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Clustered Nyström Method for Large Scale
Manifold Learning and Dimension Reduction

Kai Zhang and James T. Kwok

Abstract— Kernel (or similarity) matrix plays a key role in
many machine learning algorithms such as kernel methods,
manifold learning, and dimension reduction. However, the cost
of storing and manipulating the complete kernel matrix makes
it infeasible for large problems. The Nyström method is a
popular sampling-based low-rank approximation scheme for
reducing the computational burdens in handling large kernel
matrices. In this paper, we analyze how the approximating quality
of the Nyström method depends on the choice of landmark
points, and in particular the encoding powers of the landmark
points in summarizing the data. Our (non-probabilistic) error
analysis justifies a “clustered Nyström method” that uses the
k-means clustering centers as landmark points. Our algorithm
can be applied to scale up a wide variety of algorithms that
depend on the eigenvalue decomposition of kernel matrix (or its
variant), such as kernel principal component analysis, Laplacian
eigenmap, spectral clustering, as well as those involving kernel
matrix inverse such as least-squares support vector machine and
Gaussian process regression. Extensive experiments demonstrate
the competitive performance of our algorithm in both accuracy
and efficiency.

Index Terms— Dimension reduction, eigenvalue decomposi-
tion, kernel matrix, low-rank approximation, manifold learning,
Nyström method, sampling.

I. INTRODUCTION

KERNEL matrix plays an important role in many learning
algorithms by providing an abundant description of the

similarity relations in the data. It has demonstrated huge
success in modeling real-world data with highly complex
nonlinear structures. For example, in kernel methods, such
as the support vector machines (SVMs) [1], kernel Fisher
discriminant analysis [2], and kernel principal component
analysis [3], the input data is mapped (via the kernel-induced
feature map ϕ) to a very high dimensional Hilbert space,
where scalar products are obtained efficiently through kernel
evaluations. In manifold learning and dimensionality reduction
(such as locally linear embedding [4], isomap [5], Laplacian
eigenmap [6], and spectral clustering [7]–[9]), the eigenvectors
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of the kernel (or similarity) matrix reveal intrinsic structures of
the data. The kernels can also be applied in complex network
analysis as recently proposed by [10].

However, given a set of n sample points, the use of
the kernel matrix necessitates storing and manipulating an
n × n symmetric, positive (semi-)definite kernel matrix. The
resultant complexities, namely quadratic in terms of space
and (usually) cubic in terms of time, can be quite demanding
for large problems. This poses a big challenge for practical
applications. A useful way to alleviate the memory and com-
putational burdens is to utilize the rapidly decaying spectra
of kernel matrices [11] and perform low-rank approximation.
Given a kernel matrix K ∈ R

n×n whose rank m is much lower
than n (i.e., m � n), it can be represented by

K = L L ′ (1)

where L ∈ R
n×m . The computational and memory require-

ments associated with handling the matrix L will be much
lower than those with the complete kernel matrix K . On the
other hand, even when the kernel matrix has almost full rank,
it might still be possible to approximate it by a low-rank
positive semidefinite matrix [12], where the equality in (1)
then becomes an approximation.

Low-rank approximation of the kernel matrix is useful in
many different ways. For example, in each iteration of the
interior point method (as applied to SVM), the most expensive
step is in the solving of the linear system (K + δ I )u = w,
where δ > 0 is a regularization parameter and I is the n × n
identity matrix. In general, this requires O(n3) time and O(n2)
space. Given the low-rank approximation in (1), however,
one can efficiently solve this linear system by utilizing the
Sherman–Morrison–Woodbury formula

(K + σ I )−1 � 1

σ

(
I − L(σ I + L ′L)−1 L ′) . (2)

These can be reduced to O(nm2) time and O(nm) space
[12]. Besides, Gaussian processes [13] and the least-squares
SVM (LS-SVM) [14] also require solving such a linear
system. Therefore, they can benefit from the efficient matrix
inversion (2) in computing the solutions [15].

Another application of the low-rank approximation is to
reconstruct the eigensystem of a matrix. We will make use
of the following proposition.

Proposition 1: Given the low-rank approximation K � L L ′
(1), the top m eigenvectors U = [u1, . . . , um] of K can be
obtained as U � LV �−(1/2), where V ,� ∈ R

m×m are from
the eigenvalue decomposition of the m × m matrix L ′L =
V �V ′.
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ZHANG AND KWOK: CLUSTERED NYSTRÖM METHOD FOR LARGE SCALE MANIFOLD LEARNING AND DIMENSION REDUCTION 1577

The proof is in [16].
Therefore, low-rank approximation is useful to manifold

learning and dimensionality reduction algorithms that rely
on heavily on the eigenvectors of the kernel matrix. Exam-
ples include kernel principal components analysis (KPCA)
[3], Laplacian eigenmap [6], multidimensional scaling (MDS)
[17], spectral clustering [8], normalized cut [18], isomap [5],
and kernel linear discriminant analysis [2].

Theoretically, the optimal rank-k approximation (w.r.t. to
the spectral or Frobenius norm) is provided by the eigen-
value decomposition. However, finding this optimal low-rank
approximation is impractical for large problems and efficient
alternatives are needed. In recent years, enormous effort has
been devoted to this topic, which fall into three categories.
The first is greedy sampling, in which samples are chosen
incrementally to minimize (an upper bound) the approximation
error. Examples include fast greedy approximation [19], [20],
greedy spectral embedding [21], and incomplete Cholesky
decomposition (ICD) [22], [23], [12]. The second is the
Nyström method, which samples subset of rows/columns of
the kernel matrix to approximate the kernel matrix (as well
as its eigensystem). The third is randomized algorithm that
designs column/row sampling probabilities to achieve provable
probabilistic bounds [24]–[27].

In terms of both time and memory, the Nyström method
is the most efficient (as discussed in Section II-B). It has
been successfully applied to the Gaussian processes [15],
spectral clustering [16], [28], and MDS [29]–[31]. The com-
monest sampling schemes are random sampling [16], [29],
[15] and furthest point sampling [30]. On the theoretical
side, probabilistic error bounds have been studied in [26] and
[32]. One problem with the probabilistic sampling scheme is
that the sampling probabilities are sometimes computed on
the basis of the norms of the rows/columns of the kernel
matrix, which requires at least O(n2) time and space. This
is infeasible for large problems. The probabilistic error bound
is typically derived for a specific sampling scheme. Therefore,
from practitioner’s side, it is hard to use the error bound as a
general criterion or guidance to gain insights into new designs.
Empirically, it can be even worse than the random sampling
scheme [25], [26].

In this paper, we pursue a different style of error analysis
that gives a more direct, non-probabilistic delineation on how
the landmark points affect the Nyström low-rank approxi-
mation error. Our key finding is that the Nyström low-rank
approximation error depends crucially on the quantization
error induced by encoding the sample set with the land-
mark points. This suggests that, besides applying greedy or
probabilistic sampling, the landmark points can be simply
chosen as the k-means cluster centers. We call it “clustered
Nyström method.” The k-means-based sampling works on
the n × d data matrix, and avoids the storage and ma-
nipulation of the n × n kernel matrix. It is more efficient
than probabilistic sampling schemes based on the norms of
the rows/columns of the kernel matrix. On the other hand,
our analysis opens the possibility of tackling the compu-
tational complexities of spectral methods via data coding
techniques.

The complexity of k-means is only linear in the sample
size and dimensionality, and, as will be shown in our exper-
imental evaluations, only a few iterations suffice in practice.
It demonstrates very encouraging performance which is often
consistently better than other variants of the Nyström method
in approximating the kernel matrix. We apply this clustered
Nyström method for low-rank approximation in a number of
manifold learning and dimensionality reduction algorithms,
such as KPCA and Laplacian eigenmap. All demonstrate
its competitive performance in recovering the intrinsic low-
dimensional structures of the data.

The rest of this paper is organized as follows. Section II
briefly reviews related works on low-rank approximation of
symmetric semidefinite kernel matrices. Section III presents
an analysis showing how the Nyström low-rank approximation
error is affected by the landmark points, and then proposes
the use of the k-means algorithm in the sampling step. The
resultant variant will be called the clustered Nyström method.
In Section IV, we experimentally compare our approach with a
number of state-of-the-art low-rank decomposition techniques
for manifold learning and dimensionality reduction, as well
as supervised methods Gaussian process (GP) regression. The
last section gives concluding remarks. Preliminary results have
been reported in our conference paper [33].

II. RELATED WORKS

In this section, we give a brief review on the three categories
of low-rank approximation techniques. These are the greedy
approaches (Section II-A), Nyström methods (Section II-B),
and randomized algorithms (Section II-C). A short comparison
of their computational complexities is given in Section II-D.
Moreover, while there are large-scale numerical solvers for
eigenvalue decomposition (such as the ARPACK package
[34]), they are most suited when: 1) the input matrix is highly
structured (or sparse), and 2) computing the product of the
input matrix and a vector is inexpensive (for example, O(n),
where n is the size of the input matrix). Typically, these
conditions do not hold in our context. Therefore, sparse eigen-
solvers will not be the focus of this paper.

A. Greedy Approaches

Greedy approaches have been applied in several fast al-
gorithms for approximating the kernel matrix. In [19], the
kernel matrix K is approximated by the subspace spanned
by a subset of its columns as K � KI T , where KI ∈ R

n×m ,
I is the set containing indices of the selected m columns, and
T ∈ R

m×n is the coefficients. In each iteration, the column
that maximally reduces the error (K − KI T ) is selected. The
algorithm terminates when the estimated error bound is below
a threshold. It takes O(m2ln) time using a random subset
of size l in each iteration from which the optimal column is
chosen. A similar scheme is used in [20], where the residue
of approximation error is used to guide the sampling.

In [21], a greedy sampling scheme is proposed for
fast spectral embedding. The samples are greedily selected
according to their distances to the subspace spanned by the
current dictionary. If the distance is below a threshold, the
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sample will be skipped, otherwise, it will be included in
the dictionary. After constructing the dictionary, all the
examples are projected on it. This algorithm scales as O(m2n).

Another well-known greedy approach is the ICD [22], [23],
[12]. Note that any psd matrix Q can be represented by
the Cholesky factorization Q = L L ′, where L ∈ R

n×n is
a lower triangular matrix [35]. In case Q is only positive
semidefinite (but not of full rank), it is still possible to compute
an incomplete Cholesky factorization L L ′ with L ∈ R

n×m ,
where m < n is the rank of Q or a prespecified number.
The ICD has a complexity O(m2n) and has been adopted
successfully to scale up the training of the standard SVM and
LS-SVM [23].

B. The Nyström Method

The Nyström method was originally designed to solve
integral equations [36]. It chooses a subset of samples, called
the landmark points, to approximately compute the kernel
eigenfunctions. The most popular sampling scheme for the
Nyström method is random sampling, which leads to fast
versions of kernel machines [15] and spectral clustering [16].
In [29], several variants of MDS are all shown to be related
to the Nyström approximation. Consider the integral equation
that defines the kernel eigenfunction∫

p(y)k(x, y)φi(y)dy = λiφi (x) (3)

where p(·) is the probability density function, k is a pos-
itive definite kernel function, and λ1 ≥ λ2 ≥ · · · ≥ 0
and φ1, φ2, . . . are the eigenvalues and eigenfunctions of
the integral equation, respectively. Given a set of i.i.d.
samples {x1, x2, . . . , xq} drawn from p(·), the basic idea
is to approximate the integral by its empirical average:
(1/q)

∑q
j=1 k(x, x j )φi (x j ) � λiφi (x). Choosing x in the

above equation from {x1, x2, . . . , xq} leads to an eigenvalue
decomposition K (q)U (q) = U (q)�(q), where K (q)

i j = k(xi , x j )

for i, j = 1, 2, . . . , q , U (q) ∈ R
q×q has orthonormal columns

and �(q) ∈ R
q×q is a diagonal matrix. The eigenfunctions

φi ’s and eigenvalues λi ’s in (3) can be approximated by U (q)

and �(q) as φi (x j ) � √
qU (q)

j i , λi � λ
(q)
i /q [15]. Using

different subset sizes (q’s), the Nyström method thus produces
different approximations to λi and φi in the integral equation
(3). In particular, the Nyström method using a small q can
also be deemed as approximating the Nyström method using
a large q . Denote the sample set by X = {xi}n

i=1, with the
corresponding n × n kernel matrix K . Then the Nyström
method that randomly chooses a subset Z = {zi }m

i=1 of m
landmark points will approximate the eigensystem of the full
kernel matrix K�K = �K �K by [15]

�K �
√

m

n
E�Z�−1

Z , �K � n

m
�Z . (4)

Here, E ∈ R
n×m with Eij = k(xi , z j ), and �Z ,�Z ∈

R
m×m contain the eigenvectors and eigenvalues of W ∈ R

m×m

where Wij = k(zi , z j ). Using the approximations in (4), K can
be reconstructed as

K � �K �K �′
K = EW−1 E ′. (5)

Equation (5) is the basis for Nyström low-rank approxima-
tion [16], [15] and is sometimes called the matrix completion
view [16]. Our theoretical analysis will also be based on
this formulation. Recently an ensemble Nyström method is
proposed in [37], which is further generalized in [38].

In practice, there are two ways to obtain approximate eigen-
values/vectors of the kernel matrix by the Nyström method
[16]. One is to directly use the Nyström extension (4), which
simply involves computing E and W , performing the eigen
decomposition of W and then extending its eigensystem to
that of the complete kernel matrix. This is further extended
to the density-weighted version in [39] and [40]. However,
the resultant eigenvectors are not guaranteed to be orthogonal.
The second approach utilizes the matrix completion view
(5) to first obtain a low-rank approximation of K � L L ′
with L = EW−(1/2), and then apply Proposition 1 to obtain
an orthogonal set of approximate eigenvectors. As has been
shown in [20], the lack of orthogonality can adversely affect
the approximation quality. Therefore, the second approach
is preferred in obtaining more accurate solutions although
it increases the computational time. In terms of complexity,
though, the two methods are the same, i.e., O(m2n).

C. Randomized Algorithms

Randomized algorithms [24], [25], [27] are aimed at design-
ing column/row sampling probabilities that achieve provable
probabilistic bounds for the factorization of arbitrary-shaped
matrices. An example is [26] in the context of Nyström low-
rank approximations. The idea is to replace the random sam-
pling with a nonuniform data-dependent sampling probabilities
pi ’s. The chosen rows and columns are re-weighted by pi ’s
and then plugged into the standard Nyström method (Section
II-B). The probabilities pi ’s can be computed in different
ways. For example, one choice is pi = G2

ii /
∑n

i=1 G2
ii , where

G is the Gram matrix to be approximated. In the sequel, this
will be called sampling scheme I. Note that for stationary
kernels, the diagonal entries of the corresponding Gram matrix
are all the same and so this scheme reduces to uniform
sampling. Another sampling scheme proposed by [41] uses
pi = ‖G(i)‖/‖G‖F , where G(i) is the i th column of the Gram
matrix. In the sequel, this will be called sampling scheme II.

D. Computational Complexities

Greedy approaches usually take O(m2n) time and O(mn)
memory. For the randomized algorithm in [41], sampling
scheme II needs to access the whole kernel matrix and its
computational complexity is the highest [O(n2) time and
space]. This can be reduced to O(m2n) time and O(mn)
space with the use of scheme I. In comparison, the Nyström
method needs O(m2n) time and O(mn) space. Furthermore,
the intermediate matrices [E and W in (5)] needed in the
Nyström method can be simply computed on demand. Thus,
they need not be stored and this can greatly reduce the memory
requirement on very large problems. In contrast, for greedy
approaches, the intermediate matrices have to be incrementally
updated and stored.
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III. CLUSTERED NYSTRÖM METHOD FOR

LOW-RANK APPROXIMATION

This section presents our key analysis on how the Nyström
approximation error depends on the choice of the landmark
points. We first point out in Section III-A an important
observation. Then, we derive in Sections III-B–III-D an error
bound in a more general setting based on the “clustered” data
model. This error bound leads to important insights on the
design of an efficient sampling scheme, i.e., the use of the
k-means clustering centers as the landmark points. We call it
“clustered Nyström method” and discuss it in Section III-E.

A. Observation

Proposition 2: Given X = {xi }n
i=1 and the landmark point

set Z = {z j }m
j=1, the Nyström reconstruction of kernel entry

K (xi , x j ) is exact if there exist two landmark points such that
z p = xi , and zq = x j .

Proof: Let Kxk ,Z ∈ R
m be the vector of kernel eval-

uations between sample xk and all the landmark points in
Z . Then, using (5), the Nyström reconstruction of K (xi , x j )
is Kxi ,ZW−1 K ′

x j ,Z , where W ∈ R
m×m is the kernel matrix

defined on the landmark set Z . Let W (k) be the kth row of W ,
then Kxi ,Z = W (p) and Kx j ,Z = W (q), since xi =
z p and x j = zq . As a result, the reconstructed entry is
W (p)W−1(W (q))′ = Wpq = K (z p, zq) = K (xi , x j ).

Proposition 2 indicates that the landmark points should be
chosen to have sufficient overlap with the data. However, it
is often impossible to use a small landmark set to represent
every sample accurately.

B. Approximation Error on Sub-Kernel Matrix

In this section, we apply a “clustered” data model to analyze
the quality of Nyström low-rank approximation. Here, the data
clusters can be naturally obtained by assigning each sample to
the closest landmark point. As will be seen, this model allows
the derivation of an explicit error bound for the Nyström
approximation.

Again, suppose that the landmark set is Z = {zi }m
i=1, and

the whole sample set X is partitioned into m disjoint clusters
Sk’s. Let c(i) be the function that maps each sample xi ∈ X
to the closest landmark point zc(i) ∈ Z , where c(i) =
arg min j=1,2,...,m ‖xi −z j‖. We assume that each cluster has T
samples. If the cluster sizes differ, we add “virtual samples”
to each cluster such that all the clusters have the same size
T = maxm

k=1 |Sk |. The virtual samples added to cluster Sk are
chosen as the landmark point zk for that cluster. Our goal is
to study the approximation error in (5)

E =
∥∥∥K − EW−1 E ′

∥∥∥
F

(6)

where ‖ · ‖F denotes the matrix Frobenius norm. As can be
seen in the sequel, the virtual samples added will not induce
additional quantization error but may loosen the bound.

First, consider the simpler notion of partial approximation
error defined as follows:

Definition 1: Suppose that each cluster has T samples.
Repeat the following sampling process T times: At time t ,

randomly pick one sample from each of the m clusters, and
denote the set of m samples obtained by XIt . Consequently,
X = {XI1 ∪XI2 ∪ . . .∪XIT }, and the kernel matrix defined on
X can be decomposed into T 2 m ×m submatrices. Let KIi ,I j

be the submatrix of K defined on (XIi ,XI j ), and EIi ,Z be
the submatrix of E defined on (XIi ,Z), and W ∈ R

m×m be
the kernel submatrix defined on Z . The partial approximation
error is defined as the difference between KIi ,I j and its
Nyström approximation measured w.r.t. the Frobenius norm

EIi ,I j = ‖KIi ,I j − EIi ,ZW−1 E ′
I j ,Z‖F . (7)

In the following, we assume that the kernel k satisfies the
following property:

(k(a, b) − k(c, d))2 ≤ Ck
X

(
‖a − c‖2 + ‖b − d‖2

)
(8)

∀a, b, c, d, where Ck
X is a constant depending on k and

the sample set X . It will be shown in Section III-D that
this assumption is valid on a number of commonly used
kernels.

Proposition 3: For a kernel k satisfying property (8), the
partial approximation error EIi ,I j is bounded by

EIi ,I j ≤
√

2mCk
X (eIi + eI j ) +

√
mCk

X eIi

+
√

mCk
X eI j + mCk

X
√

eIi eI j

∥∥∥W−1
∥∥∥

F
(9)

where eIi is the quantization error induced by encoding each
sample in XIi by the closest landmark point in Z

eIi =
∑

xi ∈XIi

∥∥xi − zc(i)
∥∥2

. (10)

Proof: Note that KIi ,I j , EIi ,Z EI j ,Z , and W are all
kernel matrices defined on (XIi ,XI j ), (XIi ,Z) (XI j ,Z)
and (Z,Z), respectively. Define the following “difference”
matrices:

AIi ,I j = KIi ,I j − W,

BIi ,Z = EIi ,Z − W,

CI j ,Z = EI j ,Z − W. (11)

We first show that they have bounded Frobenius norms.
Without loss of generality, we specify the indices as follows:
KIi ,I j (p, q) = k(xIi (p), xI j (q)), EIi ,Z(p, q) = k(xIi (p), zq),
EI j ,Z (p, q) = k(xI j (p), zq ), and W (p, q) = k(z p, zq).
Using (8)

‖AIi ,I j ‖2
F =

m∑
p,q=1

(
k(xIi (p), xI j (q)) − k(z p, zq)

)2

≤ Ck
X

m∑
p,q=1

(∥∥xIi (p) − z p
∥∥2 + ∥∥xIi (q) − zq

∥∥2
)

= mCk
X

⎛
⎝

m∑
p=1

∥∥xIi (p) − z p
∥∥2 +

m∑
q=1

∥∥∥xI j (q) − zq

∥∥∥
2

⎞
⎠

= 2mCk
X (eIi + eI j )

where eIi is the same as that in (10) since c(I(q)) = q .
Similarly, for matrix BIi ,Z , we have ‖BIi ,Z‖2

F = ∑m
p,q=1
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(
k(xIi (p), zq ) − k(z p, zq )

)2 ≤ mCk
X

∑m
p=1

∥∥xIi (p) − z p
∥∥2 =

mCk
X eIi , and for matrix CI j ,Z , ‖CI j ,Z‖2

F ≤ mCk
X eI j .

Finally, using (11), ‖EIi ,I j ‖F = ‖W + AIi ,I j − (W +
BIi ,Z)W−1(W + CI j ,Z)′‖F = ‖W + AIi ,I j − W ′ − C ′

I j ,Z −
BIi ,Z − BIi ,ZW−1C ′

I j ,Z‖F ≤ ‖AIi ,I j ‖F + ‖BIi ,Z‖F +
‖CI j ,Z‖F +‖BIi ,Z‖F ·‖CI j ,Z‖F ·‖W−1‖F . Using the bounds
on ‖AIi ,I j ‖, ‖BIi ,Z‖, ‖CI j ,Z‖, together with the definition
in (11), we obtain (9).

C. Approximation Error of the Complete Kernel Matrix

With the partial approximation error, we can now obtain a
bound on the Nyström approximation error in (6). Note that
E = ∑T

i, j=1 EIi ,I j . Hence, the basic idea is to sum up the
partial errors EIi ,I j over all i, j = 1, 2, . . . , T .

Proposition 4: For kernel k satisfying property (8), the error
of the Nyström approximation (6) is bounded by

E ≤ 4T
√

mCk
X eT + mCk

X T e‖W−1‖F (12)

where T = m
max
k=1

|Sk |, and e = ∑n
i=1

∥∥xi − zc(i)
∥∥2

is the total

quantization error of encoding each sample xi ∈ X with the
closest landmark point in Z .

Proof: The bound on E is obtained by summing up the
right-hand side of (9) over i, j = 1, 2, . . . , T . By using the

Cauchy–Schwarz inequality
∑n

i=1
√

ai ≤
√

n
(∑n

i=1 ai
)

and

the fact that e = ∑T
i=1 eIi , we have from the first term in (9)

T∑
i, j=1

√
2mCk

X (eIi + eI j )

=
√

2mCk
X

T∑
i=1

T∑
j=1

√
eIi + eI j

≤
√

2mCk
X

T∑
i=1

√√√√√T
T∑

j=1

(eIi + eI j )

=
√

2mCk
X T

T∑
i=1

√
T eIi + e

≤
√

2mCk
X · T

√√√√
T∑

i=1

(
T eIi + e

) = 2T (mCk
X T e)

1
2 .

Similarly, the second (and third) term in (9) can be

summed as
∑T

i, j=1

√
mCk

X eIi=
√

mCk
X

∑T
j=1(

∑T
i=1

√
eIi )≤

T
√

mCk
X eT . The last term in (9) can be summed

as
∑T

i, j=1 mCk
X

√eIi eI j ‖W−1‖F = mCk
X ‖W−1‖F

(
∑T

i=1
√

eIi )
2 ≤ mCk

X ‖W−1‖F T e. By combining all
these terms, we arrive at (12).

D. Validity of (8) for Various Kernels

In this section, we show that many commonly used kernel
functions satisfy the property in (8). First, consider a stationary
kernel of the form k (x, y) = κ(‖x − y‖/σ). This includes,

for example, the Gaussian kernel with κ(α) = exp(−α2),
the Laplacian kernel with κ(α) = exp(−α), and the inverse
distance kernel with κ(α) = (α + ε)−1.

Proposition 5: Stationary kernels of the form k (x, y) =
κ(‖x − y‖/σ) satisfy property (8).

Proof: By using the mean value theorem, we have,
for any a, b, c, d ∈ R

d , (k(a, b) − k(c, d))2 =
(κ (‖a − b‖/σ) − κ (‖c − d‖/σ))2 ≤ [κ ′(ξ)/σ ]2(‖a − b‖ −
‖c − d‖)2. Let v1 = a − c and v2 = b − d . By using
the triangular inequality, we have ‖c − d‖ ≤ ‖a − b‖ +
‖v1‖ + ‖v2‖ and similarly ‖a − b‖ ≤ ‖c − d‖ + ‖v1‖ + ‖v2‖.
So, (‖a − b‖ − ‖c − d‖)2 ≤ (‖a − c‖ + ‖b − d‖)2 ≤
2(‖a − c‖2 + ‖b − d‖2), and thus (k(a, b) − k(c, d))2 ≤
2[κ ′(ξ)/σ ]2(‖a − c‖2 + ‖b − d‖2). Hence, Ck

X in (8) can be
chosen as 2maxξ [κ ′(ξ)/σ ]2 which is often bounded. For exam-
ple, for the Gaussian kernel, we have κ ′(ξ) = −2ξ exp(−ξ2),
whose magnitude approaches the maximum for ξ = 1/

√
2, so

we have 2[κ ′(ξ)/σ ]2 ≤ 2
(
(2/

√
2) exp(−1/2)/σ

)2 = (4/eσ 2),
for the Laplacian kernel, κ ′(ξ) = − exp(−ξ) is bounded by
1, so we have 2[κ ′(ξ)/σ ]2 ≤ 1/σ 2, for the inverse distance
kernel, k ′(ξ) = −(1/(ξ + ε))2 is bounded by (2/ε2), so we
have 2[κ ′(ξ)/σ ]2 ≤ (2/σ 2ε4).

Similarly, this also holds for polynomial kernels.
Proposition 6: Polynomial kernels of the form k(x, y) =(

x ′y + ε
)d

satisfy property (8).
Proof: Let κ(z) = zd . Then

(k(a, b) − k(c, d))2 =
(
(a′b + ε)d − (c′d + ε)d

)2

= (
κ ′(ξ)(a′b − c′d)

)2 = κ ′(ξ)2 · ((
(a − c)′b + (b − d)′c

))2

≤ 2[κ ′(ξ)]2 ·
(
((a − c)′b)2 + ((b − d)′c)2

)

≤ 2[κ ′(ξ)R]2 ·
(
‖a − c‖2 + ‖b − d‖2

)

where R is the maximum distance between samples and
the origin. The constant Ck

X in (8) can then be chosen as
2 max[κ ′(ξ)R]2 = 2(d(R2 + ε)d−1 R)2.

E. Sampling Procedure

The error bound in Proposition 4 provides important insights
on how to choose the landmark points in the Nyström method.
Unlike existing works, our error bound is not restricted to
a specific sampling strategy. Instead, it provides a plain
description on how the approximation error ‖K − EW−1 E ′‖F

depends on the choice of the landmark points zk’s. As can be
seen from Proposition 4, for a number of kernels, an important
factor that influences the approximation quality is e, the error
of quantizing each sample in X with the closest landmark
in Z . If this quantization error is zero, the Nyström low-
rank approximation will be exact. This agrees with the ideal
case discussed in Section III-A. It indicates that the better the
landmark points can encode the data, the lower the resultant
low-rank approximation error. Motivated by this observation
and the fact that k-means clustering can find a local minimum
of the quantization error [42], we propose to use the cluster
centers obtained from k-means as the landmark points in the
Nyström low-rank approximation, with the reconstruction step
being the same as in the original Nyström method (5). We call
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this “clustered Nyström method” considering that clustering is
involved in both the error analysis (the clustered data model)
and the sampling scheme (the k-means clustering).

The time complexity of the k-means algorithm is O(ndl),
where n is the sample size, d is the dimension, and l the
number of iterations. In practice, since the distortion error
drops most significantly in the first few iterations, we fix
the number of iterations to a small integer (e.g., l = 5).
Therefore the complexity is linear in the sample size and
dimension. Moreover, the space complexity of k-means is
also low, only O(mn). Therefore, the k-means-based sampling
scheme is suitable for large problems. It is more efficient
than probabilistic sampling, most of which have to handle
the whole kernel matrix to compute its column/row norms.
Moreover, extensive research works have been devoted to
further scale up the k-means algorithm for large applica-
tions.1 For example, Kanungo et al. [43] proposed to store
samples in a variant of the k-d tree. In [44], the nearest
neighbor queries are reduced by using a k-d tree whose
nodes store the sufficient statistics of the data. In [45], re-
dundant distance calculations in the k-means algorithm are
avoided by applying the triangle inequality. Besides these
algorithmic advances, practical heuristics can also be used.
For example, an over-relaxed scheme [46] can lead to faster
convergence. The k-means can be parallelized [47] to uti-
lize distributed computing facilities. One can also perform
random sampling, or hierarchical k-means, to further reduce
the computation. In our empirical evaluations, we use a
naive MATLAB implementation of the k-means. As will be
seen in Section IV, the resultant algorithm already demon-
strates superior performance in terms of both accuracy and
efficiency.

Of course, k-means-based sampling is not new, and has
been applied heuristically in various circumstances such as
[48]. However, to the best of our knowledge, it has not
been applied in context of low-rank approximation of kernel
matrices, not to mention a theoretical justification. Note that in
the density-weighted Nyström extension [39], [40], k-means-
based sampling is used for approximating eigenvectors of
the kernel matrix. However, there exist important differences.
First, the purpose of [39] and [40] is to extrapolate the kernel
eigenfunction via the weighted Nyström extension, while the
goal here is to directly reconstruct the kernel matrix via the
Nyström low-rank approximation (5) (without any weighting
scheme). Second, the density-weighted Nyström extension [as
well as the standard Nyström extension (4)] can only pro-
vide non-orthogonal approximations. On the other hand, the
Nyström low-rank approximation here allows us to compute an
orthogonal set of approximate eigenvectors (by Proposition 1),
which is more accurate in practice. Although the former is
more efficient (the computation needed is only about one-third
of the latter), it is less accurate. Recently, the k-means-based
sampling scheme was further extended for large-scale semi-
supervised learning with encouraging performance [49], [33].

1For example, in [45] and [43], the k-means algorithm has been used on
datasets with 262 K and 400 K samples.

TABLE I

SUMMARY OF DATASETS USED IN THE UNSUPERVISED LEARNING

EXPERIMENTS (n IS THE SAMPLE SIZE AND d IS THE DIMENSIONALITY)

n d n d
wdbc 569 30 german 1000 24
splice 1000 60 adult1a 1605 123
dna 2000 180 segment 2310 19
w1a 2477 300 satimage 4435 36

ionosphere 341 34 diabetes 768 8
australian 690 14 breastcancer 683 10
uci-3v8 769 64 uci-3v5 765 64
uci-5v6 753 64 uci-6v8 757 64
uci-8v9 757 64 uci-2v7 767 64
uci-3v9 771 64 uci-4v9 769 64

IV. EXPERIMENTS

In this section, we perform extensive experiments to
compare the proposed method with existing algorithms on
the low-rank approximation of kernel matrix (Section IV-A),
KPCA (Section IV-B), Laplacian eigenmap, and spectral
clustering (Section IV-C). In order to compare with standard
algorithms that are not quite scalable, we are restricted to
samples smaller than 5000. In practice, we have applied
our algorithm to much larger datasets2 and some results are
presented in Section IV-D. We also make comparisons on GP
regression (Section IV-E).

Experiments are performed on a number of benchmark
datasets from the LIBSVM archive3 (Tables I). The methods
under comparison include: 1) ICD;4 2) Nyström: with random
sampling; 3) Drineas: the probabilistic sampling scheme in
[26] with sampling schemes I and II (as discussed in Sec-
tion II-C); 4) Ours: the proposed method; and 5) singular
value decomposition (SVD) (or eigenvalue decomposition in
our context), which provides the optimal solution in terms
of Frobenius/spectral norm [35]. Note that methods Nyström,
Drineas and ours involve some randomness. Hence, to reduce
statistical variability, their results are based on averages over
30 repetitions. Experiments are performed on a core-duo PC
with a 2.13-GHz processor, and all the codes are written in
MATLAB.

A. Low-Rank Approximation of Kernel Matrix

In this section, we evaluate the performance of different
algorithms by measuring their numerical approximation errors
(in terms of the Frobenius norm) on the kernel matrix. We
gradually increase the subset size m from 1% to 10% of
the dataset size. First, we report results for the Gaussian
kernel K (x, y) = exp(−‖x − y‖2/γ ), where γ is chosen
as the average squared distance between data points and the
sample mean. The approximation errors vs. the number of
landmark points are plotted in Fig. 1. As can be seen, ours is
only inferior to SVD on most datasets. Moreover, Drineas is
only comparable to or sometimes even worse than Nyström.
Indeed, similar observations are also observed in the context of

2Results and codes at http://www.cse.ust.hk/∼twinsen/manifold.htm.
3http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/.
4Code from http://www.di.ens.fr/∼fbach/kernel-ica/kernel-ica1 2.tar.gz.
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Fig. 1. Low-rank approximation errors of different algorithms using the Gaussian kernel. (a) German, (b) splice, (c) adult1a, (d) dna, (e) segment, (f) w1a,
(g) uci, and (h) satimage.
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Fig. 2. Low-rank approximation errors of different algorithms using the linear kernel. (a) German, (b) splice, (c) adult1a, (d) dna, (e) segment, (f) w1a,
(g) uci, and (h) satimage.

SVD [25]. ICD seems inferior on several datasets. However,
for datasets whose kernel spectra decay rapidly to zero5 (such
as segment and satimage), ICD can quickly attain performance
comparable to others.

We also experiment with the linear kernel and the polyno-
mial kernel (of degree d = 3). As can be seen from Fig. 2,
in case of the linear kernel, all the algorithms can quickly
approach an approximation error that is close to zero. This
is because the rank of the kernel matrix is at most the data
dimensionality, which is small compared to the sample size.
On average, our algorithm is very competitive compared to

5The speed of decay of the kernel spectrum can be observed from the
approximation curve of eigenvalue decomposition in Fig. 1. Note that the
(squared) rank-m approximation error of SVD is

∑n
i=m+1 σ 2

i , where σi ’s are
the singular values of K that have been sorted in a descending order [35].
Therefore, if SVDs error curve in Fig. 1 drops rapidly, so does the spectrum
of K , indicating that the kernel matrix has a relatively low rank.

the other algorithms, and the same observation can be made
in case of polynomial kernel in Fig. 3.

B. KPCA

In this section, we compare the performance of different
low-rank approximation algorithms in KPCA. Given a kernel
matrix K , the key step of KPCA is to perform eigenvalue
decomposition on the centered kernel matrix G = H K H,
where H = I − (1/n)11′ is the centering matrix, I is the
n × n identity matrix, and 1 ∈ R

n the vector of all 1’s. With a
low-rank approximation of K of the form K � L L ′, the eigen
system of G can be solved efficiently by decomposing a much
smaller matrix (H L)′(H L) according to Proposition 1.

In this experiment, our task is to compute the top
r = 3 features extracted by KPCA (using the Gaussian
kernel). Let U, Ũ ∈ R

n×r be the matrices containing the
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Fig. 3. Low-rank approximation errors of different algorithms on using the polynomial kernel. (a) German, (b) splice, (c) adult1a, (d) dna, (e) segment,
(f) w1a, (g) uci, and (h) satimage.
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Fig. 4. Performance of different algorithms in approximating the top three features in KPCA. (a) German, (b) splice, (c) adult1a, (d) dna, (e) segment,
(f) w1a, (g) uci, and (h) satimage.

top r extracted eigenvectors and the approximate ones,
respectively. Following [21], we measure the misalignment
ε = min

A∈Rr×r
‖U − Ũ A‖2

F between the spans of these two sets

of eigenvectors, where A ∈ R
r×r is any linear transform in

the r -dimensional subspace. Fig. 4 plots the misalignment
error vs. time (in log scale) for the different algorithms. Each
node in the curve corresponds to one particular size (m) of
the landmark set, which is gradually increased from 1% to
10% of the dataset size. As can be seen, on using the same
number of landmark points (and hence the same amount
of memory in encoding the matrix), our algorithm gives
the lowest misalignment. Conversely, to achieve a specified
accuracy, our method requires the minimum amount of time.

Since KPCA has been widely used for feature extraction,
we examine the performance of the low-rank approximation

schemes by applying the extracted KPCA features in a classi-
fier. We randomly choose 80% of the patterns and use KPCA
to extract r = 3 features. The remaining 20% of the data are
then projected onto this low-dimensional space and a simple
k-nearest-neighbor classifier (with k = 20) is used for pre-
diction. Table II reports the classification errors averaged over
30 random repetitions. As can be seen, our method performs
best on a number of datasets. Indeed, it even outperforms
standard KPCA on a few datasets. We speculate that this
is because our method performs k-means in selecting the
landmark points, and thus can better remove the effect of noise.

C. Spectral Clustering and Embedding

Spectral clustering methods [8], such as the Laplacian
eigenmap [6] and normalized cut [18], have been very popular
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TABLE II

k-NN CLASSIFICATION ERRORS USING THE KPCA FEATURES EXTRACTED BY VARIOUS LOW-RANK APPROXIMATION SCHEMES

Data Standard KPCA Ours Nyström Drineas ICD
wdbc 17.40±4.30 7.19±2.53 7.89±3.23 8.27±2.36 17.87±3.65

diabetes 28.44±2.74 29.68±2.73 28.48±3.26 28.96±2.38 28.57±2.74
splice 38.10±4.40 22.48±2.95 33.75±3.13 32.73±4.23 38.53±3.10

australian 16.52±2.65 15.58±2.56 16.64±3.28 16.74±2.85 16.55±2.66
adult1a 21.21±2.24 20.66±2.17 21.57±2.67 21.27±2.20 21.18±2.25

ionosphere 21.17±4.37 13.19±4.43 16.01±4.74 16.67±4.36 21.50±3.82
dna 37.13±6.07 11.15±1.66 32.45±4.48 31.24±3.50 38.06±2.51

german 30.62±3.06 31.53±3.02 29.82±3.52 29.37±2.90 30.50±3.17
breastcancer 3.97±1.43 3.16±1.09 3.89±1.39 3.89±1.48 4.01±1.47

segment 9.78±1.80 7.71±1.46 7.61±1.55 7.34±1.60 9.85±1.75
satimage 11.88±1.20 11.72±1.22 11.57±1.05 11.36±1.25 11.90±1.20
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Fig. 5. Performance of different algorithms in approximating the 3-D embedding of Laplacian eigenmap. (a) German, (b) splice, (c) adult1a, (d) dna,
(e) segment, (f) w1a, (g) uci, and (h) satimage.

methods in manifold learning and clustering. Common to these
algorithms is the eigenvalue decomposition of the degree-
normalized kernel matrix S = D−(1/2)K D−(1/2), where K
is the kernel matrix and D is the diagonal degree matrix. The
eigenvector corresponding to the second largest eigenvalue of
S provides a relaxed solution to the NP-complete clustering
problem [18]. Suppose that we have a low-rank approximation
of the kernel matrix K of the form K � L L ′. The degree ma-
trix can be approximated as D � diag

(
L L ′1

)
, and the eigen

system of the normalized similarity matrix S can consequently
be solved efficiently by Proposition 1.

In this section, we apply different low-rank approximation
schemes to speed up the spectral methods of Laplacian eigen-
map [6] and normalized cut [18]. A fully connected graph
is used and the Gaussian kernel exp

(−‖x‖2/γ
)

is used to
compute the similarity. The kernel width is chosen as the
averaged squared distance between all the data points and the
sample mean.

1) Laplacian Eigenmap: We examine the eigenvectors of
the normalized Laplacian matrix corresponding to the three
smallest nonzero eigenvalues. The performance criterion is
the misalignment error as defined in Section IV-B. As can
be seen in Fig. 5, for most of the datasets, our algorithm is

very competitive with the other algorithms. Moreover, to attain
the same accuracy level, our algorithm needs the least amount
of computational time on most datasets.

2) Normalized Cut: We use some binary libsvm datasets
and some pairs from the uci-digits. Clustering errors (averaged
over 30 repetitions) are reported in Table III. For comparison,
we also report the clustering errors of the standard normalized
cut (without any approximation). As can be seen, on most
datasets, the performance of our algorithm is very close to
or slightly better than that of the original spectral clustering.
In comparison, other fast approximations give inferior results.
The time consumptions are not reported here because they
are similar to those in the Laplacian eigenmap experiments
(Fig. 5).

D. Large-Scale Examples

In this section, we perform spectral embedding (KPCA
and Laplacian eigenmap) experiments on some large datasets.
First, we use the isomap-face dataset which has 4000 patterns.
The number of landmark points is set to m = 100, and
the Gaussian kernel, with the kernel width chosen as the
averaged squared distance between sample points and the



ZHANG AND KWOK: CLUSTERED NYSTRÖM METHOD FOR LARGE SCALE MANIFOLD LEARNING AND DIMENSION REDUCTION 1585

TABLE III

CLUSTERING PERFORMANCE OF THE DIFFERENT LOW-RANK

APPROXIMATION ALGORITHMS IN THE CONTEXT OF NORMALIZED CUT

Data NC Ours Nyström Drineas ICD
uci-3v8 3.3 3.1±0.1 5.6±2.3 6.4±6.9 9.4
uci-3v5 7.1 6.5±0.3 8.4±5.4 8.9±6.1 10.2
uci-5v6 0.0 0.0±0.0 1.7±1.4 3.2±8.4 3.7
uci-6v8 0.8 0.8±0.1 3.9±8.0 1.5±0.9 5.6
uci-8v9 5.6 5.4±0.3 11.2±8.9 10.3±6.8 5.7
uci-2v7 1.1 1.1±0.1 3.2±6.22 1.8±0.7 1.9
uci-3v9 19.5 17.1±0.9 17.6±9.8 14.6±11.5 23.8
uci-4v9 4.4 4.3±0.2 7.9±3.2 6.9±2.3 11.3
wdbc 6.3 8.3±0.3 13.1±8.5 17.9±9.1 20.3

diabetes 34.3 36.6±2.1 42.4±3.9 46.4±2.6 35.4
splice 36.4 36.1±0.5 41.9±4.2 40.1±3.6 44.2

german 41.6 41.8±0.6 42.7±3.6 44.3±3.7 47.3
australian 18.2 18.41±2.2 22.6±8.4 24.2±9.1 19.4
adult1a 30.4 30.1±0.1 32.0±1.6 32.4±2.2 30.6

ionosphere 31.4 32.0±0.9 35.5±4.5 38.9±3.2 32.8
breast 2.6 2.7±0.00 6.5±7.6 19.8±10.1 3.0
w1a 25.4 37.3±4.0 38.6±6.9 38.4±1.9 23.1
dna 14.9 20.1±11.4 30.9±6.2 31.5±5.9 38.6

segment 42.1 42.4±6.5 42.7±7.3 43.3±6.9 44.6
satimage 46.8 41.5±6.0 40.3±5.7 42.2±6.8 43.9

(a) (b) (c)

(d) (e) (f)

Fig. 6. Exact and approximate spectral embedding results on the isomap-face
dataset. The number in brackets is the misalignment error e measured w.r.t.
the exact embedding result. Top: KPCA; Bottom: Laplacian eigenmap. (a)
Exact result. (b) Ours (e = 0.047). (c) Nystrom (e = 0.68). (d) Exact result.
(e) Ours (e = 5.14 × 10−5). (f) Nystrom (e = 1.51 × 10−3).

sample mean, is used. Recall that for stationary kernels (such
as the Gaussian kernel), sampling scheme I of [41] reduces
to uniform sampling and so the Drineas method is the same
as the Nyström method here. On the other hand, sampling
scheme II of [41] and the ICD require O(n2) memory and so
are too expensive on this dataset. The embedding results and
the corresponding misalignment errors are shown in Fig. 6. To
easily visualize the results, we use the two leading eigenvectors
as the embedding dimensions and the third leading eigenvector
for color coding. As can be seen, our results are closer to
the ground truth than those of the Nyström method, both
qualitatively and quantitatively.

We also experiment with two even larger datasets: connect
(with 67 557 patterns) and ijcnn (with 100 000 patterns).
Because of the sheer data size, the exact embedding solutions
cannot be computed for reference. Nevertheless, Fig. 7 shows
that there appear to exist interesting structures in these large-
scale datasets, which can be seen more clearly from the results
of the proposed method. These embeddings may be useful for
further exploratory data analysis.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Approximate spectral embedding results on some large datasets. Top:
KPCA; Bottom: Laplacian eigenmap. (a) connect: ours. (b) connect: Nystrom.
(c) ijcnn: ours. (d) ijcnn: Nystrom. (e) connect: ours. (f) connect: Nystrom.
(g) ijcnn: ours. (h) ijcnn: Nystrom.

E. GP Regression

The Nyström-based low-rank approximation has been
applied to speed up GP regression [15]. In this sec-
tion, we empirically compare the performance of differ-
ent low-rank approximation schemes in GP regression us-
ing the anisotropic squared exponential kernel K (x p, xq) =
exp

(
− ∑D

i=1((x pi − xqi )
2/2
2

i )
)

, with a separate length scale

for each input dimension on a data X ∈ R
n×d . We use two

popular benchmark regression datasets, Boston housing and
abalone, from the UC Irvine (UCI) Machine Learning Repos-
itory (http://archive.ics.uci.edu/ml/). The first dataset has 506
instances and 13 attributes, and the task is to predict the value
of owner-occupied homes, while the second dataset has 4177
instances with 8 attributes, and the task is to predict the age
of abalone from physical measurements. We randomly choose
90% of the data for training and the rest for testing. We first
use GP to learn the length scales of the squared exponential
kernel by maximizing the marginal likelihood. The learned
length scales have an obvious anisotropic property.6 We note
that the resultant kernel widths along different dimensions
demonstrate an obvious anisotropic property, which will serve
as a good example to test the various low-rank approximation
schemes in anisotropic situations.

We first examine the performance of different low-rank
approximation schemes on this learned kernel. Again, the
number of landmark points is gradually increased from 1%
to 10% of the training size. Each method is repeated 30 times
and the averaged approximation error is reported. Results are
shown7 in Fig. 8. As can be seen, the proposed method
gives very competitive performance, and is inferior only to
the optimal SVD decomposition.

Next, we perform GP regression using the full and
approximate (low-rank) kernel matrices. The performance
criterion is the root mean squared error RM SE =
(1/max |yi |)

√
1
n

∑n
i=1(yi − ŷi )2 where yi and ŷi are the target

and estimated output values on the i th pattern, respectively.

6For example, on the Boston housing data, the learned length scales are
3.2415, 21.6659, 40.0945, 66.2289, 0.8088, 3.0275, 4.1219, 1.6578, 3.0417,
0.8169, 6.9438, 6.0896, and 1.1679. Obviously, the second, third, and fourth
dimensions have much larger length scales.

7In case of squared exponential kernel, sampling scheme I of Drineas
reduces to random sampling (Section II-C of the main text) due to the diagonal
entries that all equal to 1, and so Drineas-I boils down to the standard Nyström
method.
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Fig. 8. Low-rank approximation errors of the different algorithms on an
anisotropic kernel matrix. (a) Boston housing and (b) abalone.
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Fig. 9. Performance of the different algorithms in GP regression. To improve
clarity, the error on the abalone dataset is plotted in log scale. (a) Boston
housing and (b) abalone.

Regression errors on the test sets are in Fig. 9. As can be
seen, the proposed method also gives very good performance.
In particular, when only 5% of the data are used as landmark
points, its performance on the abalone dataset is almost
identical to that when the full kernel matrix is used. This
clearly demonstrates the usefulness of low-rank approximation
in supervised (regression) problems.

From these results, we can see that, even when the data is
anisotropic, the proposed method (which uses k-means clus-
tering for the sampling process) is still competitive. Although
k-means clustering is unsuitable for non-spherical clusters, our
use of the k-means algorithm here is not for clustering but for
the selection of landmark points (in summarizing the data).
When the data’s global structure is anisotropic, the k-means
algorithm simply splits it into multiple spherical clusters. This
use of spherical clusters to approximate nonspherical data
is similar to the use of isotropic kernels for approximating
globally anisotropic distributions in Parzen window density es-
timation, and it is known that such an approximation converges
to the ground truth asymptotically [50]–[51]. Of course, using
anisotropic kernels would be more adaptive but requires more
computations (e.g., k-means using Mahalanobis distance).

V. CONCLUSION

Low-rank matrix approximation is a useful technique for
scaling up machine learning algorithms especially for di-
mensionality reduction and manifold learning. In this paper,
we provided a novel error bound on the Nyström low-rank
approximation, which relates the approximation error directly
with the encoding power of the landmarks points. Our error
analysis suggests the use of the k-means clustering centers
as the landmark points. Empirically, our clustered Nyström

low-rank approximation algorithm yields competitive perfor-
mance, in terms of both time and accuracy, on a number
of dimensionality reduction and manifold learning algorithms
such as KPCA, spectral clustering, and Laplacian eigenmap.

The current work can be extended in several directions.
For example, we will consider our algorithm in the more
general context of SVD. We can also extend our algorithm
to a supervised/semi-supervised learning scenario, where the
choice of the landmark points will be affected by the class
labels. Error analysis for nonstationary kernels (that are not
of the polynomial form) will also be an interesting future
direction to pursue. Finally, we are investigating the connec-
tions between the clustered Nyström method (for low-rank
approximation) and the density-weighted Nyström extension
(for computing kernel eigenfunctions) [40]. Results will be
reported in the future.
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