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A B S T R A C T

Background

In conventional epidemiology confounding of the exposure of interest with lifestyle or
socioeconomic factors, and reverse causation whereby disease status influences exposure
rather than vice versa, may invalidate causal interpretations of observed associations.
Conversely, genetic variants should not be related to the confounding factors that distort
associations in conventional observational epidemiological studies. Furthermore, disease onset
will not influence genotype. Therefore, it has been suggested that genetic variants that are
known to be associated with a modifiable (nongenetic) risk factor can be used to help
determine the causal effect of this modifiable risk factor on disease outcomes. This approach,
mendelian randomization, is increasingly being applied within epidemiological studies.
However, there is debate about the underlying premise that associations between genotypes
and disease outcomes are not confounded by other risk factors. We examined the extent to
which genetic variants, on the one hand, and nongenetic environmental exposures or
phenotypic characteristics on the other, tend to be associated with each other, to assess the
degree of confounding that would exist in conventional epidemiological studies compared
with mendelian randomization studies.

Methods and Findings

We estimated pairwise correlations between nongenetic baseline variables and genetic
variables in a cross-sectional study comparing the number of correlations that were statistically
significant at the 5%, 1%, and 0.01% level (a ¼ 0.05, 0.01, and 0.0001, respectively) with the
number expected by chance if all variables were in fact uncorrelated, using a two-sided
binomial exact test. We demonstrate that behavioural, socioeconomic, and physiological
factors are strongly interrelated, with 45% of all possible pairwise associations between 96
nongenetic characteristics (n ¼ 4,560 correlations) being significant at the p , 0.01 level (the
ratio of observed to expected significant associations was 45; p-value for difference between
observed and expected , 0.000001). Similar findings were observed for other levels of
significance. In contrast, genetic variants showed no greater association with each other, or
with the 96 behavioural, socioeconomic, and physiological factors, than would be expected by
chance.

Conclusions

These data illustrate why observational studies have produced misleading claims regarding
potentially causal factors for disease. The findings demonstrate the potential power of a
methodology that utilizes genetic variants as indicators of exposure level when studying
environmentally modifiable risk factors.

The Editors’ Summary of this article follows the references.
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Introduction

Observational epidemiology has had notable successes, but
also high-profile failures, in that it has identified many
modifiable exposures apparently increasing or decreasing
disease risk that have been revealed by randomized con-
trolled trials to be noncausal [1]. The explanation in many of
these cases is likely to be that confounding—by lifestyle and
socioeconomic factors, or by baseline health status and
treatment effects—is responsible for observed associations
[2,3]. Many potentially health-modifying factors (such as use
of antioxidant vitamin supplements) will be strongly related
to such confounding factors [4]. Other factors that can lead to
observational associations being poor predictors of causal
effects include reverse causation (in which early stages of the
disease process influence the exposure, rather than vice
versa), imprecision in effect estimates (due to inadequate
sample size), information and selection biases, and distortion
of the available scientific literature that may be introduced by
the processes of publication of research [5–9].

One approach to such problems in observational epidemi-
ology is mendelian randomization [10]. The basic principle
utilised in such studies is that if a genetic variant influences an
environmentally modifiable risk factor that itself alters disease
risk, then the genetic variant should be associated with disease
risk. Further, the causal effect of the environmentally
modifiable risk factor on disease risk can be calculated (under
certain assumptions [11]) from the magnitude of the genetic
variant’s associations with disease risk and with the environ-
mentally modifiable risk factor. The advantage here is that the
genetic variant should not be associated with the confounding
lifestyle, socioeconomic, or medical care factors that distort
the study of directly measured exposures and disease [10].
Furthermore, the genetic variant will not be influenced by the
early stages of the disease process, and the estimate of the
causal effect of interest will thus be immune to the reverse
causation that can distort conventionally studied associations
[5]. Observational studies of genetic variants may, therefore,
have similar properties to intention-to-treat analyses aimed at
determining the causal nature of a particular treatment in
randomized controlled trials.

Such mendelian randomization studies have been con-
ducted within the cardiovascular and cancer fields. This
approach has provided evidence that alcohol intake increases
the risk of esophageal cancer [12], and that fibrinogen and C-
reactive protein appear not to increase cardiovascular disease
risk or adversely influence components of the metabolic
syndrome, and are therefore not suitable targets for specific
pharmocotherapeutic modification [13–16]. The development
of the mendelian randomization concept and the associated
terminology has been discussed in detail elsewhere [17].

Despite theoretical reasons why genetic variants should be
largely unrelated to many exposures or phenotypic character-
istics, it has been suggested that genetic association studies in
general, and mendelian randomization approaches in partic-
ular [18], are susceptible to confounding. It is suggested that
confounding may occur because of the pleiotropic effect of
genes (i.e., one variant affecting several phenotypes), linkage
disequilibrium between the variant under study and variants
influencing other phenotypes, and population substructure
[10]. Pleiotropic effects would only confound associations of
genotype with disease outcome if any additional pleiotropic

effects of the gene were also associated with the disease
outcomes of interest. Similarly, if there is linkage disequili-
brium between the genotype being used as an instrument and
a polymorphism that is associated with the outcome, then
confounding of the gene–outcome association may occur, but
if the linkage disequilibrium is with a variant that is unrelated
to the outcome of interest, this will not confound the
association
Population substructure would result in confounding of the

genotype–outcome association if subgroups exist within a
population that have different genetic histories and different
disease risks (for genetic or other reasons) as this would
generate misleading associations between genetic variants
and phenotypes (so-called ‘‘population stratification’’). The
importance of population stratification has generated a
vigorous debate, but it appears that if basic precautions are
applied with respect to the ethnicity and population of origin
of study sample members, and appropriate analytical strat-
egies are applied, then bias should generally be small [19–24].
Thus, we suggest that conventional observational epidemi-

ology is particularly prone to confounding because non-
genetic characteristics are highly associated with each other,
perhaps even more so than is generally acknowledged. At the
same time, mendelian randomization studies can exploit the
general lack of associations between one genetic variant and
other genetic variants, and between genetic and nongenetic
variables, to provide an unconfounded estimate of the
association between factors that the genetic variant directly
influences and disease outcomes.[10] As discussed above,
there is concern that mendelian randomization studies may,
however, be confounded through pleiotropy, linkage disequi-
librium, or population stratification. In truth, within the
bounds of conventional epidemiological cohorts, no formal
exercise has examined the extent to which genetic variants on
the one hand, and nongenetic environmental exposures or
phenotypic characteristics on the other, tend to be associated
with each other—i.e., the degree of confounding that would
exist in conventional epidemiological studies compared with
mendelian randomization studies. We have therefore exam-
ined this issue empirically in the British Women’s Heart and
Health Study [25].

Methods

Data from the British Women’s Heart and Health Study
were used. Full details of the selection of participants and
measurements, including DNA extraction and genotyping,
have been previously reported [25]. Briefly, women aged 60–
79 y were randomly selected from general practitioner lists in
23 British towns. A total of 4,286 women participated, and
baseline data (self-completed questionnaire, research nurse
interview, physical examination, and primary care medical
record review) were collected between April 1999 and March
2001.
We estimated pairwise correlations between 96 nongenetic

baseline variables in the study that were continuous, binary,
or ordered categorical (see Text S1 for full list of these and
details of whether they were continuous or how they were
categorised). We compared the number of pairwise correla-
tions that were observed to be statistically significant at the
5%, 1%, and 0.01% level (a ¼ 0.05, 0.01, and 0.0001,
respectively) with the number expected by chance if all
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variables were in fact uncorrelated, using a two-sided
binomial exact test. We chose to compare observed to
expected significant associations at these values of statistical
significance because a ¼ 0.05 and a ¼ 0.01 are the most
commonly used values in observational epidemiological
studies to indicate departure from the null hypothesis,
whereas for genetic associations with complex traits. much
smaller p-values (of the order of 0.0001 or below) are
recommended to avoid false-positive claims. By using three
different values of statistical significance, we were able to
determine the extent to which our results were driven by the
level of significance chosen.

Three of the authors (GDS, DAL, and SE) decided a priori
whether they considered that any of the nongenetic variables
were measuring the same underlying characteristic or
phenotype (e.g., systolic and diastolic blood pressure) or
whether there were subgroups that were constituents of an
overall variable (e.g., lipid subfractions and total cholesterol).
Text S1 provides full details of these groups of phenotypes. In
a series of sensitivity analyses, we replaced the variables used
in the main analyses with other variables that we had
considered to be measuring the same phenotype (e.g.,
replacing systolic with diastolic blood pressure; see Table
S1) and replaced subgroups of variables with their overall
variable (e.g., lipid subfractions by total cholesterol; see Table
S2). In these sensitivity analyses, the proportion of observed
statistically significant correlations (at any of a¼ 5%, 1%, or
0.01%) were essentially the same as for the main results
presented here. For associations between nongenetic varia-
bles, we controlled for the effect of age (because many
variables will show age-related variation) by calculating age-
adjusted coefficients. For the results presented here, age was
treated as a continuous variable in standardised regression
models. We then repeated all analyses with age entered as
dummy variables (i.e., a four-category variable: 60–64, 65–69,
70–74, and 75–79 y), which does not assume that age is
linearly associated with the variables. The results from these
models did not differ from the models with age entered as a
continuous variable.

In order to explore the extent to which the use of genetic
variants as indicators of exposure levels is valid for measuring
the unconfounded associations of a nongenetic risk factor
with outcomes, we examined the correlations between each of
23 genetic variants and each of the 96 nongenetic character-
istics. In these analyses, we also compared observed with
expected statistically significant correlations at a ¼ 5%, 1%,
and 0.01% using a two-sided binomial exact test. Results
presented for these associations were not age adjusted since
genetic variants should not be associated with age (and in
formal tests were not; furthermore, age adjustment did not
alter any results). When multiple single nucleotide poly-
morphisms (SNPs) were deliberately genotyped to form
common haplotypes, based on existing literature about such
haplotypes, only one of these SNPs (selected at random) was
included in the analyses (See Table S3 for details). In a series
of sensitivity analyses, we replaced the SNP selected at
random with one of the other SNPs in the same haplotype
block. The results from these sensitivity analyses did not
differ substantively from those presented here.

Variables that were markedly positively skewed were log-
transformed and categorical variables were treated as scores
(see Table S1 and Text S1). All genetic variants were biallelic

polymorphisms and were treated as scores from zero to two,
with zero representing homozygotes for the dominant allele,
one, heterozygotes, and two, homozygotes for the minor allele
(see Table S3).

Results

Associations of Nongenetic Characteristics with Each
Other
The 96 nongenetic variables generated 4,560 pairwise

comparisons, of which, assuming no associations existed, five
in 100 (total 228) would be expected to be associated by
chance at the 5% significance level (a¼ 0.05). However, 2,447
(54%) of the correlations were significant at the a¼0.05 level,
giving an observed to expected (O:E) ratio of 11, p for
difference O:E , 0.000001 (Table 1). At the 1% significance
level, 45.6 of the correlations would be expected to be
associated by chance, but we found that 2,036 (45%) of the
pairwise associations were statistically significant at a ¼ 0.01,
giving an O:E ratio of 45, p for difference O:E , 0.000001
(Table 2). At the 0.01% significance level, 0.456 of the
correlations would be expected to be associated by chance,
but we found that 1,378 (30%) were significantly associated at
a¼0.0001, giving an O:E ratio of 3,022, p for difference O:E ,

0.000001.
Figure 1 shows the histogram of magnitudes of age-

adjusted partial correlation coefficients that were significant
at the p , 0.01 level. At both a¼0.05 and a¼0.01, the median
magnitude of the statistically significant age-adjusted partial
correlation coefficients was 0.08 (interquartile range, 0.06 to
0.13). At a¼ 0.0001, the median magnitude of the statistically
significant, age-adjusted partial correlation coefficients was
0.11 (interquartile range, 0.09 to 0.16).

Associations of Genetic Characteristics with each other
The 23 genetic characteristics gave 253 possible pairwise

correlations. At the p , 0.05 level 12.7 would be expected to
be associated by chance and 14 were observed to be
associated at this level (O:E ratio ¼ 1.1, p ¼ 0.66). At the p ,

0.01 level there were four observed associations compared to
2.53 expected, O:E ¼ 1.6, p ¼ 0.33.

Associations of Genetic Characteristics with Nongenetic
Characteristics
When we examined the association of each individual SNP

with all 96 nongenetic factors, the observed pairwise
correlations were similar to expected, with the exception of
four variants at the a¼ 0.05 level and two variants at a¼ 0.01
(Tables 1 and 2). APO_AV was associated with 11 nongenetic
characteristics at a ¼ 0.05 (triglyceride levels, high-density
lipoprotein cholesterol, fasting insulin, vitamin C, vitamin E,
bilirubin levels, waist:hip ratio, age of the participant’s
mother when she died, area level deprivation, age at leaving
full-time education, and outdoor ambient temperature in the
month and location of birth of the participant), giving an O:E
ratio of 2.3, p for difference O:E ¼ 0.009. The number of
significant associations of this variant with nongenetic
characteristics at a ¼ 0.01 was no greater than expected.
The hepatic-lipase genetic variant was associated with ten
nongenetic characteristics at a ¼ 0.05 (triglyceride levels,
high-density lipoprotein cholesterol, vitamin E, monocytes,
phosphate levels, clotting factor VII, claudication, frequency
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of consumption of cheese, number of medications, and
number of major diseases) giving an O:E of 2.1, p for
difference O:E ¼ 0.02. This variant was also associated with
four of these nongenetic characteristics at a ¼ 0.01
(triglycerides, vitamin E, clotting factor VII, and claudica-
tion), giving an O:E ratio at this level of significance of 2.5, p
for difference O:E ¼ 0.02.

The variant in the lipoprotein lipase gene was associated
with ten nongenetic characteristics at a ¼ 0.05 (triglyceride
levels, high-density lipoprotein cholesterol, fasting insulin,
eosinophils, bilirubin levels, frequency of consumption of
fish, age at leaving full-time education, claudication, number
of falls, and number of operations), giving an O:E ratio of 2.1,
p for difference O:E ¼ 0.02. This variant was also associated
with four of these characteristics at a ¼ 0.01 (triglycerides,
high-density lipoprotein cholesterol, eosinophils, and claudi-
cation); O:E ratio 2.5, p for difference O:E ¼ 0.02. Finally,
variants in TNFA were associated with 11 nongenetic
characteristics at a ¼ 0.05 (trunk length, haemoglobin, mean
cell volume, platelets, bilirubin, calcium, phosphate, fibrino-
gen, plasma viscosity, age of participant’s mother when she
died, and EuroQuol quality of life score), giving an O:E of 2.3,
p for difference O:E¼ 0.009, with the number of associations
of this variant with nongenetic characteristics at a ¼ 0.01
being no greater than expected.

At a ¼ 0.0001, each variant would be expected to be
significantly associated with none (n ¼ 0.0096) of the non-
genetic variants. However, variation in the lactase gene was
associated with mean outdoor temperature and rainfall in the

area and month of the participants birth; variation in CETP
was associated with high-density lipoprotein cholesterol; and
variants in LPL were associated with triglyceride levels. The
remaining 20 variants were not associated with any of the
nongenetic characteristics at p � 0.0001 (unpublished data).
Considering all 23 SNPs and 96 nongenetic factors (2,208

pairwise correlations), the number of expected significant
correlations by chance would be 110, 22.1, and 0.221 at a ¼
0.05, 0.01, and 0.0001, respectively. We observed values
similar to this at a ¼ 0.05 (n ¼ 120; p for difference between
observed and expected ¼ 0.35) and a ¼ 0.01 (n ¼ 27; p for
difference between observed and expected¼0.28), and higher
than expected at a ¼ 0.0001 (n ¼ 4; p for difference between
observed and expected ¼ 0.00008).

Discussion

Over 50% of the pairwise associations between baseline
nongenetic characteristics in our study were statistically
significant at the 0.05 level; an 11-fold increase from what
would be expected, assuming these characteristics were
independent. Similar findings were found for statistically
significant associations at the 0.01 level (45-fold increase from
expected) and the 0.0001 level (3,000-fold increase from
expected). This illustrates the considerable difficulty of
determining which associations are valid and potentially
causal from a background of highly correlated factors,
reflecting that behavioural, socioeconomic, and physiological
characteristics tend to cluster. This tendency will mean that

Table 1. Comparison of Observed to Expected Number of Statistically Significant (at p ¼ 0.05) Correlations

Type of

Associations Tested

Gene Variant Number Pairwise

Correlations

Expected Number

Significant (%)

Observed Number

Significant (%)

p for Null Hypothesis

Observed ¼ Expected

All 96 nongenetic variables

with each othera

4,560 228 (5) 2,447 (54) ,0.000001

All 23 SNPs with each other 253 12.7 (5) 14 (5.5) 0.66

Each of the following genesb

with all nongenetic variables

LAC1 (rs4988235) 96 4.8 (5) 7 (7.3) 0.34

CETP (rs708272) 96 4.8 (5) 7 (7.3) 0.34

APO_AV (rs3135506) 96 4.8 (5) 11 (11.5) 0.009

HL (rs1800588) 96 4.8 (5) 10 (10.4) 0.02

LPL (rs328) 96 4.8 (5) 10 (10.4) 0.02

TNF-a (rs1800629) 96 4.8 (5) 11 (11.5) 0.009

LTA (rs1041981) 96 4.8 (5) 3 (3.1) 0.64

LGAL (rs7291467) 96 4.8 (5) 4 (4.2) 1.00

ALOX5AP (rs1004) 96 4.8 (5) 2 (2.1) 0.24

GPX4 (rs1007) 96 4.8 (5) 8 (8.3) 0.15

IL-6 (rs1800795) 96 4.8 (5) 6 (6.2) 0.48

PTGS2 (rs20417) 96 4.8 (5) 4 (4.2) 1.00

ESR1 (rs2234693) 96 4.8 (5) 6 (6.2) 0.48

MTHFR (rs1801133) 96 4.8 (5) 1 (1.0) 0.10

MEF2A (rs3730059) 96 4.8 (5) 2 (2.1) 0.24

ADIPOQ (rs1501299) 96 4.8 (5) 5 (5.2) 0.81

PPPIR (rs854541) 96 4.8 (5) 4 (4.2) 1.00

GCK (rs1799884) 96 4.8 (5) 6 (6.2) 0.48

ACE (rs4343) 96 4.8 (5) 2 (2.1) 0.24

Elastin (rs2071307) 96 4.8 (5) 3 (3.1) 0.64

PON1 (rs662) 96 4.8 (5) 2 (2.1) 0.24

GHRLL (rs696217) 96 4.8 (5) 3 (3.1) 0.64

PTC (rs713598) 96 4.8 (5) 3 (3.1) 0.64

aAssociations between nongene characteristics were all age adjusted.
bGenes identified by commonly used name and reference SNP (rs) number.
doi:10.1371/journal.pmed.0040352.t001
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there will often be high levels of confounding when studying
any single factor in relation to an outcome. Given the
complexity of such confounding, even after formal statistical
adjustment, a lack of data for some confounders, and
measurement error in assessed confounders will leave
considerable scope for residual confounding [4]. When
epidemiological studies present adjusted associations as a
reflection of the magnitude of a causal association, they are
assuming that all possible confounding factors have been
accurately measured and that their relationships with the
outcome have been appropriately modelled. We think this is
unlikely to be the case in most observational epidemiological
studies [26].

Predictably, such confounded relationships will be partic-
ularly marked for highly socially and culturally patterned risk
factors, such as dietary intake. This high degree of confound-
ing might underlie the poor concordance of observational
epidemiological studies that identified dietary factors (such as
beta carotene, vitamin E, and vitamin C intake) as protective
against cardiovascular disease and cancer, with the findings of
randomized controlled trials of these dietary factors [1,27].
Indeed, with 45% of the pairwise associations of nongenetic
characteristics being ‘‘statistically significant’’ at the p , 0.01
level in our study, and our study being unexceptional with
regard to the levels of confounding that will be found in
observational investigations, it is clear that the large majority
of associations that exist in observational databases will not
reach publication. We suggest that those that do achieve
publication will reflect apparent biological plausibility (a

weak causal criterion [28]) and the interests of investigators.
Examples exist of investigators reporting provisional analyses
in abstracts—such as antioxidant vitamin intake being
apparently protective against future cardiovascular events
in women with clinical evidence of cardiovascular disease
[29]—but not going on to full publication of these findings,
perhaps because randomized controlled trials appeared soon
after the presentation of the abstracts [30] that rendered their
findings as being unlikely to reflect causal relationships.
Conversely, it is likely that the large majority of null findings
will not achieve publication, unless they contradict high-
profile prior findings, as has been demonstrated in molecular
genetic research [31].
The magnitudes of most of the significant correlations

between nongenetic characteristics were small (see Figure 1),
with a median value at p � 0.01 and p � 0.05 of 0.08, and it
might be considered that such weak associations are unlikely
to be important sources of confounding. However, so many
associated nongenetic variables, even with weak correlations,
can present a very important potential for residual con-
founding. For example, we have previously demonstrated how
15 socioeconomic and behavioural risk factors, each with
weak but statistically independent (at p � 0.05) associations
with both vitamin C levels and coronary heart disease (CHD),
could together account for an apparent strong protective
effect (odds ratio¼ 0.60 comparing top to bottom quarter of
vitamin C distribution) of vitamin C on CHD [32].
The independence of genetic and environmental factors is

of importance in other domains of genetic epidemiology, in

Table 2. Comparison of Observed to Expected Number of Statistically Significant (at p ¼ 0.01) Correlations

Type of Associations Tested Gene Variant Number Pairwise

Correlations

Expected Number

Significant (%)

Observed Number

Significant (%)

p for Null Hypothesis

Observed ¼ Expected

All 96 nongenetic variables

with each othera

4,560 45.6 (1) 2,036 (45) ,0.000001

All 23 SNPs with each other 253 2.53 (1) 4 (1.6) 0.33

Each of the following genesb

with all nongenetic variables

LAC1 (rs4988235) 96 0.96 (1) 2 (2.1) 0.25

CETP (rs708272) 96 0.96 (1) 1 (1.0) 0.62

APO_AV (rs3135506) 96 0.96 (1) 2 (2.1) 0.25

HL (rs1800588) 96 0.96 (1) 4 (4.2) 0.02

LPL (rs328) 96 0.96 (1) 4 (4.2) 0.02

TNF-a (rs1800629) 96 0.96 (1) 1 (1.0) 0.62

LTA (rs1041981) 96 0.96 (1) 1 (1.0) 0.62

LGAL (rs7291467) 96 0.96 (1) 0 (0) 1.00

ALOX5AP (rs1004) 96 0.96 (1) 1 (1.0) 0.62

GPX4 (rs1007) 96 0.96 (1) 1 (1.0) 0.62

IL-6 (rs1800795) 96 0.96 (1) 2 (2.1) 0.25

PTGS2 (rs20417) 96 0.96 (1) 0 (0) 1.00

ESR1 (rs2234693) 96 0.96 (1) 0 (0) 1.00

MTHFR (rs1801133) 96 0.96 (1) 0 (0) 1.00

MEF2A (rs3730059) 96 0.96 (1) 1 (1.0) 0.62

ADIPOQ (rs1501299) 96 0.96 (1) 2 (2.1) 0.25

PPPIR (rs854541) 96 0.96 (1) 0 (0) 1.00

GCK (rs1799884) 96 0.96 (1) 2 (2.1) 0.25

ACE (rs4343) 96 0.96 (1) 0 (0) 1.00

Elastin (rs2071307) 96 0.96 (1) 0 (0) 1.00

PON1 (rs662) 96 0.96 (1) 2 (2.1) 0.25

GHRLL (rs696217) 96 0.96 (1) 0 (0) 1.00

PTC (rs713598) 96 0.96 (1) 1 (1.0) 0.62

aAssociations between nongene characteristics were all age adjusted.
bGenes identified by commonly used name and reference SNP (rs) number.
doi:10.1371/journal.pmed.0040352.t002
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addition to that of mendelian randomization. First, case-only
studies necessarily assume the independence of genetic and
environmental factors in their basic rationale [33,34]. Second,
statistical methods for analysing case-control studies in
genetic epidemiology can enhance precision by assuming
the independence of genetic and environmental factors, as
demonstrated by several authors [35–37]. Such approaches
have been applied to the analysis of empirical datasets [38].
Conversely, it is commonplace to see statistical adjustment
for environmental factors applied to associations between
genetic variants and outcomes. This adjustment is probably
unnecessary, given the independence of the genetic variants
and the environmental factors, and it also provides oppor-
tunity for data-derived selection of the adjusted model that
provides the strongest evidence for an association with the
genetic variant in question. In some cases, indeed, only the
adjusted analyses are presented. We suggest that routine
adjustment of genetic associations with phenotypic outcomes
for potential nongenetic confounding factors is unnecessary
and can be misleading.

Three of the authors decided a priori which baseline
characteristics were likely to be biologically closely related to
each other or likely to be measuring the same underlying
characteristic and did not include such variables in the
overall correlations. Other investigators might have come up
with somewhat different grouping of variables. However, the
very high proportion of statistically significant associations at
all three levels of significance and the similar findings with
sensitivity analyses using different nongenetic characteristics
(e.g., total cholesterol instead of triglycerides, high-density
lipoprotein cholesterol and low-density lipoprotein choles-
terol) suggest that our findings are likely to be replicated even
with different opinions about which baseline nongenetic
variables should be included in the analyses (provided this
selection of nongenetic variables was done a priori within any
given dataset).We also deliberately chose only one genetic
variant when we had typed several within a gene; this

selection ensured there is no association caused by linkage
disequilibrium due to close physical proximity of variants. It
is possible that pleiotropy or population stratification could
generate associations between genetic variants and non-
genetic factors, but we do not see strong evidence of this in
our study population of United Kingdom (UK) women, very
largely of white European origin.
The genetic polymorphisms that we investigated were those

that had been assayed in this cohort study. The variants that
we have typed to date are those that we (or study
collaborators) wish to use in mendelian randomization
studies or to replicate previous association studies. Thus,
these variants have all been selected on the grounds that
there was some evidence that they relate to biological
differences between individuals for phenotypes or disease
outcomes that we have assessed in this cohort. Therefore,
they are a group of variants that will tend to be related to
phenotypic differences. Our variants include, for example,
the C!T677 MTHFR variant and the SNP that marks the
lactase persistence trait, two well-known and widely studied
variants with clear biological correlates. The number of
associations found with phenotypic variables should, there-
fore, be higher for our SNPs than for a group of SNPs
selected without reference to known function. Four of the
chosen variants (lying at the APO_AV, HL, LPL, and TNFA
loci) were associated with more phenotypes than expected at
either the 0.05 or 0.01 significance level. It is possible that
these variants are involved in such a wide range of biological
processes that the observations are causal. However, these
‘‘positive’’ findings, particularly those at the 0.05 level, may
well simply represent the play of chance and be nonreplicable
in future studies. In support of our general hypothesis that in
mendelian randomization studies, genetic variants are seldom
confounded by phenotypic factors [10], overall we found no
more associations with phenotypes than would be expected
by chance at the 0.05 or 0.01 level.
At a more realistic p-value threshold for genetic association

Figure 1. Histogram of Statistically Significant (at a¼1%) Age-Adjusted Pairwise Correlation Coefficients between 96 Nongenetic Characteristics. British

Women Aged 60–79 y

doi:10.1371/journal.pmed.0040352.g001
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studies (p � 0.0001), only four (0.18%) out of 2,208
associations of 23 genetic variants with 96 nongenetic
variants were statistically significant. Although this is greater
than the number (0.22) expected by chance, the proportion of
statistically significant associations of genotype with non-
genetic characteristics is considerably smaller than the
proportion of significant associations between nongenetic
characteristics (0.18% versus 30%) at this level of significance.
It is difficult to believe that all or a substantial proportion of
the 1,378 statistically significant associations (at p � 0.0001)
between two nongenetic characteristics are truly causal,
whereas the four associations of genetic variants with non-
genetic factor associations at this level of significance may
well be real. The association of variants in lactase with mean
outdoor temperature and rainfall for the area and month of
birth of the participant is likely to reflect the established
population stratification for this variant [39,40] Since the
allele frequency of this variant is known to vary by ancestral
geography, we would take this into account in any mendelian
randomization studies of this variant. The other two
associations—CETP with high-density lipoprotein cholesterol
[41–43]; and LPL with triglycerides [44]—reflect the biological
actions of these genes.

Our findings provide reassuring evidence that utilising
genetic variants in mendelian randomization studies is
generally a legitimate strategy. Furthermore, statistical
methods that assume independence of genetic and environ-
mental factors are also legitimate in many circumstances [33–
38]. Our findings are concordant with the demonstration that
a large number of genetic variants were unrelated to
participation or nonparticipation in a series of case-control
studies [45]; with occasional reports of gene–environment
independence that have focused on a limited number of
variants and environmental factors [46]; with the very similar
distribution of allelic frequencies among blood donors and a
representative population sample in the UK [47] and with a
detailed review of gene–environment correlations in behav-
ioural genetics [48]. We have demonstrated a fundamental
difference in the degree of confounding of genetic variants
and other variables. This difference can be exploited by using
genetic variants as exposure indicators to study the effects on
common diseases of modifiable risk factors that are too
heavily confounded to be studied robustly through conven-
tional observational epidemiological approaches [10].
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Editors’ Summary

Background. Epidemiology is the study of the distribution and causes of
human disease. Observational epidemiological studies investigate
whether particular modifiable factors (for example, smoking or eating
healthily) are associated with the risk of a particular disease. The link
between smoking and lung cancer was discovered in this way. Once the
modifiable factors associated with a disease are established as causal
factors, individuals can reduce their risk of developing that disease by
avoiding causative factors or by increasing their exposure to protective
factors. Unfortunately, modifiable factors that are associated with risk of a
disease in observational studies sometimes turn out not to cause or
prevent disease. For example, higher intake of vitamins C and E
apparently protected people against heart problems in observational
studies, but taking these vitamins did not show any protection against
heart disease in randomized controlled trials (studies in which identical
groups of patients are randomly assigned various interventions and then
their health monitored). One explanation for this type of discrepancy is
known as confounding—the distortion of the effect of one factor by the
presence of another that is associated both with the exposure under
study and with the disease outcome. So in this example, people who took
vitamin supplements might have also have exercised more than people
who did not take supplements and it could have been the exercise rather
than the supplements that was protective against heart disease.

Why Was This Study Done? It isn’t always possible to check the results
of observational studies in randomized controlled trials so epidemiolo-
gists have developed other ways to minimize confounding. One
approach is known as mendelian randomization. Several gene variants
have been identified that affect risk factors. For example, variants in a
gene called APOE affect the level of cholesterol in an individual’s blood, a
risk factor for heart disease. People inherit gene variants randomly from
their parents to build up their own unique genotype (total genetic
makeup). Consequently, a study that examines the associations between
a gene variant and a disease can indicate whether the risk factor affected
by that gene variant causes the disease. There should be no confounding
in this type of study, the argument goes, because different genetic
variants should not be associated with each other or with nongenetic
variables that typically confound directly assessed associations between
risk factors and disease. But is this true? In this study, the researchers
have tested whether nongenetic risk factors are confounded by each
other and also whether genetic variants are confounded by nongenetic
risk factors and also by other genetic variants

What Did the Researchers Do and Find? Using data collected in the
British Women’s Heart and Health Study, the researchers calculated how
many pairs of nongenetic variables (for example, frequency of eating
meat, alcohol intake) were significantly correlated with each other. That
is, the number of pairs of nongenetic variables in which a high
correlation between both variables occurred in more study participants
than expected by chance. They compared this number with the number
of correlations that would occur by chance if all the variables were totally
independent. When the researchers assumed that 1 in 100 combinations
of pairs of variables would have been correlated by chance, the ratio of
observed to expected significant correlations was seen 45 times more
frequently than would be expected by chance. When the researchers
repeated this exercise with genetic variants, the ratio of observed to
expected significant correlations was 1.58, a figure not significantly
different from 1. Similarly, the ratio of observed to expected significant
correlations when pairwise combinations between genetic and non-
genetic variants were considered was 1.22.

What Do These Findings Mean? These findings have two main
implications. First, the large excess of observed over expected associations
among the nongenetic variables indicates that many nongenetic
modifiable factors occur in clusters—for example, people with healthy
diets often have other healthy habits. Researchers doing observational
studies always try to adjust for confounding but this result suggests that
this adjustment will be hard to do, in part because it will not always be clear
which factors are confounders. Second, the lack of a large excess of
observed over expected associations among the genetic variables (and
also among genetic variables paired with nongenetic variables) indicates
that little confounding is likely to occur in studies that use mendelian
randomization. In other words, this approach is a valid way to identify
which environmentally modifiable risk factors cause human disease.

Additional Information. Please access these Web sites via the online
version of this summary at http://dx.doi.org/10.1371/journal.pmed.
0040352.

� Wikipedia has pages on epidemiology and on mendelian
randomization (note: Wikipedia is a free online encyclopedia that
anyone can edit; available in several languages).
� Epidemiology for the Uninitiated is a primer from the British Medical

Journal
� Information is available on the British Women’s Heart and Health

Study
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