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ABSTRACT 
Clustering is an unsupervised process since there are no 
predefined classes and no examples that would indicate 
grouping properties in the data set. The majority of  the 
clustering algorithms behave differently depending on the 
features of  the data set and the initial assumptions for 
defining groups. Therefore, in most appfications the resulting 
clustering scheme requires some sort of  evaluation as regards 
its validity. Evaluating and assessing the results of  a clustering 
algorithm is the main subject of  cluster va~di~'. 
in  this paper we present a review of  the clustering validity 
and methods. More specifically, Part I o f  the paper discusses 
the duster validity approaches based on external and izternal 
criteria. 

1. I N T R O D U C T I O N  
Clustering is one of  the most useful tasks in the data mining 
process for discovering groups and identifying interesting 
distributions and patterns in the underlying data [4]. Thus, 
the main concern in the clustering process is to reveal the 
organization o f  patterns into "sensible" groups, which allow 
us to discover similarities and differences, as well as to derive 
useful inferences about them [6]. 

In the literature a wide variety of  algorithms have been 
proposed for different applications and sizes of  data sets[7, 
8]. The application of  an algorithm to a data set aims at, 
assuming that the data set offers such a clustering tendency, 
discovering its inherent partitions. However, the clustering 
process is perceived as an unsuperxfised process, since there 
are no predefined dasses and no examples that would show 
what kind of  desirable relations should be valid among the 
data [1]. Then, the various clustering algorithms are based on 
some assumptions in order to define a partitioning of  a data 
set. As a consequence, they may behave in a different way 
depending on: 
i) the features of  the data set (geometry and density 

distribution of  clusters) and 
ii) the input parameters values. 

It  is obvious that a problem we face in clustering is to 
decide the optimal number of  clusters that fits a data set. In 
most algorithms' experimental evaluations 2D-data sets are 
used in order that the reader is able to visually verify the 

validity of  the results (i.e., how well the clustering algorithm 
discovered the dusters of  the data set). It is clear that 
visualization of  the data set is a crucial verification o f  the 
clustering results. In the case of  large multidimensional data 
sets (e.g. more than three dimensions) effective visualization 
of the data set would be difficult. Moreover the perception of  
dusters using avdlable visualization tools is a difficult task for 
humans that are not accustomed to higher dimensional 
spaces. 

For instance, assume the data set in Figure la. It clearly 
consists of  three clusters. However, if we consider a 
clustering algorithm (e.g. K-~(eans) with certain input 
parameter values (in the case of  K-Means [9] the number of  
clusters) so as to partition the data set in four dusters, the 
result of clustering process would be the clustering scheme 
presented in Figure lb. In our example the clustering 
algorithm (K-Means) found the best partitioning into four 
dusters. However, this is not the optimal partitioning for the 
considered data set. We define, here, the term "optimal" 
clustering scheme as the outcome of  running a clustering 
algorithm (i.e., a partitioning) that best fits the inherent 
partitions of the data set. Similarly, Figure 2 presents the 
behaviour of  the algorithm DBSCAN [3] under the 
consideration of  different input parameter values. DBSCAN 
achieves to partition the data set optimally into three clusters 
(see Figure 2a) only under the consideration of  the suitable 
input parameters' values (Le., Eps=2, Nps =4). Using different 
input parameter values, it fails to find the optimal partitioning 
of  the dataset (e.g. Figure 2b). 

As a consequence, if the clustering algorithm parameters 
are assigned an improper value, the clustering method results 
in a partitioning scheme that is not optimal for the specific 
data set leading to wrong decisions. The problems of  deciding 
the number of  clusters better fitting a data set as well as the 
evaluation of  the clustering results has been subject of  many 
research efforts [2, 5, 10, 11, 12]. 

In the sequel, we discuss the fundamental concepts of  
clustering validity. Further more, in Part I of  the paper we 
present the external and internal validity criteria while the 
relative ones will be discussed in the forthcoming Part II  of  
the paper. 
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Figure 2 The different parutions resulting from running DBSCAN with different input parameter values. 

2. CLUSTER VALIDITY F U N D A M E N T A L  
C O N C E P T S  

The procedure of  evaluating the results of a clustering 
algorithm is known under the term cluster valio~D'. In general 
terms, there are three approaches to investigate cluster 
validity [11]. The first is based on external criteria. This implies 
that we evaluate the results of a clustering algorithm based on 
a pre-spedfled structure, which is imposed on a data set and 
reflects our intuition about the clustering structure of the data 
set. The second approach is based on internal aiteda. In this 
case the clustering results are evaluated in terms of  quantifies 
that involve the vectors of the data set themselves (e.g. 
proximity matrix). The third approach of clustering validity is 
based on rdacive oiteda. Here the basic idea is the evaluation 
of  a clustering structure by comparing it to other clustering 
schemes, resulting by the same algorithm but with different 
input parameter values. 

The two first approaches are based on statistical tests and 
their major drawback is their high computational cost. 
Moreover, the indices related to these approaches aim at 
measuring the degree to which a data set confixms an a-priori 
specified scheme. On the other hand, the third approach alms 
at finding the best clustering scheme that a clustering 
algorithm can define under certain assumptions and 
parameters. 

In the rest secdon, we present the fundamental criteria 
and representative indices for the first two approaches. 

3. E X T E R N A L  A N D  I N T E R N A L  
VALIDITY INDICES.  

In this section, we discuss methods suitable for quantitative 
evaluation of the clustering results, known as cluster validity 

methods. However, these methods give an indication of the 
quality of the resulting partitioning and thus they can only be 
considered as a tool at the disposal of the experts in order to 
evaluate the clustering results. 

The cluster validity approaches based on external and 
internal criteria rely on statistical hypothesis testing. In the 
following section, an intxoduction to the fundamental 
concepts of  hypothesis testing in cluster vMidity is presented. 

3.1 H y p o t h e s i s  T e s t i n g  in  C l u s t e r  V a l i d i t y  
In cluster validity the basic idea is to test whether the points 
of a data set are randomly structured or not. This analysis is 
based on the Nul l  H)~othe,r#, known as He, expressed as a 
statement of  random structure of a dataset, let X. To test this 
hypothesis we are based on statistical tests, which lead to a 
computationally complex procedure. In the sequel Monte 
Carlo techniques are used as a solution to high computational 
problems [11]. 

3. I. 1 How Monte Carlo & used in Cluster Vd'~'!)' 
The goal of  using Monte Carlo techniques is the computation 
of  the probability density function (pdJ~ of  the validity indices. 
They rely on simulating the process of estimating the pdfof  a 
vMidity index using a sufficient number of computer- 
generated data. First, a large amount of synthetic data sets is 
generated by a normal distribution. For each one of  these 
synthetic data sets, called X i ,  the value of  the defined index, 
denoted qi, is computed. Then based on the respective values 
ofqi  for each of the data sets Xi, we create a scatter-plot. This 
scatter-plot is an approximation of the probability density 
function of the index. In Figure 3 we see the three possible 
cases of  probability density function's shape of  an index q. 
There are three different possible shapes depending on the 
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Figure 3. Confidence inteeta,'al for (a) two-tailed index, (b) right-tailed index, (c) left-tailed index, where q0p is the O 
proportion of q under hypothesis H0. [11] 

critical interwA D o , corresponding to signoqcant level 8 

(statistic constartt). As we can see the probability density 
function of a statistic index q, under Ho, has a single 

and the ~'Op" region is either a half line, or a union fnaximum 

of two half lines. 
Assuming that the scatter-plot has been generated using r 

values of the index q, called ql, in order to accept or reject the 
NullH)2otbesis Ho we examine the following conditions [11]: 

if the shape is right-tailed 
if (q's value of our data set, is 

greater than (l-p)- r of qi values) 
then 
Reject Ho 

else 
Accept Ho 

endif 
else if the shape is left-tailed 
if (q' s value for our data set, is 

• smaller than p. r of qi values) then 
Reject Ho 

else 
Accept HO 

endlf 
else if the shape is two-tailed 

if (q is greater than (p/2).r number 
of q~ values and smaller than (i - 

p/2).r of qi values) 
Accept Ho 

endl f 
endlf 

3 . 2  E x t e r n a l  C r i t e r i a  
Based on the external criteria we can work in two different 
ways. Firstly, we can evaluate the resulting clustering structure 
C, by comparing it to an independent partition of the data P 
built according to our intuition about the clustering structure 

of the data set. Secondly, we can compare the proximity 
matrix P to the partition P. 

3.2. / Compadson of C with pam'tion P 
Consider C = {Cl,.. C~} is a clustering structure of a data set 
X and P ={PI.. .  P,} is a defined partition of the data. We 
refer to a pair of points (xv, x,) from the data set using the 
following terms: 

• aS: if both points belong to the same cluster of the 
clustering structure C and to the same group of partition 
P. 

• SD: if points belong to the same cluster of C and to 
different groups of P. 

• DS: if points belong to different clustezs of C and to the 
same group of P. 

• DD: if both points belong to different clusters of C and 
to different groups of P. 

Assuming now that a, b, c and d are the number of SS, 
SD, DS and DD pairs respectively, then a + b + c + d = M 
which is the maximum number of all pairs in the data set 
(meaning, M=N(N-1)/2 where N is the total number of 
points in the data set). 
Now we can define the following indices to measure the 
degree of similarity between Cand R 

1. Rand StatisEc. R = (a + d) / M, 

2. Jaccard Coe~deat: J = a / (a + b + c), 

The above two indices range between 0 and 1, and are 
maximized when m=s. Another index is the: 

3. Folkes aud Ma//on,s in&x: 

FM = a / 4 m , m  ~ - Yb a + ~  O) 
w h ~ e  ~ ,  = a / (a + b), m~=a / (a + c). 
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For the previous three indices it has been proven that 
high values of  indices indicate great similarity between C and 
P. The higher the values of  these indices are the more similar 
Cand Pare.  Other indices are: 

4. Hu&rts F statt)ti¢. 
N-I N 

F = ( l /M)  2~ ~ X(i, j )  Y(i, j )  (2) 
i=l  j=i+[ 

High values of  this index indicate a strong similarity between 
X a n d  Y. 

5. NormalLged F statistic. 
I~ - I b l  

[(I/M) ~ ~ (X(i, j ) - l ax ) (Y( i ,  j ) - ~ v ) ]  
f. ,., ~.,., (3) 

OXG¥ 

where X 0, j) and Y(i, j) are the (i, j ) element of the matrices 
X, Y respectively that we have to compare. Also p..~, p.y, ox, Cry 
are the respective means and variances of X, Y matrices. This 
index takes values between -1  and I. 

All these statistics have right-tailed probability density 
functions, under the random hypothesis. In order to use these 
indices in statistical tests we must know their respective 
probability density function under the Null Hypothesis, Ho, 
which is the hypothesis of  random structure of  our data set. 
This means that using statistical tests, if we accept the Null 
Hypothesis then our data are randomly distributed. However, 
the computation of  the probability density function of  these 
indices is computational expensive. A solution to this 
problem is to use Monte Carlo techrdques. The procedure is 
as follows: 

F o r  i = 1 t o  r 
Generate a data set X i with N vectors 
(points) in the area of X (i.e., 
having the same dimension with those 
of the data set X). 

Assign each vector yj, t of Xi to the 

group that x 5 e X belongs, according 
to the partition P. 

Run the same clustering algorithm 
used to produce structure C, for 
each Xi, and let Ci the resulting 
clustering structure. 

Compute q(C t) value of the defined 
index q for P and C i. 

End For 

Create scatter-plot of the r validity 
index values , q (Ci) (that computed 
into the for loop). 

After hasting plotted the approximation of the probability 
density function of the defined statistic index, its value, let q, 
is compared to the q(Ci) values, let ql. The indices R,J, FFlk, I, r '  
defined previously are used as the q index mentioned in the 
above procedure. 

Example: Assume a data set, X, containing 100 three- 
dimensional vectors (points). The points of  X form four 

clusters of  25 points each. Each cluster is generated by a 
normal distribution. The covariance matrices of  these 
distributions are all equal to 0.2I, where I is the 3x3 identity 
matrix. The mean vectors for the four distributions are [0,2, 
0.2, 0.2] x, [0.5, 0.2, 0.8] T [0.5, 0.8, 0.2] x, and [0.8, 0.8, 0.8] w. 
We independently group data set X in four groups according 
to the partition P for which the first 25 vectors (points) 
belong to the first group P*, the next 25 belong to the second 
group P2, the next 25 belong to the third group P3 and the 
last 25 vectors bdong  to the fourth group P4. The K-Means 
clustering algorithm is tran for k = 4 clusters. Assuming that 
C is the resulting clustering structure the values of  the indices 
for the dustering C and the partition P are computed. Thus 
we get R = 0.91,J -- 0.68, 1F~vl = 0.81 and F = 0.75. Then the 
steps described above are followed m order to define the 
probabifity density function of  these four statistics. We 
generate 100 data sets Xi, i = 1,..., 100, and each one of  them 
consists of  100 random vectors (in 3 dimensions) using the 
uniform distribution. According to the partition P defined 
earlier for each Xi the first 25 of  its vectors are assigned to P j 
and the second, third and forth groups of  25 vectors to Pz, P3 
and P4 respectively. Then K-Means is run i-times, one time 
for each Xi, so as to define the respective clustering structures 
of datasets, denoted Ci. For each of  them the values of the 
indices Ri, Ji, ]=i'/xfi, r'i, i= l ,  ...,100 are computed. Considering 
the significance level ~ = 0.05 and these values are compared 
to the R, J, FM and F values corresponding to X. Then the 
null hypothesis is accepted or rejected whether (1-Q).t =(1 - 
0.05) 100 = 95 values of  Ri, Ji, FlXe[i, I"j are greater or smaller 
than the corresponding values of R, J, FM, F. In our c u e  the 
Ri, Ji, FMi, I-'i values cure all smaller than the corresponding 
values of  R, J, FM, and F, which lead us to the conclusion 
that the mall hypothesis He  is rejected. Something that we 
were expecting because of  the predefined clustering structure 
of  data set X. 

3.2.2 Comparison of P with pattition P 

Let P is the proximity matrix of a data set X and P is its 
partitioning. Partition P can be considered as a mapping 

g: X "-> {1.. .n~}. 
where ~ is the number of dusters. 
Assuming the matrix Y defined as: 

Y ( i ' J ) = {  1 ' 0 ,  ifg(xi)~g(xJ)0therwise ' i ' J =  I ' " N "  

F (or normalized iF) statistic can be computed using the 
proxirrdty matrix P and the matrix Y. Based on the index 
value, we may have an indication of  the two matrices' 
similarity. 

To proceed with the evaluation procedure we use the 
Monte Carlo techniques as mentioned above. In the 
"Generate" step of  the procedure the corresponding mappings 
gi is generated for every generated Xi data set. So in the 
"Catapult"step the matrix Yi is computed for each Xi in order 
to find the Fi corresponding statistic index. 
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3.3 I n t e r n a l  Criteria.  
Using this approach of  cluster validity the goal is to evaluate 
the clustering result of  an algorithm using ordy quantifies and 
features inherited from the dataset. There are two cases in 
which we apply internal criteria of  cluster validity depending 
on the clustering structure: a) hierarchy of clustering schemes, 
and b) single clustering scheme. 

3.3. ! Vak~atbtg bierarrh 3 of dusttring schemu. 
A matrix called cophenetic matrix, Pc, can represent the 
hierarchy diagram that is produced by a hierarchical 
algorithm. The dement P,(i, j) of cophenetic matrix 
represents the proximity level at which the two vectors xi and 
x i are found in the same cluster for the first time. We may 
define a statistical index to measure the degree of  similarity 
between P, and P (proximity matrix) matrices. This index is 
called Cophenett? Correlation Coe~dent and defined as: 

( I / M ) ~ '  £ d, eu- / ' /p . t tc  
CPCC = , - ,  ,-~,~ (4) 

01M d~ - / l :  IM)~ c~ 
i-I j=~+l J-|+l 

where M=N.(N-1)/2 and N is the number of  points in a 
dataset. Also, #p and #~ are the means of  matrices P and P~ 
respectively, and are defined in the equation (5): 

N-I N N-I N 
#p =(l/M) E XP(i,j),Pc =(l/M) E XPo(i,j) (5) 

i=l j=i+l i=l j=i+l 
Moreover, dli, clj are the (i, j) elements of  P and Pc 

matrices respectivdy. The CPCC are between -1 and 1. A 
value of  the index dose to 1 is an indication of  a significant 
similarity between the two matrices. The procedure of  the 
Monte Carlo techniques described above is also used in this 
case of  validation. 

3.3.2 Validattng a single clustering scheme 
The goal here is to find the degree of  match between a given 
clustering scheme C, consisting of n, clusters, and the 
proximity matrix P. The defined index for this approach is 
Hubert's F statistic (or normalized F statistic). An additional 
matrix for the computation of  the index is used, that is 

1, if x ~ and x j belong to different clusters 

Y (i, j ) =  0, otherwise 

where i, j = 1,..., N. 
The application of Monte Carlo techniques is also here 

the way to test the random hypothesis in a given data set. 

4. CONCLUSIONS AND TRENDS IN 
CLUSTERING VALIDITY 

Cluster validity is one of  the most important issues in cluster 
analysis related to the inherent features of  the data set under 
concern. It aims at the evaluation of clustering results and the 
selection of  the scheme that best fits the underlying data. 

The maiority of  algorithms are based on certain criteria in 
order to define the clusters in which a data set can be 
partitioned. Since clustering is an unsupervised process and 

there is no a-priori indication for the actual number of  
dusters presented in a data set, there is need of  clustering 
results' validation. We presented a survey of  the most known 
validity criteria available in literature, classified in three 
categories: external, internal, and relative. In Part I of  the 
paper we discuss representative validity indices of  internal and 
external criteria while in Part II we will present validity 
approaches based on relative criteria along with sample 
experimental evaluation. 

The validity assessment approaches proposed in the 
literature works better when the dusters are mostly compact. 
However, there are applications where we have to handle 
arbitrary shaped dusters (e.g. spatial data, medicine, biology). 
In this case the traditional validity criteria (variance, density 
and its continuity, separation) are not any more suffident. 

There is a need for devdoping quality measures that 
assess the quality of  the partitioning taking into account: i. 
intra-cluster quality, ii. inter-duster separation and iii. 
geometry of the dusters, using sets of  representative points, 
or even multidimensional curves rather than a single 
representative point. 

Also another challenge is addressing the issue of  an 
integrated data mining results quality assessment model. The 
fundamental concepts and criteria for a global data mining 
validity checking process have to be introduced and 
integrated to define a quality modal. 
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