensive overview is given in
Ahmad and Khan, 2019). In this paper mixed-type data are objects with l numeri-
cal and m− l categorical features. A popular distance measure for categorical and
numerical features is based on the similarity measure of Gower (Gower, 1971).
Another intuitive distance between two mixed-type objects is given by

dMT (X,Y ) =
l∑

j=1
(x j − yj )2 + λ

m∑
j=l+1

δ(x j, yj ) (1)

with factor λ > 0 and Simple Matching

δ(x j, yj ) =



0 i f x j = yj,

1 i f x j , yj
(2)

which is considered in this paper. The choice of λ strongly influences the
distances but is not the scope of this paper, where the defaults were used
(Szepannek, 2018; Huang, 1997).

A popular approach to cluster mixed-type data using the above-mentioned
distance is the k-prototype algorithm, an extension to the k-means algorithm
proposed by Huang (1998). This algorithm minimises

q∑
k=1

n∑
i=1

wi,k dMT (Xi, ck ), (3)

where q is the number of clusters and n is the number of objects. For the entries
in matrix [w]i=1,...,n; k=1,...,q we assume

∑q
k=1 wi,k = 1 and wi,k ∈ {0, 1}. The

prototype of cluster k is noted with ck , where the prototype is the mean for
the numerical features and the mode for the categorical features. The cluster
algorithm is implemented in the R package clustMixType (Szepannek and
Aschenbruck, 2019). For an enumeration of other algorithms for clustering
mixed-type data see Szepannek (2018).
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As for the k-means algorithm the number of clusters must be prespecified
in advance. Validation methods have been identified for the k-prototype al-
gorithm which enable the rating of clusters and the determination of the
optimal number of clusters. This paper examines the transformation of
validation indices for clustering mixed-type data. The transformed indices
will extend the R package clustMixType.

First, the cluster indices to be examined are presented in Section 2. The
extension of the R package clustMixType with the transferred indices is
shown in Section 3. Then a simulation study is conducted in order to compare
the performance of the implemented indices (Section 4). This paper ends with a
summary and outlook in Section 5.

2 Cluster Indices to Be Examined

An overview of existing validation indices is given e.g. in Halkidi et al. (2016) or
Desgraupes (2018). The selection of the validation indices under consideration
in this paper is mainly based on the publication on the NbClust R package
(Charrad et al., 2014) providing a huge list of well-known cluster validation
indices for numeric data. The functionality of this R package can’t be used for
mixed-type data, e.g. for the k-prototype algorithm. In the following the straight-
forward transformation of validation indices based on distances is presented.

Cindex, McClain Index and Ptbiserial Index
The three indices Cindex, McClain index and Ptbiserial index are all based on
distances between the objects to be clustered. These indices may readily be
generalised for mixed-type data using the distance for mixed-type objects in
equation (1). If Nw (resp. Nb) denotes the number of pairs in the same (resp.
different) cluster, then Sw (resp. Sb) is the sum of the Nw within-cluster distances
(resp. Nb between-cluster distances).

The standard deviation of all distances is denoted by sd and the total number
of pairs of objects by Nt =

n(n−1)
2 . In order to determine Smin and Smax , all Nt

distances between all pairs of objects have to be calculated first: Smin is the sum
of the Nw smallest distances and Smax the sum of the Nw largest distances.



4 Rabea Aschenbruck and Gero Szepannek

Using the notation explained above, the indices are defined as:

vCindex =
Sw − Smin

Smax − Smin
, (4)

vMcClain =
S̄w
S̄b
=

Sw/Nw

Sb/Nb
, (5)

vPtbiserial =
(S̄b − S̄w) ·

√
(Nw · Nb)/N2

t

sd
. (6)

Gamma Index, Gplus Index and Tau Index
Calculation of the Gamma index, Gplus index and Tau index is based on
concordant and discordant comparisons: Every within-cluster distance has
to be compared with every between-cluster distance, which results in high
computational costs. The number of comparisons is given by the total number
of pairs of pairs of objects and is denoted by ND =

Nt (Nt−1)
2 . If a within-cluster

distance is strictly smaller than a between-cluster distance, the comparison is
called concordant. The number of concordant comparisons is called s(+). The
number of discordant comparisons is denoted by s(−), where a comparison is
called discordant if a within-cluster distance is stricly greater than a between-
cluster distance. Calculation of the Tau index further requires the number of
comparisons of two pairs of objects where both pairs are within- or between
cluster comparisons (denoted by t). The definitions of the above mentioned
indices is given by:

vGamma =
s(+) − s(−)
s(+) + s(−)

, (7)

vGplus =
s(−)
ND

, (8)

vTau =
s(+) − s(−)
√

(ND − t)ND

. (9)

Dunn Index
Calculation of theDunn index requires the determination of the distance between
two clusters Ci and Cj , which is given by the distance between their closest
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points d(Ci,Cj ) = min
X∈Ci,Y ∈C j

dMT (X,Y ), with distance dMT for mixed-type

objects as mentioned in equation (1). The diameter of a cluster CK ist defined
as diam(Ck ) = max

X,Y ∈Ck

dMT (X,Y ). The Dunn index is defined by:

vDunn =

min
1≤i< j≤q

d(Ci,Cj )

max
1≤k≤q

diam(Ck )
. (10)

Silhouette Index
The Silhouette index (also known as Average Silhouette Width) relates the
average within-cluster distance for the cluster CA assigned to the object Xi

a(Xi) = 1
nA−1

∑
j∈{CA\Xi }

d(Xi, X j ) to the best alternative. The number of objects

in cluster CA is denoted by nA. In addition, all alternative cluster assignments
are considered and their average within-cluster distance is determined. The
best alternative is denoted by b(Xi) = min

S,A

1
nS

∑
j∈CS

d(Xi, X j ), where nS is

the number of objects in cluster CS . The definition of the Silhouette index
then looks as follows:

vSilhouette =
1
n

n∑
i=1

b(Xi) − a(Xi)
max(a(Xi), b(Xi))

. (11)

Overview of the Transformed Indices and Their Optimality Criteria
The transformation of some other well-known indices is not straightforward,
e. g., the indices based on within-group dispersion matrix (Calinski-Harabasz
index, Duda index, Friedman index or Pseudot2 index), CCC index (needs
calculation of XT X), Frey index (only for hierarchical cluster methods) or
SDindex and SDbw index (both based on the variance of the variables) (formulas
and definitions in Charrad et al., 2014). Extensions of these indices to mixed-
type data could be a subject of further research. In Table 1 the validation indices,
which were transferred for rating the k-prototype solution for mixed-type data
are shown along with their range as well as the optimality criterion.
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Table 1: Overview of the transformed indices and their optimality criteria.

Index Name Index Range Criterion of Optimality

Cindex [0, 1] minimum
Dunn index [0, +∞) maximum
Gamma index [−1, +1] maximum
Gplus index [0, Nw ·Nb

ND
] minimum

McClain index [0, +∞) minimum
Ptbiserial index (−∞, +∞) maximum
Silhouette index [−1, +1] maximum
Tau index (−1, +1) maximum

3 Extension of R Package clustMixType

As already mentioned, the clustMixType R package has been extended to
include the transferred indices for mixed-type data in version 0.2-1. The output
of the R function kproto() is an object of class kproto, containing a cluster
partition generated by the k-prototype algorithm. There are two applications for
each index implemented in the R package:

1. Call the function of your preferred validation index on a kproto
object and you will get the index value rating your cluster partition.
Note that the function kproto() must be called with the input
parameter keep.data = TRUE.

2. You can pass your data and the search range for the optimal number
of clusters. Then you will get the optimum number of clusters and
also a named vector with the index values for the search range.

Additional information on the implemented validation indices can be found in
the help file of the R package clustMixType.
In Listing 1 the application of the implemented R function for the McClain

index of both cases is shown exemplarily: Rating a cluster partition (with
prespecified number of clusters) based on an existing kproto object and
receiving an index-proposed number of clusters. In the latter case the function
must be called with a specified search range as an input parameter.
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Listing 1: Sample Application of the R function for McClain Index.

1 > # data generation with two categorical and two numerical variables
2 > n <- 10
3 > prb <- 0.99
4 > muk <- 2.5
5 > x1 <- sample(c("A", "B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
6 > x1 <- as.factor(c(x1, sample(c("A", "B"), 2*n, replace = TRUE, prob = c(1-prb, prb))))
7 > x2 <- sample(c("A", "B"), 2*n, replace = TRUE, prob = c(prb, 1-prb))
8 > x2 <- as.factor(c(x2, sample(c("A", "B"), 2*n, replace = TRUE, prob = c(1-prb, prb))))
9 > x3 <- c(rnorm(n, -muk), rnorm(n, muk), rnorm(n, -muk), rnorm(n, muk))

10 > x4 <- c(rnorm(n, -muk), rnorm(n, muk), rnorm(n, -muk), rnorm(n, muk))
11 > x <- data.frame(x1,x2,x3,x4)
12 >
13 > # apply k prototyps on sampled data x
14 > kpres <- kproto(x, 4, keep.data = TRUE)
15 >
16 > # application 1: calculate the index-value of one kproto object/cluster partition
17 > # function output is the index-value for the given cluster partition
18 > mcclain_kproto(object = kpres)
19 [1] 0.06946939
20 >
21 > # application 2: calculate optimal number of clusters
22 > # function output is a list with the index-optimal number of clusters ($k_opt)
23 > # and the index-values of the considered cluster-sizes ($indices)
24 > mcclain_kproto(data = x, k = 3:5, nstart = 5, verbose = FALSE)
25 $k_opt
26 [1] 5
27
28 $indices
29 3 4 5
30 0.33311849 0.06946939 0.06919922

4 Simulation Study

In order to compare the performance of the aforementioned indices a short
simulation study on different data situations was conducted.

Procedure of the Simulation Study
For the simulation study we have chosen the simulation structure shown in List-
ing 2. The data to be clustered were also simulated: Different metacharacteristics
were varied in order to mimic potential data situations (shown in Table 2).

Datasets were created for every combination of the specifications mentioned
above. For these datasets the k-prototype cluster partitions with number of
clusters between 2 and kmx = 10 were determined. For every cluster partition
all eight indices were calculated to suggest the optimal number of clusters. The
whole procedure was repeated 10 times.
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Listing 2: Pseudo Code: Procedure of the Simulation Study.

1 > # function to generate data to the according parameters (cf. table 2)
2 > create_data <- function(nB, nC, nV, CAe){
3 > n <- nB/nC
4 > mu <- 0.125
5 >
6 > if(nC == 2){
7 >
8 > x1 <- c(sample(c("A", "B"), n, replace = TRUE, prob = c(CAe, 1-CAe)),
9 > sample(c("A", "B"), n, replace = TRUE, prob = c(1-CAe, CAe)))

10 > y1 <- c(rnorm(n, mean = mu, sd = 1-CAe), rnorm(n, mean = -mu, sd = 1-CAe))
11 > data <- data.frame(x1, y1)
12 >
13 > if(nV > 1){
14 > for(ci in 2:nV){
15 > xi <- c(sample(c("A", "B"), n, replace = TRUE, prob = c(CAe, 1-CAe)),
16 > sample(c("A", "B"), n, replace = TRUE, prob = c(1-CAe, CAe)))
17 > yi <- c(rnorm(n, mean = mu, sd = 1-CAe), rnorm(n, mean = -mu, sd = 1-CAe))
18 > data <- data.frame(data, xi, yi)
19 > }
20 > }
21 >
22 > }else{ #nC == 4
23 >
24 > x1 <- c(sample(c("A", "B"), 2*n, replace = TRUE, prob = c(CAe, 1-CAe)),
25 > sample(c("A" ,"B"), 2*n, replace = TRUE, prob = c(1-CAe, CAe)))
26 > y1 <- c(rnorm(n, mean = mu, sd = 1-CAe), rnorm(n, mean = -mu, sd = 1-CAe),
27 > rnorm(n, mean = mu, sd = 1-CAe), rnorm(n, mean = -mu, sd = 1-CAe))
28 > data <- data.frame(x1, y1)
29 >
30 > if(nV > 1){
31 > for(ci in 2:nV){
32 > xi <- c(sample(c("A", "B"), 2*n, replace = TRUE, prob = c(CAe, 1-CAe)),
33 > sample(c("A", "B"), 2*n, replace = TRUE, prob = c(1-CAe, CAe)))
34 > yi <- c(rnorm(n, mean = mu, sd = 1-CAe), rnorm(n, mean = -mu, sd = 1-CAe),
35 > rnorm(n, mean = mu, sd = 1-CAe), rnorm(n, mean = -mu, sd = 1-CAe))
36 > data <- data.frame(data, xi, yi)
37 > }
38 > }
39 >
40 > }
41 >
42 > return(data)
43 > }
44 >
45 > # simulation study
46 > k_mx <- 10 # cluster partitions with a maximum number of clusters of 10
47 >
48 > # repeating the cluster validation procedure for the 8 indices on all data
49 > # situations (cf. table 2) 10 times
50 > for(i in 1:10){
51 >
52 > # generating data with function as defined in line 2
53 > data <- create_data(nB, nC, nV, CAe)
54 >
55 > # for all 8 indices
56 > INDEXNAME_val <- rep(NA, k_mx)
57 >
58 > for(k in 2:k_mx){
59 >
60 > # applying the k prototype algorithm to cluster the given data
61 > kpres <- kproto(x = data, k = k, nstart = 20, keep.data = TRUE)
62 >
63 > # calculating the index-values for the eight cluster indices
64 > INDEXNAME_val[k] <- INDEXNAME_kproto(object = kpres)
65 > }
66 >
67 > # determining the index-optimal k for every index depending on the optimality criterion
68 > INDEXNAME <- max(INDEXNAME_val) | min(INDEXNAME_val)
69 > }
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Table 2: Variables of the generated data sets and their specifications.

Variable Explanation Specification

nB number of objects 200, 400
nC number of clusters (of equal size) 2, 4
nV number of numerical/categorical features 1, 2, 4
CAe similarity of objects in different clusters 1, 0.98

Table 3: Results of the Simulation Study.
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Results of the Index-Performance
Table 3 (top) summarizes the cluster results for two clusters in terms of the mode
of the ten repetitions. If there was not the same number of clusters proposed in
the 10 iterations the frequency of the mode is printed in gray. Obviously, the
Dunn index had problems in data situations with only identical objects in the
cluster. Even if this represents a more or less theoretical situation, it becomes
more likely to occur for categorical features. In conclusion, most performance
measures identified the correct number of cluster, the Ptbiserial index and the
Tau index even always.

Table 3 (bottom) also shows the results of the simulation study of datasets with
4 clusters. In this simulation the Ptbiserial index and the Tau index performed
worse compared to the results for clustered datasets with 2 clusters: Both indices
almost never determine the correct number of clusters. The same result holds
for the Cindex and the Dunn index.
Finally, in Figure 1 there is an overview of the index performance of the

simulation study, splitted by the results for datasets with 2 and 4 clusters and
the third graph shows the results of the whole simulation study. Overall, the
Silhouette index as well as the two concordant and discordant comparisons
based indices, namely the Gamma index and the Gplus index, performed best
for the analysed data situations.
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Figure 1:An overview of the rel-
ative frequency of determining
the correct number of clusters,
splitted in 2 or 4 cluster cases
and all datasets.
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Runtime Analysis of the Considered Indices
In addition, the runtimes of the different validation indices were compared for dif-
ferent data situations. The results are given in Figure 2. As expected, the runtime
increases in the number of variables and objects in the datasets. The McClain
index and the Silhouette index are by far faster than the others. Their runtime
differs in orders of magnitude. Calculation of the Tau index takes longest.
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Figure 2: Results of the runtime analysis of the different validation indices.

5 Conclusion

As a summary, we can see that cluster validation indices based on distances
can be transferred to mixed-type data. The Dindex and the Hubertus statistic
could also be transferred, which has not been done so far. The eight indices
presented and transformed in this paper are already implemented in the R
package clustMixType.
In a simulation study it turned out that the Dunn index performed worse

compared to the other indices. The Tau index is the validation index with
the longest computation time. The shortest runtime has been observed for the
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McClain index, but the suggested number of clusters was often misleading. In
our study the Average Silhouette Width is most suitable with respect to both,
runtime and determination of the correct number of clusters.

Future work may consider a comparison of the presented indices to cluster val-
idation using the concept of cluster stability for mixed-type data (Hennig, 2007).
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