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Abstract

We investigate the task of 2D articulated human pose estimation in unconstrained still

images. This is extremely challenging because of variation in pose, anatomy, clothing,

and imaging conditions. Current methods use simple models of body part appearance

and plausible configurations due to limitations of available training data and constraints

on computational expense. We show that such models severely limit accuracy. Build-

ing on the successful pictorial structure model (PSM) we propose richer models of both

appearance and pose, using state-of-the-art discriminative classifiers without introducing

unacceptable computational expense. We introduce a new annotated database of chal-

lenging consumer images, an order of magnitude larger than currently available datasets,

and demonstrate over 50% relative improvement in pose estimation accuracy over a state-

of-the-art method.

1 Introduction
Human pose estimation is the task of estimating the ‘pose’ or configuration of a person’s

body parts e.g. labeling the position and orientation of the head, torso, arms and legs in an

image. It is an important goal since it is a fundamental part of high-level understanding of

imagery depicting people, with diverse applications including content-based image indexing,

surveillance, markerless motion capture or human computer interaction. The task is particu-

larly challenging because of the wide variation in human appearance present in natural im-

ages due to pose, clothing and imaging conditions (Fig. 1(a) and 1(d)). This is especially true

for the domain we investigate – unconstrained still images – where prior knowledge of the

motion being performed (e.g. walking) or constraints on the imaging setup (e.g. background

subtraction) cannot be exploited.

State-of-the-art methods typically use graphical models which represent the human body

as a connected collection of parts corresponding to head, torso and other limbs [1, 6, 9, 12,

16]. The particular model on which we build because of its previous success and modest

computational expense is the ‘pictorial structure model’ (PSM) [7]. The model consists of

two components: (i) appearance terms, which model the probability of a part being present

at a particular location and orientation given the input image; (ii) a prior which models the

probability distribution over pose, constraining the estimated pose to be plausible in terms

of human articulation. To enable efficient inference, two (unrealistic) assumptions are made:

(i) the appearance of a part is assumed independent of its pose and that of the other parts;
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(a) Pose varies appearance (b) Similar pose and appearance (c) Multimodal appearance (d) Widely varying poses

Figure 1: Features of people in natural images. (a) Part appearance is highly dependent on pose even

for the same person; (b) However, the appearance of multiple parts are highly correlated given similar

pose; (c) Clothing and anatomy differences lead to a need for nonlinear appearance models; (d) Simple

models of body joint angle distributions fail to capture the large variations present in poses.

(ii) the prior over pose is a Gaussian with ‘tree-structured’ covariance (see Section 2.1).

Furthermore, the per-part appearance terms use simple models e.g. linear image patch clas-

sifiers [12, 16]. Fig. 1 highlights some of the limitations of such approaches: Fig. 1(a) shows

how part appearance varies greatly with pose e.g. that of the leg as a function of foreshorten-

ing. Fig. 1(b) shows how appearance is correlated with pose e.g. similar poses yield similar

appearance for all parts. Fig. 1(c) shows how the linear assumption is likely to fail – e.g.

due to substantial variation in clothing patterns or anatomy. All images in Fig. 1 also show

how a simple Gaussian prior is a poor model of human articulation – for example given such

a model the angle between the torso and upper arms is effectively unconstrained. While

the limitations are clear, the choice and implementation of the PSM is a pragmatic one due

to (a) paucity of data available for learning; (b) constraints on computational expense. For

example the popular IIP dataset [16] offers just 100 training images from which to learn ap-

pearance and prior, so models must be kept simple to avoid over-fitting. Since the classifiers

used to model appearance terms must be applied in a sliding-window fashion exhaustively

over position and orientation, fast linear classifiers are appropriate.

In this paper we propose an extension of the PSM approach which incorporates richer

models of appearance and prior over pose without introducing unacceptable computational

expense. Our method builds on the idea of a ‘mixture of trees’ model [11, 23]. We partition

the space of human pose into mixture components or ‘clusters’, such that the prior over

plausible poses can be modeled with greater fidelity. Within each pose cluster we use pose-

specific appearance terms which implicitly capture the dependence of a part’s appearance on

pose and the correlation between the appearance of parts. To cope with the large variation

in part appearance due to factors such as clothing or varying anatomy we use state-of-the-art

nonlinear support vector machine (SVM) classifiers to model the appearance terms. This

would typically be prohibitive in terms of computational expense since such classifiers are

thousands of times slower than simple linear classifiers. However, we show that by adopting

a cascaded reduced set machine formulation [19] we can exploit such strong classifiers at

negligible additional computational expense. As noted, current methods have been limited

by the lack of available training data – to overcome this we introduce a new annotated dataset

of 2,000 diverse and challenging consumer images which will be made publicly available.

Our results show that the use of stronger appearance terms and prior model in the proposed

approach results in a greater than 50% relative improvement in pose estimation accuracy on

this dataset compared to a state-of-the-art method [12].
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Related work. In terms of part appearance, most work on articulated pose estimation and

tracking has used simple models, often hand-crafted, for example rectangular box filters or

edge templates [5, 10, 18, 20]. The original PSM model used color box filters [7] which im-

proves specificity, but requires a priori knowledge of the clothing color. Skin color has also

been exploited [14] but works poorly in unknown lighting and assumes short sleeves/trousers

are worn. Recent work has used machine learning methods to learn part appearance from

annotated training images. Ramanan learns a weighted (linear) edge template for each part

in a conditional random field (CRF) framework [16], and combines this with a color model

bootstrapped from the test image. Ferrari et al. [6, 9] also use an image-specific color model,

but require an initial localization of the person from an upper-body detector, which is not ap-

plicable to unconstrained pose. Several authors have proposed to use state-of-the-art image

descriptors for body part modeling. Buehler et al. [3] use the Histogram of Oriented Gradient

(HOG) descriptor [4] which gives controlled invariance to lighting and spatial deformation;

a simple ‘nearest neighbor’ scheme is used to detect the parts. Andriluka et al. [1] use a sim-

ilar ‘shape context’ descriptor [15], learning discriminative part detectors using boosting.

Kumar et al. use HOG and skin color cues and a linear classifier [13], and in our previous

work [12] we combine HOG with local segmentation cues again using a linear classifier,

reporting the best results on the IIP dataset [1, 12, 16] to our knowledge.

The most successful recent methods [1, 3, 6, 9, 12, 16, 18] have built on the PSM frame-

work [7]. We discuss this approach in more detail in Section 2.1. Briefly, the approach

enables efficient globally optimal inference and efficient sampling by constraining the form

of prior over pose to a ‘tree-structured’ Gaussian, and requiring independent appearance be-

tween parts. However, the constrained prior limits the fidelity with which plausible human

articulation can be modeled and prevents modeling of phenomena such as self-occlusion

of parts. Work related to ours has attempted to address these issues by using a mixture of

trees [11] prior or a latent ‘pose’ variable [24]. Wang and Mori [23] use multiple tree models

to better constrain allowable poses, and to represent self-occlusion. However, the accuracy

of their results is limited by the weak appearance terms used. We propose to use the ap-

proach of multiple trees to better model the wide range of poses present in natural images

(see Fig. 1(d) for examples), but additionally incorporate strong, pose-specific appearance

terms. In the related domain of deformable object detection a similar approach has proven

very successful [8], though again using much simpler appearance models than proposed here.

Outline. Section 2 describes our proposed method, covering (i) the PSM framework on

which we build; (ii) pose clustering to improve the prior model and support pose-specific

appearance terms; (iii) discriminative part detectors used to model body part appearance.

Section 3 introduces our new dataset and reports experiments, and we offer conclusions in

Section 4.

2 Method
This section describes our proposed method. We start with a brief overview of the PSM

approach on which we build, and then describe our proposed contributions in terms of richer

models of prior and appearance.

2.1 Pictorial Structure Model

The PSM [7] provides a probabilistic framework for modeling appearance and pose of the

human body and supports computationally-efficient inference. The body is modeled as a

collection of ten major parts or ‘limbs’ – the head, torso, and upper- and lower-limbs.

A tree-structured graph over the parts is defined with nodes representing the individual
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(a) Global (b) “Front” (c) “Left” (d) “Back” (e) “Right”

Figure 2: Learnt priors over pose for a conventional global model (one cluster) and four learnt pose

clusters. Solid lines represent limbs on the right side of the body from a person-centric viewpoint. The

variance at one standard deviation of joint offsets (blue circles) and joint angles (orange arcs) is shown.

The learnt clusters can be seen to approximate views from the front, left, back and right.

parts and edges representing conditional probability distributions on the relative position

and orientation of parts. A 2-D configuration – or pose – of the model is parametrized by

L = {l1, l2, . . . , ln} where each li = 〈xi,yi,θi〉 specifies the 2D position and orientation of a

part. The posterior probability of a particular pose given an image I can be written as

p(L|I) ∝ p(I|L)p(L) = ∏
i

p(fi|li)

︸ ︷︷ ︸

appearance

∏
(li,l j)∈E

p(li|l j)

︸ ︷︷ ︸

prior

(1)

where the appearance term represents the likelihood that a part matches a descriptor of the

corresponding image region fi, and the prior term represents the prior probability of a con-

figuration.

The purpose of the prior term is twofold: (i) it constrains the model to configurations

which are plausible given the kinematic limits of the body, and (ii) it encourages poses which

are more common in the case of ambiguous image information. As shown in Eqn. 1 the tree-

structured model means that the prior p(L) factorizes into a product of pairwise conditional

distributions on each edge (li, l j) ∈ E. This is crucial in enabling efficient inference using a

dynamic programming approach [7]. Each pairwise conditional probability p(li|l j) models

the compatibility of the relative location and orientation of the parts. We model the distri-

bution of relative location and orientation as Gaussians in a transformed space [7, 17]. This

choice is necessary to enable efficient inference using the distance transform [7]. Allowing

the parts to drift apart in a controlled ‘loose-limbed’ manner [21] improves robustness. The

appearance term p(I|L) captures the agreement between a hypothesized pose and the input

image. The PSM assumes independence between all parts such that the appearance term can

be evaluated tractably for each part in isolation. As described in Section 2.3 we model the

appearance terms discriminatively using a classifier for each part.

2.2 Mixture of PSMs prior model

In most previous methods a single tree-structured Gaussian prior model and set of part ap-

pearance models are learnt [1, 12, 16]. This leads to a broad, non-descriptive prior and an

appearance model which cannot capture the ‘multi-modal’ appearance of body parts e.g. the

different appearance of the head in frontal, profile or rear views. We propose to overcome

these issues by partitioning the pose space into clusters, to give a mixture of PSMs – one

PSM for each cluster. Partitioning the pose space has two positive effects: (i) the prior over

pose is modeled more faithfully since the tree-structured Gaussian assumption is more real-

istic within a pose cluster than over the whole space; (ii) since each cluster contains parts in a

tighter range of configurations the variation in appearance is reduced (Fig. 1(b)). This allows

us to build much more successful appearance models for each part at a cluster level than

globally, where the discrimination task is much harder. Clustering also implicitly captures

the correlation between the appearance of multiple parts, conditioned on the cluster.
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Figure 3: Part (torso) detection using a cascaded reduced set machine (RSM). Given an image we

extract HOG features and pass them to the cascade. At each cascade stage a more powerful RSM

classifies each possible part location. Locations which are considered to not contain parts are rejected

(shown in black underneath each classifier). Locations which are classified as potential part locations

are passed to the next – more powerful – stage. Finally the full SVM is applied to each remaining

candidate location to give the ‘probability’ that the part is at any given location (red is high probability).

Pose clustering. Partitioning the pose space is formulated as a maximum-likelihood clus-

tering problem – we seek a set of K pose clusters such that each pose in the annotated ground

truth data has high probability under at least one of the clusters:

Θ̂ = argmax
Θ

N

∏
i=1

K
max
j=1

p(Li|Θ j) (2)

where Li is the ground truth pose for one of the N training images, and Θ j denotes the

parameters for one of the PSMs (one per cluster). The pose likelihood given one of the

PSMs p(Li|Θ j) is defined as in Eqn. 1. Note that the cluster assignment for each image

i.e. which cluster is responsible for the corresponding pose is treated as a latent variable,

determined by maximization over the clusters.

Algorithm. To solve Eqn. 2 for the cluster parameters Θ̂ which best explain the training

data we adopt an alternation approach in the style of the Expectation Maximization (EM) or

K-means algorithms [2]. Given an initial assignment of training images to clusters we com-

pute the maximum likelihood parameters for each cluster – the distributions over relative

position and orientation of connected parts. Each image is then re-assigned to the cluster

under which it has the maximum likelihood. The cluster parameters are updated, and the

process repeats until convergence, when no images are re-assigned to different clusters. This

is a greedy process and thus the algorithm finds a local maximum of Eqn. 2. We therefore

run the algorithm several times from randomized starting points: Each training pose is rep-

resented as a vector of horizontal and vertical offsets between each joint and the neck joint

(to give translation invariance). K-means with random initialization is applied to these pose

descriptors to obtain the initial cluster assignments.

Fig. 2 shows an example of the resulting pose clusters. The choice of the number of

clusters K is discussed fully in Section 3.

2.3 Appearance modeling by cascaded SVM part detectors

To model the appearance of each part (p(fi|li) in Eqn. 1) we use discriminative training to

learn a sliding-window detector. As noted, a different set of detectors is used for each cluster.

This allows us to implicitly capture the correlation in appearance between parts conditioned

on the pose cluster, and reduces the variation in appearance compared to a global model.

Descriptor. As in some recent promising work on pose estimation [3, 12] we adopt the

HOG descriptor [4] to describe the appearance of an image window. This gives a controlled

level of invariance to lighting and local spatial deformation while being efficient to compute.
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Athletics Badminton Baseball Gymnastics Parkour Soccer Tennis Volleyball

Figure 4: Examples from our new dataset of 2,000 images (see also Fig. 1 & 5). Images were gathered

from Flickr using the tags shown, and have been annotated with 14 joint positions.

Given a hypothesized part position and orientation we compute a HOG descriptor on a part-

axis oriented rectangular grid. The image gradient 〈 d
dx

I, d
dy

I〉 is estimated at each pixel in

the image by convolution using simple derivative filters ([−1,0,1]) [4]) and the magnitude

and orientation are computed. The gradient orientation is quantized into a fixed number of

discrete ‘bins’ and then regions of neighboring pixels are pooled into a set of spatial ‘cells’.

For each cell a histogram of quantized orientations is calculated, with each pixel casting a

weighted contribution according to the corresponding gradient magnitude. Gradient orienta-

tions are computed unsigned (dark/light vs. light/dark transitions are considered equal) since

we do not know a priori whether parts will appear light or dark against the background. To

avoid quantization artifacts we apply linear interpolation between neighboring orientation

bins and use Gaussian weighting when pooling orientations into each cell [4].

Classifier. Previous work has typically used simple linear models to represent part appear-

ance [12, 16, 17]. Even within a pose cluster this is inadequate – there is simply too much

variation in the possible appearance of a part. We therefore propose to use an SVM classifier

with a nonlinear kernel – this enables modeling of the multi-modal appearance distribution.

We define the likelihood of an image window conditioned on a part position and orienta-

tion as proportional to the output of the SVM (the signed distance from the discriminant

hyperplane):

p(f|l) ∝ f (x) =
N

∑
i=1

αik(x,xi)+b (3)

where N is the number of training examples xi (image windows) and αi and b are the learnt

weights and bias. We use a radial basis function (RBF) kernel k(x,xi) = exp(−γ‖x−xi‖
2)

to enable arbitrary nonlinear discriminants to be learnt.

Cascaded reduced set machine. In order to evaluate appearance terms within the PSM

framework, the classifier for each part must be applied exhaustively over all image posi-

tions and orientations. Using a nonlinear SVM (Eqn. 3) this is prohibitively computationally

expensive since evaluating the classification function can require many thousands of high-

dimensional dot product evaluations. We therefore propose to use a cascade [19, 22] of

simple to complex classifiers (see Fig. 3). The idea is that most image windows can be re-

jected as non-parts by simple (and fast) classifiers, such that only a few windows need to be

considered by the full (slow) nonlinear SVM classifier.

To build classifiers in the cascade with controllable complexity we adopt the reduced set

machine (RSM) of Romdhani et al. [19], which we briefly summarize here. A nonlinear

SVM can be considered as a linear SVM operating on a ‘lifted’ vector in the span of the n

support vectors Ψ = ∑
n
i=1 αiΦ(xi) where Φ is the mapping into feature space, by a reduced

set expansion: We seek a reduced set of m vectors with which to approximate the input

Ψ′ = ∑
m
i=1 βiΦ(zi) where m ≪ n. Essentially we rewrite the SVM function (Eqn. 3) in terms

of a much smaller set of general vectors which are not necessarily a subset of the training

vectors. A suitable reduced set is found by minimizing the norm ‖Ψ−Ψ′‖2. Note that while
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Clusters: 1 2 4 6 8

Linear 23.0% 17.9% 24.0% 24.8% 27.8%

Proposed Nonlinear 34.4% 38.2% 49.2% 45.8% 45.7%

Table 1: Part localization accuracy as a function of the number of pose clusters for a linear appearance

model and our proposed method (cascaded nonlinear SVM). Results shown are for an equal split of the

training data into training and test sets.

Φ cannot be computed explicitly in the RBF case, the ‘kernel trick’ applies [19] to make the

minimization possible.

Using the RSM approach we train a cascade of classifiers with increasing complexity.

The mth stage of the cascade (see Fig. 3) is a nonlinear SVM with m reduced set vectors,

including the m− 1 vectors from the previous stage. We use a total of 50 reduced set ma-

chines, and a final cascade stage consisting of the full SVM. Note that there is insignificant

computational expense in re-using vectors from previous stages since the kernel values have

already been computed. For each stage we learn the bias term from a validation set. At test

time windows for which the output of a cascade stage is below zero are discarded (shown be-

low each classifier in Fig. 3). Therefore the number of windows passed to subsequent (more

expensive) stages is reduced. At each cascade stage we increase the allowed proportion of

false negatives exponentially towards a final target value. This value offers direct control

over the amount of windows reaching the final SVM and thus allows a trade-off between

accuracy and efficiency.

2.4 Combining multiple PSMs

Given a test image, MAP inference for each PSM is carried out in parallel using an efficient

dynamic programming algorithm [7]. This yields one pose estimate and corresponding prob-

ability per cluster. An aggregation scheme is required to select which pose estimate is most

likely – note that simply selecting the estimate with highest probability according to Eqn. 1

performs poorly since the probability is only defined up to an unknown constant, due to the

use of discriminative appearance terms, and since the SVM does not output true (log) prob-

abilities. Instead we learn a weight wc for each cluster c such that the pose estimate from the

cluster with maximum weighted probability is selected: ĉ = argmaxc wc p(Lc|I). In order to

learn the weights for each cluster we use the maximum likelihood clusters assigned to each

training image as ground truth, and a constrained form of multinomial logistic regression [2].

3 Experimental Results
In this section we report experiments on the proposed and baseline methods. First we de-

scribe the new dataset we have prepared and the evaluation protocol. We then report experi-

ments on the effect of parameter choices and final results.

Dataset and evaluation protocol. To support experiments in modeling appearance with

a realistic amount of training data we have collected and annotated a new dataset of 2,000

images of full body poses which we will make available publicly. This compares to the 305

images (100 for training) in the IIP dataset which has been used in previous work [1, 12, 16].

To collect the data we queried Flickr for images with the following tags: athletics, bad-

minton, baseball, gymnastics, parkour, soccer, tennis, and volleyball. These image classes

contain a range of highly challenging poses. For testing, images were cropped and scaled so

that the labeled person is roughly 150 pixels in length – the same scale as the IIP dataset [16].

The dataset is partitioned into two subsets of 1,000 images for training and testing re-

spectively. We strictly conduct all training and parameter selection on the training subset

alone. Final results are reported on the test set. We adopt the evaluation criteria proposed
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Baseline

(a) 4/10 (b) 4/10 (c) 4/10 (d) 2/10 (e) 7/10 (f) 7/10 (g) 5/10 (h) 6/10

Proposed Method

(i) 10/10 (j) 10/10 (k) 9/10 (l) 9/10 (m) 9/10 (n) 10/10 (o) 10/10 (p) 10/10

Figure 5: Example results. The top row show results from the baseline method. The bottom row

shows results from our proposed method. For each the fraction of correctly localized parts is shown.

by Ferrari et al. [9] which has been adopted in recent state-of-the-art approaches [1, 12]: for

a given pose estimate a part is considered correctly localized if its predicted endpoints are

within 50% of the part length from the corresponding ground truth endpoints.

Parameter selection. Our method has essentially a single parameter – the number of pose

clusters. The parameters of the SVM part detectors (regularization and bandwidth), and the

bias terms for each cascade stage, are selected by cross-validation on the training set. Table 1

reports the results as a function of the number of clusters. Results are shown for linear and

nonlinear SVM part detectors. Note that here we train and test on an equal split of the train-

ing data to avoid optimization on the test data. Using a ‘global’ model (1 cluster) and linear

classifier as in previous work gives an overall part localization accuracy of 23%. Replacing

the linear part detection stage with our proposed cascaded nonlinear SVM classifier gives a

relative performance improvement of nearly 50% to over 34% of parts correctly localized.

Partitioning the pose space into four clusters gives a 114% relative improvement in perfor-

mance over the baseline to over 49%. Fig. 2 visualizes the prior over pose for a global model

and four clusters. The learnt clusters clearly approximate poses imaged from the front, left,

back and right sides. The left and right side clusters contain a much larger degree of variance

in part appearance due primarily to self-occlusion.

Final results. Table 2 reports per-part localization results for our 1,000 image test set –

all parameters were strictly selected on the training subset in all cases. The first column of

Table 2 gives the overall accuracy. We use letters (A)-(E) to refer to rows of the table here.

We first compare the use of a global prior with (A) a linear appearance classifier (as in

previous work [12]) and (B) our proposed nonlinear SVM. The overall accuracy improves

from 36.4% to 44.7% using our proposed nonlinear classifier. The improvement in some

parts is substantial, validating the use of a stronger nonlinear classifier. We next introduce

partitioning of the pose space, using 4 clusters as determined to give the best results on the

training subset. Recall that the clusters give us both: (i) a more accurate prior; (ii) pose-

specific appearance models (one per cluster). Using the linear appearance model (C) the

accuracy of many parts improves substantially over the global model (A) with the over-

all accuracy improving from 36.4% to 43.6%. When we combine the clustered pose with

the nonlinear appearance model (E) the overall accuracy improves further to 55.1%. This

demonstrates that partitioning the pose space alone does not reduce the variation in appear-
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Method Total Torso Upper Leg Lower Leg Upper Arm Forearm Head

Linear (A) 36.4 64.1 42.4 43.1 41.2 40.7 26.2 23.7 16.5 15.7 49.9

Nonlinear (B) 44.7 70.9 53.5 58.7 49.3 47.4 37.1 29.1 26.8 18.8 55.9

4 Cluster Linear (C) 43.6 74.1 54.4 53.6 49.0 49.2 30.5 30.9 17.0 17.7 59.7

4 Cluster Nonlinear (Prior Only) (D) 50.4 74.1 59.6 62.3 54.6 53.5 43.1 40.7 31.7 26.6 58.2

4 Cluster Nonlinear (E) 55.1 78.1 64.8 66.7 60.3 57.3 48.3 46.5 34.5 31.2 62.9

Table 2: Comparison of part localization rates (in percentages) for experiments on appearance terms,

prior and pose-specific appearance. See text for discussion.

Athletics Badminton Baseball Gymnastics Parkour Soccer Tennis Volleyball

Part localization % 45.9 59.6 63.2 28.0 32.4 66.7 60.4 59.4

Table 3: Results of the proposed method for subsets defined by activity. See text for discussion.

ance within each cluster sufficiently such that a linear classifier is successful. We finally test

if the improvement in accuracy is due to (a) the improved prior alone or (b) the pose-specific

appearance terms. To test this we use a single nonlinear appearance term trained on all im-

ages, and use the pose clusters only to define the prior. The results (D) show that much of the

improvement is due to the improved prior – 50.4% overall compared to 44.7% using a global

prior. However, using the pose-specific appearance terms improves the accuracy further to

55.1% overall, a relative improvement of around 10%.

Our final result of 55.1% overall accuracy (E) represents a relative improvement of over

50% over the baseline method. Note also that for some parts the increase in accuracy is

very substantial, for example the relative improvement in accuracy of forearm localization is

around 100% (34.5% vs. 16.5% and 31.2% vs. 15.7%).

Fig. 5 shows example results for the baseline method (top row) and our proposed ap-

proach (bottom row). A number of images show clear improvements due to a more detailed

pose prior e.g. (i) and (j) have joint angles at the right shoulder and elbow respectively which

would receive a low likelihood under the global prior. This can lead to catastrophic failures

visible for the baseline method in (a) and (b). Results (c) and (d) show rear views, where the

ambiguity between left and right limb appearance leads to the limbs being swapped under

the global model. Using our clustered prior we see in (k) and (l) that this ambiguity is over-

come. It is also apparent that a more detailed prior improves accuracy – the occluded left

arm in (e) is successfully localized in (m) due to the influence of a stronger, pose-specific

prior (Fig. 2(e)) which features a higher degree of bending at the left elbow. Finally the

improvements due to our stronger appearance models are visible in (n), (o) and (p) where

part localization is more accurate. In (f) the right arm is difficult to see due to the lighting

direction and clothing color, yet our approach overcomes this in (n).

Accuracy by activity. Table 3 shows the accuracy of our proposed method for each ac-

tivity (by Flickr tag) present in our dataset, giving an insight into the broad range of pose

difficulties present. The gymnastics and parkour images generally contain highly challeng-

ing and variable poses (Fig. 4). For the categories which tend to feature in other datasets

– namely soccer and baseball – performance is much better, indicative of the more ‘stable’

poses that players adopt.

IIP results. Table 4 shows results of our proposed method (using models trained on our

dataset) and previous approaches on the 205 test images of the IIP dataset [16]. Our proposed

method gives overall accuracy of 66.2%, compared to the previous best reported result of

56.4% [12] – a relative improvement of over 17%. This shows clearly that more training

data combined with the ability to model the multi-modalities present lead to a higher level

of part localization accuracy. Additionally, the result validates that our proposed method

generalizes across the datasets, and that the improved results are not due to over-fitting.
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Method Total Torso Upper Leg Lower Leg Upper Arm Forearm Head

Ramanan[16] 27.2 52.1 30.2 31.7 27.8 30.2 17.0 18.0 14.6 12.6 37.5

Andriluka et al. [1] 55.2 81.4 67.3 59.0 63.9 46.3 47.3 47.8 31.2 32.1 75.6

Johnson & Everingham[12] 56.4 77.6 64.9 58.1 57.6 52.2 55.6 50.7 42.4 36.1 68.8

4 Cluster Nonlinear 66.2 85.4 76.1 70.7 69.8 61.0 64.9 64.4 49.3 44.4 76.1

Table 4: Comparison of part localization rates (in percentages) for previous approaches and ours on

the IIP dataset[16]. See text for discussion.

4 Conclusions
We have shown that by combining a mixture model of pose with state-of-the-art nonlinear

classifiers for pose-specific part appearance it is possible to model the high levels of variation

present in natural images of human poses. Overall we achieve greater than 50% relative

improvement in accuracy over a state-of-the-art method on our new dataset and over 17%

relative improvement on the IIP dataset [16]. Our results show that performance is highly-

dependent on the activity (e.g. gymnastics) and that future work might profitably concentrate

on targeting these challenging activity classes in terms of developing efficient ways to collect

large training sets, further refinement of pose priors, incorporation of scene information, and

even stronger appearance models.
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