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Abstract

In the analysis of clustered or hierarchical data, a variety of statistical techniques can be applied. Most of these techniques

have assumptions that are crucial to the validity of their outcome. Mixed models rely on the correct specification of

the random effects structure. Generalized estimating equations are most efficient when the working correlation form is

chosen correctly and are not feasible when the within-subject variable is non-factorial. Assumptions and limitations of

another common approach, ANOVA for repeated measurements, are even more worrisome: listwise deletion when data are

missing, the sphericity assumption, inability to model an unevenly spaced time variable and time-varying covariates, and

the limitation to normally distributed dependent variables. This paper introduces ClusterBootstrap, an R package for the

analysis of hierarchical data using generalized linear models with the cluster bootstrap (GLMCB). Being a bootstrap method,

the technique is relatively assumption-free, and it has already been shown to be comparable, if not superior, to GEE in its

performance. The paper has three goals. First, GLMCB will be introduced. Second, there will be an empirical example,

using the ClusterBootstrap package for a Gaussian and a dichotomous dependent variable. Third, GLMCB will be compared

to mixed models in a Monte Carlo experiment. Although GLMCB can be applied to a multitude of hierarchical data forms,

this paper discusses it in the context of the analysis of repeated measurements or longitudinal data. It will become clear that

the GLMCB is a promising alternative to mixed models and the ClusterBootstrap package an easy-to-use R implementation

of the technique.
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Introduction

In behavioral research, various techniques are being used

to analyze hierarchical data. Some examples of hierarchical

data (sometimes called nested or clustered data) are children

that are observed within the same classes or patients in a

clinical trial that are being treated at the same department.

When analyzing such data, it is paramount to take into

consideration the fact that children within the same classes

are more alike than children from different classes, and

that patients within the same department are likely to be

more alike than patients from different departments. Data

are also hierarchical when there are repeated measurements
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within persons. The repeated measurements within a person

tend to be correlated, where this is not necessarily the

case for the observations from different persons. For the

analysis of repeated measurements, the repeated measures

analysis of variance (RM-ANOVA) is popular, because this

method is well understood by experimental psychologists

and often taught to undergraduate psychology students.

Moreover, popular statistical textbooks (e.g., Brace et al.,

2016; Pallant, 2013) advocate the use of this technique,

perhaps because it is part of the ANOVA framework that

is at the core of introductory statistical courses. There are,

however, some downsides to the use of RM-ANOVA, such

as its incapability to use time-varying explanatory variables

and a non-factorial (e.g., unevenly spaced) time variable,

as well as a loss of power when confronted with missing

data, because RM-ANOVA completely removes a case

when one measurement occasion is not accounted for. Also,

when the dependent variable is not normally distributed,

RM-ANOVA is inappropriate.

There are several alternatives to RM-ANOVA, such as

generalized linear mixed models (GLMMs), also known as
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hierarchical linear models, multilevel models, or variance

components models (Goldstein, 1979; Raudenbush & Bryk,

2002; Verbeke & Molenberghs, 2009) and generalized

estimating equations (GEE; Liang & Zeger, 1986; Hardin

& Hilbe, 2003). A third alternative is to use generalized

linear models with the cluster bootstrap (GLMCB; Davison

& Hinkley, 1997; Field & Welsh, 2007; Harden, 2011;

Sherman & LeCessie, 1997). Unlike RM-ANOVA, these

techniques can handle the presence of missing data (to some

extent), a non-normal dependent variable or a non-factorial

time variable. McNeish et al. (2017) recently highlighted

some advantages of the GEE and GLMCB approach in

comparison to GLMMs. Below, these techniques will be

discussed in more detail. Since they can all be seen as

extensions of the framework of generalized linear models,

these will be discussed first.

Generalized linear models

Many problems can be written as a regression problem.

When we have a single response variable Y with

observations yi , i = 1, . . . , n and a set of predictor variables

xi1, xi2, . . . , xip, the standard multiple linear regression

model is

yi = α + β1xi1 + β2xi2 + β3xi3 + . . . + ei

= α +
∑

j

βjxij + ei .

where ei are residuals. In standard applications (in cross-

sectional data analysis), these residuals are assumed to be

normally distributed with mean zero and constant variance

(ei ∼ N(0, σ 2
e )). For categorical predictor variables,

dummy variables are created.

Generalized linear models (GLMs; McCullagh and

Nelder, 1989) generalize the regression model in two

aspects: (a) The dependent variable may have another

distribution than the normal; and (b) the dependent variable

is not described itself (by a linear model) but a function of

the response variable is. GLMs then have three components:

1. Random component: The probability density function

for the response variable must be from the exponential

family, that has the form

f (yi; θi, φ) = exp

(
yiθi − b(θi)

a(φ)
+ c(y, φ)

)
,

for the natural parameter θi , dispersion parameter φ,

and functions a(·), b(·), and c(·). Special cases of this

family are, among others, the normal distribution, the

binomial distribution, and the Poisson distribution (see

McCullagh & Nelder 1989, for proofs).

2. Systematic component: This is the linear part of the

model

ηi = α +
∑

j

βjxij .

3. Link function: A function that links the expectation

E(yi) = μi to the systematic component ηi .

g(μi) = ηi = α +
∑

j

βjxij .

Main examples are the identity link, g(μ) = μ for

linear regression; the logit transformation g(μ) =
log(

μ
1−μ

), which is used in logistic regression; and the

log transformation g(μ) = log(μ) that is appropriate

for count data.

For the remainder of this paper, we will be especially

interested in continuous and dichotomous dependent vari-

ables with the above-mentioned link functions. For a con-

tinuous variable with an identity link, we thus have

μi = α + β1xi,

so that the expected value given xi = 0 equals α and with

every unit increase of x the response increases by β1. For

binary response variables, μi indicates the probability of

one of the two categories of the response variable and with

a logistic link we have

log

(
μi

1 − μi

)
= α + β1xi,

so that the expected log odds given xi = 0 equals α and with

every unit increase of x the log odds increases by β1.

Generalized linear mixedmodels

GLMMs can be regarded as an extension of the GLM

framework (Gelman & Hill, 2007): there is an outcome

variable and there are usually several explanatory variables.

GLMMs are also widely known as multilevel models (Hox

et al., 2017; Snijders & Bosker, 2012) and hierarchical

generalized linear models (Raudenbush & Bryk, 2002). In

the context of longitudinal data, there usually is a variable

among the explanatory variables that represents time. This

implies that data are arranged in a long format: every

observation (i.e., each timepoint) of every subject occupies

a single row in the dataset. The fact that each subject

(the so-called level-2 unit) now has multiple observations

(level-1 units) in the dataset implies that the observations

are not independent of each other. The violation of the

independence assumption of GLM requires the regression

model to be extended. This extension of the linear model

lies in the addition of so-called random effects. Usually, a

random intercept and a random slope for the time-varying
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level-1 variable (e.g., time) are incorporated, with mean

vector 0 and a covariance matrix �.

Omission of random effects

The GLMM is most efficient when the random part of

the model is specified correctly. They are, however, not

observed directly, which makes it impossible to assess

whether the true random effects structure is modeled

(Litière et al. 2007, 2008).

Several papers have investigated the consequences of

omitting a random effect. Tranmer and Steel (2001) demon-

strate that, in a hypothetical three-level LMM, the complete

omission of a level leads to redistribution of the variance in

the ignored level into the lower and higher level of the mod-

eled two-level LMM, subsequently. Moerbeek (2004) and

Berkhof and Kampen (2004) elaborate on these findings,

and show that for unbalanced designs (in a longitudinal con-

text, i.e., a non-fixed number of repeated measurements),

the omission of a level (Moerbeek, 2004) or only including a

level partially (by omitting either the random intercept or the

random slope; Berkhof & Kampen, 2004) may lead to incor-

rect conclusions based upon p values. Van den Noortgate

et al. (2005) conclude that standard errors for fixed effects

on the ignored level and adjacent level(s) are affected the

most. The mentioned studies all focus on LMMs with more

than two levels, and all but one (Berkhof & Kampen, 2004)

focus on the complete omission of one or several levels.

For two-level data, Lange and Laird (1989) show that,

in a balanced and complete setting, for linear growth curve

models where the true error covariance structure implies

more than two random effects, a model including only

two random effects leads to unbiased variance estimates

for the fixed effects. Schielzeth and Forstmeier (2009) and

Barr et al. (2013) discuss the common misconception that

models with only a random intercept are sufficient to satisfy

the assumption of conditional independence, even when

random slope variation is present. Schielzeth and Forstmeier

(2009) conclude that one should always incorporate random

slopes as well, as long as this does not lead to convergence

problems. Barr et al. (2013) recommend using as many

random effects as possible. Lastly, outside the framework of

LMM, Dorman (2008) shows that type I errors inflate as the

variance partition coefficient (VPC; Goldstein et al. 2002,

often and hereafter referred to as the intraclass correlation of

the random effect, ICC) that is not accounted for, increases.

Generalized estimating equations

In GEE (Liang & Zeger, 1986), simple regression proce-

dures are used for the analysis of repeated measurements

data. The procedure adapts the standard errors by using a

robust sandwich estimator (Liang & Zeger, 1986), adjusting

the standard errors when the true variance is inconsistent

with the working variance guess. For a more thorough

description of the sandwich estimator, we refer to Agresti

(2013, Chapter 14). GEE is closely related to GLMCB, as

both specify marginal models. GEE is, however, built on

asymptotic results. For small samples, it is questionable

whether the procedure really works well (e.g., Gunsolley

et al.; McNeish & Harring, 2017; Yu & de Rooij, 2013). In

GEE, a working correlation form has to be chosen to model

the correlation between repeated measurements. Common

choices for this working correlation include the exchange-

able, the autoregressive, the unstructured, and the indepen-

dent correlation structure. Note that the latter assumes no

correlation between repeated measurements, which leads to

regression estimates that are identical to those of GLM.

For an overview of these correlation structures, see Twisk

(2013, Chapter 4). Many papers have been written about

the choice of working correlation form. Some conclude that

the estimates are more efficient when the working form

is closer to the true form (Crowder, 1995). Others show

that simple working forms are often better (Lumley, 1996;

O’Hara Hines, 1997; Sutradhar & Das, 1999). Furthermore,

if one is interested in effects with time-varying explanatory

variables, one should be very careful about the choice of

working correlation form (Pepe & Anderson, 1994).

Generalized linearmodels with the cluster bootstrap

Often statistical inference and stability are assessed using

asymptotic statistical theory assuming a distribution for the

response variable. In many cases, however, such asymptotic

theory is not available or the assumptions are unrealistic and

another approach is needed. Nonparametric bootstrapping

(Efron, 1982; Efron & Tibshirani, 1993; Davison &

Hinkley, 1997) is a general technique for statistical

inference based on building a sampling distribution for

a statistic by resampling observations from the data at

hand. The nonparametric bootstrap draws at random, with

replacement, B bootstrap samples of the same size as the

parent sample. Each of these bootstrap samples contains

subjects from the parent sample, some of which may

occur several times, whereas others may not occur at all.

For regression models (GLMs), we can choose between

randomly drawing pairs, that is both the explanatory and

response variables, or drawing residuals. The latter assumes

that the functional form of regression model is correct, that

the errors are identically distributed and that the predictors

are fixed (Davison & Hinkley, 1997; Fox, 2016). For the

ClusterBootstrap procedure, random drawing of pairs

is chosen as the sampling method to avoid the dependency

upon these assumptions.

For hierarchical or clustered (e.g., longitudinal, repeated

measurement) data, in order to deal with the within-
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individual dependency, the sampling is performed at the

individual level rather than at the level of a single

measurement of an individual (Davison & Hinkley, 1997).

This implicates that when a subject is drawn into a specific

bootstrap sample, all the observations from this subject

are part of that bootstrap sample. The idea behind this is

that the resampling procedure should reflect the original

sampling procedure (Fox, 2016, p. 662-663). For repeated

measurements, the researcher usually recruits subjects, and

within any included subject, the repeated measurements

are gathered. In other words, the hierarchy of repeated

measurements within subjects that is present in the original

data should be and is reflected within each bootstrap sample.

Because the observations within a single subject are usually

more closely related than observations between different

subjects, the bootstrap samples obtained by using such a

clustered sampling scheme are more alike, thereby reducing

the variability of the estimates. Moreover, in each bootstrap

sample, the dependency among the repeated measurements

is present. In repeated measurements, this dependency

is usually of an autoregressive kind; this autoregressive

structure is still present in each bootstrap sample due to the

drawing of clusters of observations (i.e., all observations

from the subjects being drawn). Using this sampling

approach with generalized linear models is referred to as

generalized linear models with the cluster bootstrap. The

term ”cluster” here refers to observations being dependent

upon each other in a hierarchical way (e.g., repeated

measurements within persons, children within classes) and

has no relation to cluster analysis, where the aim is to find

clusters of observations with similar characteristics.

Clustered resampling has been investigated scarcely

since the mid-1990s. Field and Welsh (2007) show that

the cluster bootstrap provides consistent estimates of

the variances under different models. Both Sherman and

LeCessie (1997) and Harden (2011) show that the cluster

bootstrap outperforms robust standard errors obtained using

a sandwich estimator (GEE) for normally distributed

response variables. Moreover, Sherman and LeCessie

(1997) show the potential of the bootstrap for discovering

influential cases. In their simulation study, Cheng et al.

(2013) propose the use of the cluster bootstrap as an

inferential procedure when using GEE for hierarchical

data. They show, theoretically and empirically, that the

cluster bootstrap yields a consistent approximation of the

distribution of the regression estimate, and a consistent

approximation of the confidence intervals. One of the

working correlation forms in their Monte Carlo experiment

is the independence structure, which, as mentioned earlier,

gives parameter estimates that are identical to the ones from

GLM, and when integrated in a cluster bootstrap framework,

are identical to the estimates from GLMCB. In the cases

of count and binary response variables, they show that the

cluster bootstrap outperforms robust GEE methods with

respect to coverage probabilities. For Gaussian response

variables, the results are comparable. Both Cameron et al.

(2008) and McNeish (2017) point out that for smaller

sample sizes, GLMCB may be inappropriate because the

sampling variability is not captured very well (i.e., it tends

to remain underestimated) by the resampling procedure.

Feng et al. (1996), however, show that when the number

of clusters is small (ten or less), the cluster bootstrap is

preferred over linear mixed models and GEE when there

are concerns regarding residual covariance structure and

distribution assumptions.

Despite the support for GLMCB being a strong alterna-

tive to more common methods like GLMM and GEE, there

is still hardly any software readily available for researchers

to apply this method. In the present paper, we introduce

ClusterBootstrap (Deen & De Rooij, 2018), which is a

package for the free software environment R (R Core Team,

2016). After discussing the algorithm involved, we will

demonstrate the possibilities of the package using an empir-

ical example, applying GLMCB in the presence of a Gaus-

sian and a dichotomous dependent variable. Subsequently,

GLMCB will be compared to linear mixed models in a

Monte Carlo experiment, with prominence given to the dan-

ger of incorrectly specifying the random effects structure.

Algorithm

Balanced bootstrap

The balanced bootstrap can be used to ensure that every

individual appears exactly B times in the bootstrap samples,

in contrast to randomly drawing bootstrap samples from the

parent sample. Davison and Hinkley (1997) show that the

balanced bootstrap results in an efficiency gain.

For unbalanced longitudinal data, where some subjects

have more measurements than others, the balanced boot-

strap ensures that the average size of the bootstrap samples

equals the (subject) sample size N . In the balanced boot-

strap, rather than simply drawing at random, a matrix is

made with B copies of the numbers 1 to N . This matrix is

vectorized, randomly shuffled, and turned back into a matrix

of size N × B (Gleason, 1988). Each of the columns of this

latter matrix gives the indices of a single bootstrap sample.

Confidence intervals

The parameters of interest in the current context are the

regression weights, the β’s. Various types of stability

measures can be obtained for these parameters from the

bootstrap. We will discuss the parametric, the percentile,

and the bias-corrected and accelerated confidence intervals.
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Parametric interval The bootstrap normal-theory interval

assumes that the statistic β is normally distributed, and uses

the bootstrap samples to estimate the sampling variance.

Let β̄∗ denote the average of the bootstrapped statistics β∗,

that is, β̄∗ =
∑B

b=1 β∗
b/B, where β∗

b is the estimate of

β in the b-th bootstrap sample S∗
b . The sampling variance

of β is
∑B

b=1(β
∗
b − β̄∗)2/(B − 1). The standard deviation

(
√

Var(β∗)) is an estimate of the standard error of β, SE(β).

A 95% confidence interval based on normal theory is

β̂ ± 1.96ŜE(β∗),

where β̂ is the estimate from the original sample.

Percentile interval This approach uses the empirical distri-

bution of β∗
b to form a confidence interval for β. Therefore,

first, rank order the estimates from the bootstrap samples

β∗
(1)

, β∗
(2)

, . . . , β∗
(B)

, so β∗
(1)

is the smallest regression weight

obtained and β∗
(B)

the largest. The 100(1 − α)% percentile

interval is then specified as [β∗
B× α

2
, β∗

B×(1− α
2 )

]. With B =
5000 bootstraps, a 95% percentile confidence interval is

given by [β∗
(125), β

∗
(4875)].

Bias-corrected and accelerated interval The coverage of the

percentile approach can be improved by implementing the

bias-corrected and accelerated (BCa) interval. The BCa

method uses a bias correction factor (ẑ0) and an acceleration

factor (â) to correct for asymmetry among the bootstrap

estimates and the normalized rate of change of the standard

error of β̂ with respect to the true parameter value β,

respectively (Efron & Tibshirani, 1993; Yu & de Rooij,

2013). For a 100(1-α)% BCa interval of β̂, the BCa method

defines the endpoints as

β̂∗
lower = B × �

[
ẑ0 + ẑ0 + zα/2

1 − â(ẑ0 + zα/2)

]

β̂∗
upper = B × �

[
ẑ0 + ẑ0 + z1−α/2

1 − â(ẑ0 + z1−α/2)

]
,

with �(·) being the standard normal cumulative distribution

function. The bias-correction factor ẑ0 obtained using the

proportion of bootstrap estimates less than the original

estimate is defined as

ẑ0 = �−1

[
#B
b=1(β̂

∗ < β̂)

B

]
,

and the acceleration factor â as

â =

n∑
i=1

(β̂(·) − β̂(−i))
3

6

[
n∑

i=1

(β̂(·) − β̂(−i))2

] 3
2

,

where β̂(−i) is the estimate for β̂ with all measurements for

subject i removed, and

β̂(·) = 1

n

n∑

i=1

β̂(−i).

This resembles the so-called jackknife (Efron, 1982; Efron

& Tibshirani, 1993), albeit in a ”clustered” way (i.e.,

removing all observations within subject i instead of

removing single observations).

Motivating example

As an example, we will use data from a study by Tomarken

et al. (1997), which are used by Singer and Willett (2003,

pp. 181-188) in their textbook on longitudinal data analysis.

The aim of this study was to evaluate the effectiveness of

additional antidepressant medication for outpatients with

a major depressive disorder. The data consist of repeated

measurements in 73 participants during the first week of the

study, in which they received either a treatment or a placebo

drug and were asked to fill in a mood diary three times a day.

In the current data, positive affect is the dependent variable,

and treatment condition, time (in days), and their interaction

are the independent variables. Participants were regarded as

compliant when at least 16 of the 21 measurements were

completed, which was not the case for two participants who

filled in two and 12 diary entries.

R package: ClusterBootstrap

Preparation

The latest stable version of ClusterBootstrap can be

installed from the CRAN repository. The package can be

loaded using

> library("ClusterBootstrap")

Input and exploration

Data needs to be arranged in a long format: every

observation is represented in a single row. A unique

identifier distinguishes the clusters (e.g., a subject that has

multiple measurement occasions) from one another. This

format is also appropriate for GLMM and GEE. The current

version of ClusterBootstrap uses the glm function that

is part of the base install of R. This makes available the

binomial, Gaussian, gamma, inverse Gaussian, Poisson,

quasibinomial and quasi-Poisson distributions, as well as

the quasi option for a user-defined variance function. The

distributions that have been tested intensely thus far are the
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Gaussian and the binomial. Our example data is included in

the package and can be loaded using

> data(medication)

To get an idea of what the data look like, we can look at the

first five measurement occasions of participants 1 and 10:

> medication[c(1:5,21:25),]

id treat time pos

1 1 1 0.0000 106.7

2 1 1 0.3333 100.0

3 1 1 0.6667 100.0

4 1 1 1.0000 100.0

5 1 1 1.3333 100.0

21 10 0 0.0000 243.3

22 10 0 0.3333 226.7

23 10 0 0.6667 236.7

24 10 0 1.0000 183.3

25 10 0 1.3333 166.7

showing the cluster identifier (id), a between-subjects vari-

able (treat), a variable varying within subjects (time), and

a variablepos, which is the dependent variable in our analysis.

Analysis

The main analysis can be carried out using the

clusbootglm function in the following way:

> set.seed(1)

> model.1 <- clusbootglm(pos ∼ treat*time,

data = medication,

clusterid = id)

Other arguments that can be specified are B for the number

of bootstrap samples, family for the error distribution,

confint.level for the level of the confidence interval,

and n.cores for the number of CPU cores to be used in

parallel to speed up the computations.

Parallel computing

For parallel computing, ClusterBootstrap depends on

the parallel package, using the random number generator

of L’Ecuyer (1999) without a predefined seed as a subse-

quent to the seed that was initially set by the user. This

gives certainty to the reproducibility of the findings when

the user sets the seed prior to calling the clusbootglm

function. If one wishes to use multiple CPU cores, it is

advised (especially for Windows and Sparc Solaris oper-

ating systems) to leave at least one processor unused.

The number of available processors can be requested by

parallel::detectCores(). By not making use of fork-

ing, which is not available for Windows, the implementation

of parallel processing is identical for all operating systems,

as is the generated output given a certain seed.

Investigating the output

The function summary can be used to get an overview of the

parameter estimates and their dispersion characteristics.

> options(digits=3)
> summary(model.1)

Call:
clusbootglm(model = pos∼treat * time,

data = medication, clusterid = id)

Estimate Std.error CI 2.5% CI 97.5%

(Intercept) 167.25 9.09 150.48 186.52

treat -6.33 12.27 -31.50 16.73

time -2.05 1.46 -4.60 1.29

treat:time 5.68 2.21 1.52 10.26

---

95% confidence interval using bias corrected

and accelerated cluster bootstrap intervals

The summary function returns parameter estimates, the

bootstrap standard deviation, and, by default, the confidence

interval at the level that was specified in the analysis. The

standard interval method is BCa, though this can be altered

using the interval.type argument in the summary

function.

The confint function lets the user change the level

of the confidence interval post hoc (i.e., the bootstrap

procedure need not to be performed again). For example, to

get a 90% parametric confidence interval level of the time

and the treat*time parameters, one can use

> confint(model.1, level=.90,

parm=c("treat","treat:time"),

interval.type="parametric")

5% 95%

treat -26.59 13.77

treat:time 2.03 9.32

To extract the parameter estimates from the model, the

function coef can be used, with the option to choose either

the bootstrap coefficient means (which is the default) or the

coefficients from the GLM that was fitted on the original

data:

> coef(model.1, estimate.type="GLM")

GLM

(Intercept) 167.26

treat -6.41

time -2.04

treat:time 5.68

Behav Res (2020) 52:572–590 577



Based on the regression parameters and their confidence

intervals, our conclusion would be that although there are

no overall differences between the treatment conditions

regarding their positive mood and there is no main effect

for the time variable, there is a difference between the

two treatment groups regarding their effects over time.

Assuming the nonsignificant main effects are zero and

assuming the treatment group is coded 1 and the placebo

group is coded 0, the significant estimate of 5.68 exclusively

for the treatment group would lead one to conclude that the

treatment group gains positive mood over time, where the

placebo group does not.

The bootstrapped covariance matrix of the parameter

estimates can be obtained using the estimates from the

individual bootstrap samples:

> cov(model.1$coefficients)

(Intercept) treat time treat: time

(Intercept) 82.69 -82.98 -7.88 7.81

treat -82.98 150.51 8.06 -12.27

time -7.88 8.06 2.15 -2.13

treat:time 7.81 -12.27 -2.13 4.90

The covariance matrix can be interpreted easily in the

light of the bootstrap procedure. For example: within the

5000 bootstrap samples, there seems to be a positive relation

between the estimated values of treatment and time (r ≈
−7.88/

√
150.51 × 2.15 ≈ .44) and a negative association

between the estimated coefficients of treatment and the

interaction term (r ≈ −.45).

Checking bootstrap samples with issues

An issue that might evolve in any bootstrap procedure

is that the statistics of interest cannot be computed in

some of the bootstrap samples. In the context of GLM,

this might occur when there is complete or quasi-complete

separation. For example, complete separation occurs in

logistic regression when a hyperplane can pass through the

explanatory variable space in such a way that all cases with

yi = 0 are on one side of the hyperplane and all cases

with yi = 1 are on the other side (Agresti, 2013, p. 234).

Quasi-complete separation refers to a weaker form of this

situation (i.e., there is an almost perfect discrimination of

the outcome variable by the explanatory variable space).

Another potential issue is when there is no variation in

the outcome variable. In logistic regression, for example,

the chance of the absence of variation in the outcome

variable in any of the bootstrap samples increases when the

count of either one of the outcome categories decreases. To

simulate such a situation, we can split the pos variable from

the medication data at the 99th percentile, and use the

dichotomous resultant as an outcome in a logistic regression

with the cluster bootstrap:

> medication$pos dich <- with(medication,

ifelse(pos>quantile(pos,.99),1,0))

> set.seed(1)

> model.2 <- clusbootglm(pos dich ∼ treat*time,

data = medication,

clusterid = id,

family = binomial)

Now, when the summary function is invoked, there is an

extra line, indicating a problem in 30 bootstrap samples:

> summary(model.2)

Call:

clusbootglm(model = pos dich ∼ treat * time,

data = medication, clusterid = id,

family = binomial)

Estimate Std.error CI 2.5% CI 97.5%

(Intercept) -5.357 3.851 -21.57 -2.812

treat -2.588 7.161 -20.23 4.791

time -0.291 0.648 -2.16 0.733

treat:time 0.348 0.993 -1.08 2.983

---

95% confidence interval using bias corrected

and accelerated cluster bootstrap intervals

There were 30 bootstrap samples which returned

at least one NA

We can investigate which bootstrap samples are having issues:

> model.2$samples.with.NA.coef

[1] 13 431 517 622 704 1009

[7] 1334 2244 2249 2277 2302 2328

[13] 2388 2406 2519 2579 2662 2935

[19] 3180 3675 3927 4023 4143 4458

[25] 4484 4562 4593 4656 4777 4887

If we wish to further investigate any of these bootstrap

samples (e.g., the first one, being bootstrap sample 13), we

can obtain the corresponding dataset:

> clusbootsample(model.2,13)

id treat time pos pos dich

100 28 1 0.000 107 0

101 28 1 0.333 120 0

102 28 1 0.667 127 0

103 28 1 1.333 100 0

104 28 1 1.667 147 0

105 28 1 2.000 127 0
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...<<1254 rows omitted>>...

609 141 1 5.00 177 0

610 141 1 5.33 280 0

611 141 1 5.67 167 0

612 141 1 6.00 230 0

613 141 1 6.33 187 0

614 141 1 6.67 280 0

Summing the fifth column of this data frame tells us that

all the values on the dichotomous outcome are zero, indi-

cating no variation in the outcome variable. In any case, the

resulting data frame could subsequently be used in a regular

application of the glm() function to obtain relevant infor-

mation about the issue at hand or, for example, to obtain the

parameter estimates:

> glm(pos dich ∼ treat*time,

data = clusbootsample(model.2,13),

family = binomial)

Call: glm(formula = pos dich ∼ treat*time,

family = binomial,

data = clusbootsample(model.2,13))

Coefficients:

(Intercept) treat time treat:time

-2.66e+01 2.52e-13 -1.24e-27 -5.59e-14

Degrees of Freedom: 1265 Total (i.e. Null);

1262 Residual

Null Deviance: 0

Residual Deviance: 7.34e-09 AIC: 8

Warning message:

glm.fit: algorithm did not converge

For each of the coefficients, we can also obtain the

amount of NAs in our bootstrap samples:

> model.2$failed.bootstrap.samples

(Intercept) treat time treat:time

30 30 30 30

In this example, the number of NAs is equal for all coef-

ficients, which might indicate 30 bootstrap samples have

some overall convergence problems, e.g., no variance in the

outcome variable. However, when the analysis involves a

categorical independent variable, and there is a small cell

count in one of the categories, the occurrence of NAs might

also be indicative of one of the categories not appearing in

some of the bootstrap samples, leaving it out of the samples’

GLMs. The failed.bootstrap.samples element would

then show the presence of NAs for that particular category.

To our knowledge, the possibility to easily investigate

problematic bootstrap samples is not implemented in other

software with bootstrapping procedures. This functionality

makes the ClusterBootstrap package useful when

applying the bootstrap to GLMs in general, even when there

is no clustering in the data. For these applications, one could

set clusterid to a unique identifier for each observation

(i.e., each row in the data).

Simulation study: comparison tomixed
models

The guidelines for presenting the design of a simulation

study as recommended by Skrondal (2000) is used to

present the current Monte Carlo experiment.

Statement of research problem

This experiment investigates the impact of omitting a random

effect and adding a redundant random effect to LMM, and

whether the use of GLMCB leads to more proper statistical

inference. Usually, it is unknown to what extent the random

effects structure has to be specified, and it is difficult to

assess whether this is done properly. With GLMCB, there

is no need for specification of random effects, making sta-

tistical inference with respect to the individual explanatory

variables insusceptible to errors in this specification. The

effects of sample size and ICC of the random slope will be

part of the investigation. It will also be investigated whether

there is a difference between balanced and unbalanced data

at the level of the repeated measurements.

Experimental plan and simulation

Data are simulated according to a LMM presented in

Singer and Willett (2003, p. 184) that was fitted on the

medication data described earlier. The model looks like

Yt i = β0 + β1Gi + β2Tt i + β3GiTt i + U0i + U1iTt i + ǫt i,

withYt i being the outcome variable for person i at timepoint t ,

G being a group indicator (0 or 1), T being a time indicator,

the random effects U0i and U1i being drawn from a multi-

variate normal distribution (specified below) and ǫt i ∼
N (0, 1229.93), as specified by Singer and Willett (2003).

Values for β1 and β2 are constrained to zero, whereas β0

and β3 are set to the values 167.46 and 5.54, respectively.

Between datasets, three factors were varied (details below):

1. Sample size: 16, 32, or 64 subjects;

2. ICC: .05, .30, or .50. The mixed model fitted on the

original data in Singer and Willett (2003) reported an

ICC of .05;
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3. Balanced vs. unbalanced data regarding the number of

measurement occasions.

To keep the correlation between the simulated random

intercept and slope (r ≈ −.33) intact, random effects are

drawn from a multivariate normal distributions with mean

vectors 0 and covariance matrices

� =
[

2111.33

−121.62 63.74

]
,

[
2111.33

−349.74 527.11

]
,

and

[
2111.33

−534.24 1229.93

]
,

for ICC=.05, .30, and .50, respectively. The distinction bet-

ween balanced and unbalanced data is made as follows. For

balanced data, each person is set to have four repeated mea-

surements (t = {0, 1, 2, 3}). In the unbalanced condition,

the number of repeated measurements and the value of

the time indicator at follow-up measurements are varied

between subjects. Besides a measurement at timepoint t =
0, subjects are simulated to have one, two or three follow-up

measurements, with integer values of t sampled from a uni-

form distribution in the range [1, 3]. In the following para-

graphs, the distinction between balanced and unbalanced

data will be referred to as the “balanced” condition.

Estimation

For the LMMs, restricted maximum likelihood is used to

obtain parameter estimates, using the BFGS algorithm within

the nlme package (Pinheiro et al., 2014) in R (R Core Team,

2016). The fixed part of the fitted models all include the

group and time variable, as well as their interaction. Within

each dataset, the LMMs were operationalized in three

forms, differing in the specification of the random effects:

1. The correctly specified LMM contains both the random

intercept and random slope;

2. The underspecified LMM only contains the random

intercept;

3. The overspecified LMM contains both simulated

random effects, as well as an additional fixed and

random effect for quadratic time.

The GLMCB models all contain the group and time

variables, as well as their interaction. Each GLMCB is set

to create 5000 balanced bootstrap samples, applying a 95%

BCa confidence interval for the assessment of statistical sig-

nificance as well as coverage of the simulated fixed effects.

Replication

For each of the 18 N×ICC×balanced dataset configura-

tions, the steps above are simulated 200 times. Within each

of the simulations, GLMCB is performed, as well as the

correctly specified, the underspecified and the overspecified

LMM.

Analysis of output

For all four models in every replication, the estimated regres-

sion coefficients (for GLMCB) or fixed effects (for LMM)

β̂2 and β̂3 are saved, as well as their statistical significance.

We chose for the focus on β̂2 and β̂3 because it provides

insight in both type I error rates (for β̂2) and power (for

β̂3). For GLMCB, it is assessed whether 0 falls within the

95%CI for each of the regression coefficients. For LMM,

fixed effects are considered statistically significant when

p < 0.05. Coverage of the true (i.e., simulated) coefficient

in the confidence intervals is also assessed for these βs.

For β2 and β3, bias is calculated for each technique

within each of the 200 simulations of each N×ICC

configuration. Type I error rate (β2 only), observed power

(β3 only) and coverage rate (β2 and β3) are calculated within

each technique as percentages of the 200 simulations of

each of the configurations.

Bias Within each N×ICC×balanced combination, bias

values are calculated for each of the used techniques as

Bias = 1

200

200∑

r=1

(β̂r − β).

Type I error rate For every technique under investigation,

the percentage of type I errors for β2 is calculated. For

the GLMCB procedure, it is the percentage of the 200

simulations within which 0 falls outside the 95% CI. For

LMM, the percentage of type I errors for β2 is defined as

the percentage of 200 simulations in which p < 0.05.

Observed power For GLMCB, the observed power of β3 is

defined as the percentage of the simulations within which

0 /∈ 95%CI and the sign of the estimated effect is the same

as the sign of the true effect (i.e., there is a statistically

significant, positive estimated value). For LMM, it is the

percentage of simulations in which p < 0.05, also with an

equal sign of the estimated and the true effect.

Coverage rate The coverage rate of GLMCB is the rate at

which the true value β lies within the estimated 95%CI of

β̂. For LMM, 95%CIs are based upon the given t value with

the appropriate degrees of freedom for each parameter, at

permilles 25 and 975.

The four outcome measures are analyzed interpretatively,

with the aid of graphs. To help interpretation, 95%CIs are

calculated. For the quantitative bias statistics, nonparametric

confidence intervals are constructed. For the remaining

proportional outcomes, primarily, Agresti–Coull intervals
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are calculated (Agresti & Coull, 1998). However, especially

in the overspecified LMMs, missing values might occur

due to optimization problems. When, due to these missing

values, the number of remaining indicators is 40 or less,

Wilson intervals (Wilson, 1927) will be calculated, as

recommended by Brown et al. (2001).

Results

The overall mean bias (averaged over all N×ICC combina-

tions) and CIs for GLMCB and the three LMMs are shown

in Fig. 1, upper panel. It can be seen that there is no real

difference in performance regarding bias, for both the bal-

anced and the unbalanced case.

Figure 1 (middle panel) shows the coverage rates and

corresponding CIs for both βs. As could be expected, the

correctly specified LMM has .95 within its CI. It can also

be seen that the cluster bootstrap performs only slightly below

the 95% boundary. The overspecified LMM also performs

well, and the underspecified LMM has much lower cov-

erage. The underspecified LMM is inferior to the other

techniques, and performs even worse with unbalanced data.

In the lower panel, Fig. 1 shows that underspecification

of LMM leads to higher power, but also to higher type I

Fig. 1 Summary of simulation results, aggregated over N and ICC

conditions. The left-hand figures show the average bias and cover-
age values, as well as the type I error rate for β2. The right-hand

figures show bias, coverage, and power averages for β3. For each of
the four techniques within each subfigure, results are shown for the
balanced (left) and the unbalanced (right) case. Confidence intervals

(95%) are indicated with error bars. Conventional threshold values for

bias (being 0), coverage (.95) and type I errors (.05) are indicated by

dashed horizontal lines. Dotted horizontal lines depict .925 and .975
thresholds for coverage and .025 and .075 thresholds for type I error

rate, as suggested by Bradley (1978)
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error rates. Note that the higher power for the underspecified

LMM does not necessarily bode well for underspecification

of LMM. The higher type I error rates suggest that the

baseline rejection rate of the null hypothesis is higher, which

would lead to non-null effects to be detected more often by

chance as well. The elevation of the type I error rate and

power is stronger for the unbalanced case. Type I error rate

for GLMCB is also slightly above the nominal level whereas

the correctly specified and the overspecified LMM do well

on both measures. Overall, in this simulation, power for β3

is low, presumably due to the sample sizes in our simulation

being too small, given the effect size present in the data

being simulated. Note that this is the case for the cluster

bootstrap with GLM, as well as the correctly specified and

overspecified LMMs.

More detailed graphs, for the 9 N× ICC combinations

separately, can be found in Appendix A. In these graphs, it

can be seen that regarding coverage and type I error rates,

specifically CBGLM benefits slightly from larger samples.

For N ≥ 32 the coverages and type I error rates are

satisfactory for CBGLM. The benefit of larger samples for

power is, expectedly, present for all techniques.

Discussion

We introduced a new R package ClusterBootstrap for

the analysis of the hierarchical data using GLMs using the

cluster bootstrap. In contrast with the regular bootstrap,

CBGLM resamples clusters of observations instead of sin-

gle observations, for example all the repeated measurements

within an individual. The package provides functionality for

the main CBGLM analysis, incorporates different types of

confidence intervals (parametric, percentile and BCa), has

ample possibilities to explore the outcome, choose post hoc

alternatives for parameters that were set in the initial anal-

ysis (level and type of confidence interval), and provides

the user with methods of exploring bootstrap samples that

had difficulties in fitting the proposed GLM. The current

paper aims on the use of the ClusterBootstrap package

for repeated measures, though it should be noted that the

cluster bootstrap with GLM can be applied to other (cross-

sectional) data as well, when there is a presence of clustering

in the data (e.g., children within classes or patients within

clinics). It should however be kept in mind that the resam-

pling process should reflect the original sampling process.

In our application for repeated measurements, subjects are

gathered and each subject has a certain amount of repeated

measurements. Analogous, the resampling procedure takes

the complete set of repeated measurements of a specific

subject into the bootstrap sample. If the original sampling

process is different, this way of resampling may not be

appropriate. For example, if one samples classes within

schools, and subsequently samples some children (i.e., not

all children) from each class, the bootstrap procedure should

be adapted to not automatically include all gathered chil-

dren within a class (i.e., observations within clusters). In this

case, one could implement a two-step bootstrap, resampling

children within resampled classes.

The main advantage of using CBGLM instead of other

techniques that deal with hierarchical data, is the relatively

low number of assumptions that have to be met for the

outcome of the analysis to be valid. We compared CBGLM

to three variations of LMM in a Monte Carlo experiment.

In the first LMM variant, the random slope for the within-

subject variable time was omitted, the second variant

was correctly specified with a random intercept and the

random slope, and the third variant had an extra fixed

and random effect added for a quadratic time effect.

It was shown that for coverage and type I error rate,

the correctly specified LMM has a slight advantage over

CBGLM, although for sample sizes of 32 or higher, the

performance of CBGLM is satisfactory. The deteriorating

effect of small samples on CBGLM’s performance is in line

with earlier findings by Cameron et al. (2008) and McNeish

(2017). The earlier finding of Dorman (2008) regarding

the possible moderating effect of ICC strength on type I

error rate with the omission of the regarding random effect,

could not be replicated, and had no implications of the

comparison of CBGLM to the three variations of LMM.

Overall, the simulation study endorses the hypothesis that

CBGLM outperforms underspecified LMMs.

There are two limitations to this study. First, in the

Monte Carlo experiment, we used the specifications of a

LMM to generate the data. This automatically makes the

correctly specified variation of LMM superior to all other

techniques applied. Though this can be seen as a form

of self-handicapping in disadvantage of CBGLM, our aim

was not to show that CBGLM could outperform LMM,

but that knowing that the correct specification of LMM

is problematic and that underspecification could very well

invalidate the outcome of the analysis, CBGLM might be

a relatively safe alternative. For larger sample sizes, the

simulation study shows evidence for this. As an alternative

to the correctly specified LMM being used for data gener-

ation, one could use additional variables in the generating

process, which would not be included in the application

of the techniques. This, however, would lead to the ques-

tion how such a ”true” model could be formed. A second

limitation is the application of the standard cluster boot-

strap in the Monte Carlo experiment, although there are

suggestions in the literature that for smaller samples, the

so-called wild cluster bootstrap-t performs better (Cameron

et al., 2008; McNeish, 2017). The wild cluster bootstrap-t

is, however, not yet available in the ClusterBootstrap

package. As the development of this package is an ongoing
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process, the addition of this option is planned for a future

release. Other plans for future releases of the package are

the implementation of the predict() command to support

model predictions and an expansion to the penalized-

likelihood framework. Implementing penalization in the

cluster bootstrap would be particularly interesting, as it

may offer a convenient means of dealing with separation

in classification models for which the ClusterBootstrap

package already offers investigation opportunities. To which

extent the cluster bootstrap performs well when bias is

introduced to the parameter estimates (i.e., bias towards

zero) is an opportunity for further research. Our simulation

study suggests that the statistical power of CBGLM is

comparable to the correctly specified LMM, which could

mean that sample size calculations for LMM are appro-

priate for CBGLM as well. Further research is needed to

investigate the required sample sizes under different circum-

stances (e.g., different effect sizes, power levels, numbers of

repeated measurements confidence interval widths).
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Appendix A: Detailed graphs

Fig. 2 Bias for β2, for all N×ICC combinations. For each of the four techniques within each subfigure, results are shown for the balanced (left)

and the unbalanced (right) case. Confidence intervals (95%) are indicated with error bars
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Fig. 3 Bias for β3, for all N×xICC combinations. For each of the four techniques within each subfigure, results are shown for the balanced (left)

and the unbalanced (right) case. Confidence intervals (95%) are indicated with error bars
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Fig. 4 Coverage for β2, for all N×ICC combinations. For each of

the four techniques within each subfigure, results are shown for the

balanced (left) and the unbalanced (right) case. Confidence intervals

(95%) are indicated with error bars. The conventional threshold of

95% is indicated by dashed horizontal lines and the 92.5% and 97.5%

levels are depicted by horizontal dotted lines
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Fig. 5 Coverage for β3, for all N×ICC combinations. For each of

the four techniques within each subfigure, results are shown for the

balanced (left) and the unbalanced (right) case. Confidence intervals

(95%) are indicated with error bars. The conventional threshold of

95% is indicated by dashed horizontal lines and the 92.5% and 97.5%

levels are depicted by horizontal dotted lines
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Fig. 6 Type 1 error rate for β2, or all N×ICC combinations. For each

of the four techniques within each subfigure, results are shown for the

balanced (left) and the unbalanced (right) case. Confidence intervals

(95%) are indicated with error bars. The conventional threshold of 5%

is indicated by dashed horizontal lines and the 2.5% and 7.5% levels

are depicted by horizontal dotted lines
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Fig. 7 Power for β3, or all N×ICC combinations. For each of the four techniques within each subfigure, results are shown for the balanced (left)

and the unbalanced (right) case. Confidence intervals (95%) are indicated with error bars. The conventional threshold of 80% is not depicted
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