
Clustering 1-dimensional periodic
network using betweenness centrality

Norie Fu1 and Vorapong Suppakitpaisarn1,2*

Background

In this paper1, we propose a clustering method for temporal networks specified by

1-dimensional periodic graphs. A k-dimensional periodic graphs is a graph constructed

by placing a finite graph to all cells in a k-dimensional lattice. �at finite graph is called

static graph. A 1-dimensional periodic graph is then a graph that has an infinite copies of

the static graph. Each of the copies is placed on an integer of a number line. An example

of a 1-dimensional periodic graph, together with its static graph, can be found in Fig. 1.

�e 1-dimensional periodic graphs have a wide range of applications. �ese include

the model that illustrated how people move in specific situations, as proposed by Seki-

moto et al. [2], and the model that was used for finding the optimal train schedule based

on train demand, as proposed by Orlin, Serafini, and Ukovich [3–5]. In this paper, we

will focus on the application of the graphs to opportunistic communication where

each object in sensor networks communicates with the others in every given period of

time [6].

1 �is manuscript is an extension of our paper previously published in the proceeding of CSoNet’15 [1].

Abstract

Background: While the temporal networks have a wide range of applications such

as opportunistic communication, there are not many clustering algorithms specifically

proposed for them.

Methods: Based on betweenness centrality for periodic graphs, we give a clustering

pseudo-polynomial time algorithm for temporal networks, in which the transit value is

always positive and the least common multiple of all transit values is bounded.

Results: Our experimental results show that the centrality of networks with 125 nodes

and 455 edges can be efficiently computed in 3.2 s. Not only the clustering results

using the infinite betweenness centrality for this kind of networks are better, but also

the nodes with biggest influences are more precisely detected when the betweenness

centrality is computed over the periodic graph.

Conclusion: The algorithm provides a better result for temporal social networks with

an acceptable running time.

Keywords: Efficient algorithms for social computing, Clustering algorithm, Social

influence, Opportunistic network, Periodic graph

Open Access

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

RESEARCH

Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

DOI 10.1186/s40649-016-0031-1

*Correspondence:

vorapong@is.s.u-tokyo.ac.jp
2 Department of Computer

Science, The University

of Tokyo, 7-3-1 Hongo,

Bunkyo-ku, Tokyo 113-0033,

Japan

Full list of author information

is available at the end of the

article

http://orcid.org/0000-0002-7020-395X
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40649-016-0031-1&domain=pdf

Page 2 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Each sensor i in the opportunistic networks is represented by a node i in a static graph.

In a periodic graph generated by the static graph, there are infinite copies of the node i,

(i, 〈h〉) for h ∈ Z. A node (i, 〈h〉) in the periodic graph represents the sensor i for time h. If

the communication time between the sensor i and a sensor j is r, we know that the infor-

mation from i at time h, represented by the node (i, 〈h〉) in the periodic graph, reaches

j at time h + r. Since the sensor j at time h + r is represented by a node (j, �h + r�), we

link the node (i, 〈h〉) with the node (j, �h + r�). Similarly, for any communication between

two sensors i′ and j′ that takes r′ period of time, we link (i′, �h′�) with (j′, �h′ + r′�) for all

h
′
∈ Z. �us, we get the periodic structure as shown in Fig. 1.

Because of the applications discussed in the previous paragraph, there are many

works that proposed algorithms for the graph. �ose works include a work by Orlin,

who proposes algorithms to determine weakly connected components [7], strongly con-

nected components [7], Eulerian paths [7], minimum cost spanning trees [7], maximum

flows [8], and minimum cost flows [9]. Later, Cohen and Megiddo propose algorithms

to test bipartiteness [10] and detect cycles [11] in the periodic graphs. Besides that, an

algorithm to test a planarity of a given periodic graph is proposed by Iwano and Steiglitz

in [12], and an algorithm to find a shortest path for an arbitrary periodic graph is pro-

posed by Höfting and Wanke in [13]. In [14], Fu proposes the shortest path algorithm

for a special class of planar periodic graphs. �e result shows that planarity can help in

speeding up the computation of the previous shortest path algorithm.

Although there are many periodic extensions for many basic algorithmic problems

in the literature, there are not many data mining or machine learning techniques spe-

cifically proposed for them. In this paper, we will focus on clustering problem, one of

the most common problems in data mining. We consider a clustering method based on

betweenness centrality.

Centrality is a notion that defines the importance of nodes and edges in a given

graph [15]. It is discussed in [16] that, if we remove all edges with high centrality from

the graph, each connected component in the remaining graph can represent a cluster.

Among all centrality indexes, betweenness centrality is known as one of the most com-

mon indexes [17]. Besides its application in clustering, we can also use the betweenness

value to measure the influence of each node in the network [17, 18].

It is also possible to cluster a periodic graph using the betweenness centrality of its

static graph. However, we strongly believe that the clustering method ignores some

Fig. 1 A 1-dimensional periodic graph (right) and its associate static graph (left)

Page 3 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

important information that we have in the periodic graph. A method which considers

more information should help us find better clustering results.

Our contribution

�e definition of betweenness centrality in the previous works is made only for finite

graphs. As the number of nodes of an periodic graph is infinite, it is not clear if we can

directly use the definition in our setting. In [19], we extend the definition to the peri-

odic case that preserve the meaning of the betweenness centrality. Besides that, we give

a mathematical proof to show that the new definition is valid, using theoretical results

on integer programming. Also, we give an algorithm to compute this betweenness cen-

trality for a given network based on dynamic programming and recurrence relations.

�e algorithm is demonstrated to run in polynomial time when the input graph is VAP-

planar, i.e., there exists a drawing of the input periodic graph with no line crossing and

no finite area containing an infinite number of nodes.

Although VAP-planar periodic graphs are used in many practical applications, graphs

obtained from opportunistic communication are usually not VAP-planar graphs. �is

motivates us to consider a different class of periodic graphs in this paper. In this class, we

assume that the graphs have the following properties:

1 Recall that a periodic graph contains a repetitive structure, and each part corre-

sponds to a snapshot at time h. Let Vh := {(i, �h′�) : h′ = h} be a set of nodes in time

h, and the transit value of an edge from Vh to Vh∗ be h∗
− h. We require that the tran-

sit values of all edges are positive.

2 We require that the edge weights, which are used for deciding which paths are the

shortest paths, are equal to their transit value.

3 We require that the least common multiples of all transit values are bounded by a

constant K.

�e transit value corresponds to the communication time between two nodes in our

model. Clearly, the communication time must be positive. Also, since the shortest paths

should be the communication paths that take smallest amount of time, it is natural to

consider the weight of each edge as the communication time between nodes. �us, we

strongly believe that the second assumption is also natural.

�e least realistic requirement could be the third one. However, we observe that there

are not usually many distinct values of communication time in most of the real-world

datasets. �erefore, the least common multiplier of the transit values is usually small.

In ‘Algorithm’ section, we propose an algorithm that can find a betweenness centrality

of a periodic graph satisfying those three conditions. �e ideas behind the algorithm are

dynamic programming and recurrence relations. �e asymptotic complexity of our algo-

rithm is O(|V|3) when |V| is the number of nodes in the input static graph.

Since there is no algorithm for clustering the periodic graph proposed in literature, we

compare our computation with the computation time of the fastest algorithm for finite

graphs [20], for which the asymptotic complexity is O(|V||E |) when |V| is the number

of nodes and |E | is the number of edges in the input graph. Although our asymptotic

computation time is larger than the previous algorithm, the experimental results in

Page 4 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

‘experimental results’ section show that the computation time for both is not that differ-

ent in practice.

Our algorithm takes 3.2 s for an opportunistic network with 125 nodes and 455

edges constructed from the data according to Fournet and Barrat [21]. By means of our

betweenness centrality on the periodic graph, we can find clusters with around 50 %

higher precision and recall, compared to the results obtained from applying the classical

definition to its static graph. Besides that, we can spread information to 3–10 % more

nodes in periodic graph, if we use nodes with higher periodic betweenness instead of

nodes with higher betweenness in static graph.

Related works

It is important to note that the 1-dimensional periodic graphs in this paper are different

from the 1-dimensional graphs in papers on complex networks such as [22, 23]. While

each integer on a number line has exactly one node in the 1-dimensional graph, each

integer has a whole static graph, which can have more than one node, in the 1-dimen-

sional periodic graph.

�ere are many works studying properties that are changed or updated over time

(see [24, 25] for reviews on this topic). �ere are also works which use those properties

to propose an algorithm for clustering, such as Aynaud et al. [26] and influence maxi-

mization Ohsaka et al. [27]. Besides, when the input graph slightly changes, there exist

works that can efficiently update the value of the influence maximization, e.g., Ohsaka

et al. [28] and betweenness centrality, e.g., by Hayashi et al. [29].

Besides the opportunistic networks previously discussed, communication networks in

which nodes send an information to others at every given periods are also studied by

other models (e.g., models proposed in [30]). In [31, 32], Lahiri and Berger-Wolf model

the communication by a set of subgraphs of social networks. Each subgraph contains a

communication at a specific time. �e authors devise an algorithm that can detect all

subgraphs in polynomial time in the paper. �e centrality of nodes in this model is dis-

cussed by Pfeiffer, and Neville in [33]. Although the model is used in a wide range of

applications such as biological studies [34, 35], it assumes that information is immedi-

ately arrived to its receiver after the transmission. �at makes the model slightly differ-

ent from ours.

�e dynamic in communication periods between two nodes is also a well-studied

research topic. While, in many studies (e.g., [36, 37]), the distribution of periods between

two communications is approximated by Poisson processes, the study by Barabasi [38]

shows that the human communications consists of several burst periods and there is a

long duration between each of the periods. In this work, we consider the case when the

long duration has a periodic pattern.

While we select the most important nodes to maximize the influence in this paper,

there are also works that select a transition probability to maximize the delivery effi-

ciency of a given network (e.g., [39–41]).

Also, there are works that transform pseudoperiodic time series to a complex net-

work, and use properties of the network to analyze the series (e.g., [42, 43]). Although

the graph in those works are obtained from dynamic series, the graph is static. Hence,

methods used for analyzing their graphs are different from ours.

Page 5 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Problem de�nition

In ‘Definition of Periodic Graphs’ subsection, we will give a formal definition of periodic

graphs. �en, in ‘Periodic Betweenness Centrality’ subsection, we will give a definition

of the betweenness centrality for the periodic graphs. �e betweenness definition has

been introduced in our previous work [19].

De�nition of periodic graphs

A periodic graph is an infinite repetition of a finite structure. We call that finite struc-

ture as static graph, and define it in Definition 1. �en, we define the periodic graph in

Definition 2.

Definition 1 (Static Graph) �e tuple G = (V , E , w) of a vertex set V = {1, . . . , n}, a set

of directed edges with vector labels E = {e(1), . . . , e(m)} ⊆ (V × V) × Z
d, and a weight

function w : E → R>0 is called a static graph.

Definition 2 (Periodic Graph) For a static graph G = (V , E , w), the periodic graph

G = (V ,E, ŵ) generated by G is an infinite graph with weights of edges, such that

V = V × Z
d,

and

If G has d-dimensional transit vectors, then we call G a d-dimensional periodic

graph. Unless otherwise specified, we use G = (V , E , w) to denote a static graph, and

G = (V ,E, ŵ) to denote the periodic graph generated by G. In this paper, we consider

only the case when d = 1, which is a case when the vector h and g in the previous defini-

tion are 1-dimensional vectors of integer. For simplicity, we will assume that both the

static graphs and the periodic graphs considered in this paper are weakly connected. If

the input graph is not weakly connected, the betweenness results of the graph can be

straightforwardly obtained from the betweenness results of its connected components.

Definition 3 (Length of a walk) Given a walk W with edges F on G, we define the length

of W as
∑

e∈F

ŵ(e). Analogously on G, we define the length of a walk W with edges F as

∑

e∈F

w(e).

�e distance from s to t in G, denoted by dG(s, t) (or simply d(s, t) if the graph is omis-

sible), is the length of a walk from s to t in G such that its length is minimized. �is kind

of walk is also known as a shortest path.

Periodic betweenness centrality

Let H = (U , F) be an undirected graph. For any two vertices s, t ∈ U , we denote by σH
s,t

the number of distinct shortest paths between s and t in H, and σH
s,t (v) the ones that con-

tains v.

E = {((i,h), (j,h + g)) : h ∈ Z
d
, ((i, j), g) ∈ E} ⊂ V × V ,

ŵ : E → R>0, ŵ((i,h), (j,h + g)) = w(((i, j), g)).

Page 6 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

�e betweenness centrality of a vertex v on a finite graph H = (U , F) is defined as

We will abbreviate gH (v), σH
s,t, σ

H
s,t (v) as g(v), σs,t(v) and σs,t, when the graph is obvious

from its context.

Now, let G = (V ,E) be a graph that could be infinite, and fix the vertex ν betweenness

centrality of which is to be computed. We denote the set VD(µ) as follows:

where D ∈ R≥0. Intuitively, the set VD(µ) is a set of vertices to which the distance from

µ is no longer than D, or from which the distance to µ is no longer than D. Unless oth-

erwise specified, we abbreviate VD(µ) by VD when µ = ν. Let GD the subgraph of G

induced by a set of nodes VD. Our betweenness centrality of a node ν ∈ V , pbc(ν), can be

defined as follows.

Definition 4 (Periodic Betweenness Centrality) For ν ∈ V , the periodic betweenness

centrality of ν on G is

We note that the periodic betweenness centrality is an extension of the betweenness

centrality on a finite graph H = (U , F). It is straightforward to show that the periodic

betweenness centrality of any u ∈ U , pbc(u), is equal to g(u)/|U |2, i.e., we can calculate

the value of pbc(u) by dividing the betweenness centralities of all nodes by |U |2. Since

the main purpose of the betweenness is to compare the centrality of the vertices, scaling

does not affect the result.

In [19], we show that, for all 1-dimensional periodic graph G and all nodes ν of G, the

value of pbc(ν) always converges to some positive real number. In the same paper, we

give an algorithm that can output pbc(ν) in polynomial time, if the given periodic graph

is VAP-planar.

Algorithm

We do not give an algorithm for a general 1-dimensional one periodic graph, but a

periodic graph used for capturing behaviors of an opportunistic network. �erefore,

we assume that the input periodic graphs must satisfy some assumptions given in the

‘Assumption’ subsection.

In the ‘Dynamic Programming Idea’ subsection, we will give an algorithm for finding

a betweenness centrality for nodes in finite graphs. �e algorithm does not improve the

state-of-the-art algorithm for the finite graphs, but it can be extended to an algorithm

for the periodic graph. We give the extended algorithm in the ‘Recurrence Relations’

subsection, and prove some of its properties in the ‘Properties of Sv’ subsection.

gH (v) =
∑

s �=v �=t

σH
s,t (v)

σH
s,t

.

VD(µ) :=

{

ω ∈ V : dG(µ,ω) < D
}

∪

{

ω ∈ V : dG(ω,µ) < D
}

pbc(ν) = lim
D→+∞

gGD (ν)

|VD|2
.

Page 7 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Assumption

Before formally defining our assumption, we give the following definitions.

Definition 5 (Positive Periodic Graph) Let G = (V , E , w) be a static graph of a 1-dimen-

sional periodic graph G. If, for all e(t) = (i, j, �g�) ∈ E, the value of g is positive, then G is

a positive periodic graph.

Since a cycle 〈(i1, i2, 〈g1〉), (i2, i3, 〈g2〉), . . . , (im, i1, 〈gm〉)〉 must have
∑

i gi = 0, and the

summation of the values of gi for all paths in a positive periodic graph is positive. We

know that a positive periodic graph does not contain a cycle.

Definition 6 (Weight-Transit Periodic Graph) Let G = (V , E , w) be a static graph of a

1-dimensional periodic graph G. If, for all e(t) = (i(t), j(t), �g (t)�) ∈ E, w
(

e(t)
)

= g (t), then

G is a weight-transit periodic graph.

Also, we define a period of a periodic graph G as follows:

Definition 7 (Period of Periodic Graph) Let G = (V , E , w) be a static graph of a 1-dimen-

sional periodic graph G. Let E = {e(1), . . . , e(|E|)} and, for all e(t), e(t) = (i(t), j(t), �g (t)�).

�e period of G, p(G), is defined as

We assume the our input periodic graph G (or G) must satisfy the following conditions:

1 G is a positive periodic graph, and

2 G is a weight-transit periodic graph.

When we model an opportunistic network using a periodic graph, each node in the

static graph, i ∈ V represents a person or a sensor node. A node (i, t) ∈ V represents a

person i at a time slot t. An edge from (i, t) to (j, t ′) represents a communication which

begins at i at time t and arrives at j at time t ′. �erefore, g := t ′ − t represents a commu-

nication time from i to j in our model. Because it is natural to assume that the commu-

nication time is positive, we believe that the first assumption is natural. Also, it is natural

to assume that the weights of edges are equal to the communication time. Furthermore,

it is natural to assume that our input graph is a weight-transit periodic graph.

Since the computation time of our algorithm is bounded by a polynomial function of

|V|, |E |, and p(G), our algorithm will take a long time to terminate if the period of the

graph G is large. �us, we also assume that the period is much smaller than |V| and |E | .

�e value of the least common multiple is actually very small in our datasets, since the

number of distinct values of g in an opportunistic network is usually not greater than 5.

Dynamic programming idea

Recall the notation GD defined in the previous section. For any g ′
∈ Z, we denote

p(G) = lcm

(

g (1)
, · · · , g (|E|)

)

.

V (g ′) := {(i, �g�) ∈ V : g = g ′}.

Page 8 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Assume without loss of generality that ν ∈ V
(0). We know that the number of shortest

paths σ
GD

s,t (ν) > 0, only if s ∈ V
(ℓ) ∪ {ν} and t ∈ V (k) ∪ {ν} for some ℓ < 0 and k > 0.

Otherwise, σ
GD

s,t (ν) = 0.

In this subsection, we will give an idea about how we calculate the value σ
GD

s,t (ν) > 0

for some specific D ∈ Z+, s ∈ V
(ℓ) and t ∈ V

(u). To calculate the above value, we will first

compute the number of the shortest paths from s to ν, denoted by σs,ν, and the distance

from s to ν, denoted by d(s, ν), in GD. Our ideas behind the computation of those values

are shown in Algorithm 1.

To find the number of the shortest paths from s to t, in Algorithm 1, σs,t, we calculate

the number of the shortest paths from s to all nodes in V (ℓ+1),V (ℓ+2), . . . ,V ℓ′

 when ℓ′

is an integer such that t ∈ V
ℓ
′

. Recall our assumption that, for all edges (u, v) such that

u ∈ V
(i) and v ∈ V (j), we have j > i. We know that all paths to a node v in V (i) must pass

through a node in V (i′) for i′ < i before arriving at v. Based on this idea, we calculate

the number of shortest paths and the distances to all nodes in
⋃

ℓ<i′<i
V

(i′), and use that

information to calculate the values for V (i). �e set Sv obtained from the function arg min

in Line 7 denotes a set of all edges (u, v) that minimize the value d(s,u) + w((u, v)). Since

d(s, u) denotes the shortest distance from s to u and w((u, v)) denotes the distance from

u to v, we know that Sv denotes all incoming edges to v that is a part of a shortest path

between s and v. �us, the number of shortest paths from s to v is the summation of the

number from s to members of Sv, as described in Line 8.

Input: A graph GD = (VD, ED), ∈ Z−, a node s ∈ V () ∩ VD, and a node ν ∈ V (0).
Output: σs,ν and d(s, ν)

1 Set σs,v ← 0 and d(s, v) ← ∞ for all v ∈
≤

V () ∩ VD \{s}.

2 Set σs,s ← 1 and d(s, s) ← 0.
3 i ← + 1

4 while V (i) ∩ VD = ∅ do

5 forall the v ∈ V (i) do

6 d(s, v) ← min
u:(u,v)∈ED

[d(s, u) + w ((u, v))]

7 Sv ← arg min
(u,v)∈ED

[d(s, u) + w ((u, v))]

8 σs,v ←
u:(u,v)∈Sv

σs,u

9 end

10 i ← i + 1

11 end

Algorithm 1: An algorithm for calculating the number of shortest paths from

s to ν and the distance from s to ν in a finite graph.

Algorithm 1 is clearly slower than the fastest algorithm for the betweenness calcula-

tions proposed in [20]. However, the idea used in the algorithm can be extended to an

infinite periodic graph in the following subsection. We will show the correctness and the

computation time of the algorithm in the following theorem.

�eorem 1 Algorithm 1 can calculate the values of σs,ν and d(s, ν) in O(|ED|) when ED

is the set of edges in VD.

Page 9 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Proof �e bottleneck of Algorithm 1 is encountered in Lines 6–8 of the algorithm.

Because each edge will be considered only once in those lines, the computation time of

the algorithm is O(|ED|).

We will prove the correctness of the algorithm by induction on the variable i. It is clear

that there are no paths from s to v when the node v is in
(

⋃

ℓ′≤ℓ V
(ℓ′) ∩ VD

)

\{s}, because

our periodic graph is positive. �us, σs,v = 0 and d(s, v) = ∞, as assigned in Line 1.

Because our positive periodic graph contains no cycle, it is clear that the only path from

s to s is an empty set. �erefore, σs,s = 1 and d(s, s) = 0, as shown in Line 2.

Consider a node v ∈
⋃

ℓ′<i
V (ℓ′) ∩ VD. Assume that Algorithm 1 can give correct val-

ues of σs,v and d(s, v). Since v �= s, we know that a node v needs at least one edge to reach

the node s. �erefore, d(s, v) can be calculated as shown in Line 6 of the algorithm. All

the shortest paths to the node v are the paths to some other nodes u added with an edge

from u to v. �e number of the shortest paths is the summation of the number of short-

est paths to each neighbor u of v such that d(s,u) + w((u, v)) is minimized, as calculated

in Lines 7–8. �

Using the same method, we can calculate σs,t and d(s, t) for all s ∈

⋃

ℓ′<0

V
(ℓ′) and

t ∈

⋃
ℓ′>0

V
(ℓ′). Also, by inverting the sides of all edges, we can calculate the values of σν,t

and d(ν, t) for each t ∈

⋃
ℓ>0

V
(ℓ). Based on these values, we know that there exist some

shortest paths from s, t that pass through ν, only if d(s, t) = d(s, ν) + d(ν, t). If there are

some shortest paths, it is clear that the number σ
GD

s,t (ν) is equal to σ
GD
s,ν · σ

GD

ν,t .

In short, we can calculate the betweenness centrality of ν by

where ps,t,ν = 1 if d(s, t) = d(s, ν) + d(ν, t), and ps,t,ν = 0 otherwise.

Recurrence relations

Recall that V (ℓ) can be written in the form: {(0, �ℓ�), . . . , (n, �ℓ�)}. When D → ∞ and

Algorithm 1 do not terminate, we will find a betweenness centrality by solving a recur-

rence relation for σs,ν, σν,t, σs,t and |VD|2.

Let gmax := max{g : (i, j, �g�) ∈ E}. Based on Algorithm 1, we know that σs,(v,〈i〉) can be

written in the form:

ci,r,v,v′ = 1 when
(

(v′, �i − r�), (v, �i�)
)

∈ S(v,�i�), and ci,r,v,v′ = 0 otherwise.

Let s ∈ V
(ℓ) for some ℓ ∈ Z−. When the given periodic graph is weight-transit, we will

argue in the next subsection that, for all i > ℓ, ci,r,v,v′ = 1 if ((v′, �i − r�), (v, �i�)) ∈ E and

(v′, �i − r�) are reachable from s. Otherwise, ci,r,v,v′ = 0. Since σs,(v′,�i−r�) = 0 for any node

(v′, �i − r�) is unreachable from s, we can still get the same solution even when we set

ci,r,v,v′ to 1. We can set ci,r,v,v′ = 1 if ((v′, �i − r�), (v, �i�)) ∈ E, and ci,r,v,v′ = 0 otherwise.

gGD (ν) =
∑

s �=ν �=t

ps,t,ν
σ
GD
s,t (ν)

σ
GD
s,t

=
∑

s �=ν �=t

ps,t,ν
σ
GD
s,ν · σ

GD
ν,t

σ
GD
s,t

,

σs,(v,�i�) =

gmax∑

r=1

∑

(v′,�i−r�)∈V (i−r)

ci,r,v,v′σs,(v′,�i−r�).

Page 10 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

From the periodicity of our graph, we have ci,r,v,v′ = cj,r,v,v′ for any i, j ∈ Z. We can sim-

plify the notation ci,r,v,v′ to cr,v,v′, and get the following recurrence relation:

Since we can calculate the value of σs,(v,〈i〉) for all v ∈ V using Algorithm 1, we can solve

the recurrence relation to find a closed form for σs,(v,〈i〉).

�e number of the shortest paths from (v′, �i′�) to (v, 〈i〉) is equal to the number of the

shortest paths from (v′, �i′ − i�) to (v, 〈0〉), since the transition on a periodic graph does

not change the number of paths. Hence, σ(v′,�i′�),(v,�i�) = σ(v′,�i′−i�),(v,�0�). Let s = (v′, �i′�) .

As we have the value of σ(v′,�i′�),(v,�i�) for all v′, v, i from the calculation in the previous

paragraph, we can use those results to get σ(v′,�j�),(v,�0�) for all v′, v, j. When ν = (v, �0�), we

can have the closed form for the number of the shortest paths from all nodes to ν.

Using the similar idea, we can find closed forms for σ(v,〈i〉),t, σs,t, and |VD|2. From these

closed forms, we can calculate pbc(ν) defined in ‘Problem Definition’ section.

�eorem 2 Using our method, we can calculate pbc(ν) for all ν ∈ V in O
(

|V|3p3(G)
)

where p(G) := lcm
(

{g : (i, j, �g) ∈ E}
)

.

Proof By means of the properties of Sv shown in the following subsection, we can

obtain recurrence relations for σs,(v,〈i〉), σ(v,〈i〉),t, σs,t, and |VD|2 in O(|E |p(G)). In this paper,

we solve the recurrence relations by eigenvalue decomposition. Since the number of var-

iables in our recurrence relations is |V|p(G), the size of a square matrix constructed from

the recurrence relation is |V|p(G). �e computation time for the eigenvalue decomposi-

tion of a square matrix size s is O(s3). �us, the computation time used for solving the

recurrence relations is O
(

|V|3p3(G)
)

.

From the previous paragraph, we know that the computation time of our method is

O
(

|E |p(G) + |V|3p3(G)
)

= O
(

|V|3p3(G)
)

. �

From the previous theorem, we know that the running time of our algorithm is poly-

nomial of |V|, |E |, and p(G). Since we assume that p(G) is smaller than a constant K, our

computation time, O(|V|3), is slightly larger than those of the fastest algorithm for static

graphs, which is O(|V||E |) for a static graph with |V| nodes and |E | edges [20].

Properties of Sv

In this subsection, we will prove a property of the set Sv defined in Algorithm 1. Let t be a

function from a path 〈e1, . . . , em〉 in E to R+ such that

when the corresponding edge of ei in G is (ui,ui+1, �gi�). Also, for all s, t ∈ V , let

σs,(v,�i�) =

gmax∑

r=1

∑

(v′,�i−r�)∈V (i−r)

cr,v,v′σs,(v′,�i−r�).

t(�e1, . . . , em�) =

∑m
i=1 w(ei)
∑m

i=1 gi

Ss,t := arg min{t(P) : P ∈ Ps,t}

Page 11 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

when Ps,t is a set of all paths from s to t and arg min returns a set of paths such that all mem-

bers of the set minimize the value of t(P). From the notation, we have the following lemma.

Lemma 1 Let s ∈ V
(ℓ) and e be an edge in G. �e edge e is in the set S(u,〈i〉), if and only if

there is a path P ∈ Ss,(u,�i�) such that e ∈ P.

Proof For any path �e′
1
, . . . , e′

m′� from s ∈ V
(ℓ) to (u, 〈i〉), if the corresponding edge of ei

in G is e′i = (u′
i,u

′
i+1

, �g ′
i �), then we have

∑m′

i=1
g ′

i = i − ℓ. �us, a path P1 from s ∈ V
(ℓ)

to (u, 〈i〉) has a smaller summation of weights than a path P2 from s ∈ V
(ℓ) to (u, 〈i〉), if

and only if t(P1) ≤ t(P2). P
∗ is a shortest path from s ∈ V

(ℓ) to (u, 〈i〉), if and only if P∗

minimizes t(P) and P∗ ∈ Ss,(u,�i�). Since e ∈ S(u,�i�) if and only if e is in some shortest path

from s to (u, 〈i〉), we can prove this lemma. �

We will use our assumption that the input periodic graph is a weight-transit graph in

the following theorem.

�eorem 3 If, for all e ∈
(

(u′, �i′�), (u, �i�)
)

∈ E, i − i
′
= w(e), then

Proof Based on the assumption, we know that all paths P from s to (u, 〈i〉) has t(P) = 1.

�erefore, Ss,(u,〈i〉) is a set of all paths from s to (u, 〈i〉). �e edge ((u′, �i′�), (u, �i�))

is included in one of the paths from s to (u, 〈i〉), if and only if (u′, �i′�) is reach-

able from s and there is an edge from (u′, �i′�) to (u, 〈i〉). By Lemma 1, we know that

((u′, �i′�), (u, �i�)) ∈ S(u,�i�), if and only if
(

(u′, �i′�), (u, �i�)
)

∈ E and (u′, �i′�) is reachable

from s. �

Our result can be also applied to the case when the input periodic is not a weight-

transit periodic graph. Recall that we denote the set of edges in the static graph by

E = {e(1), . . . , e(m)}. Let e(i) := (νi,µi, �gi�) and

If the subgraph of the static graph (V , EM , w) is strongly connected, we can calculate the

betweenness centrality using only the edges in EM. �at is because any path that con-

tains an edge in E\EM is not a shortest path. When we know that the shortest paths con-

tain only edges in EM, we can follow the same argument in Lemma 1 and �eorem 3 to

obtain the following result:

�eorem 4 If (V , EM , w) is strongly connected, and

S(u,�i�) = {
(

(u′
, �i′�), (u, �i�)

)

∈ E : (u′
, �i′�) is reachable from s}.

EM :=

{

e(i) ∈ E :
w(ei)

gi
= min

1≤j≤m

w(ej)

gj

}

.

EM = {((i, �h�), (j, �h� + �g�)) : �h� ∈ Z, ((i, j), �g�) ∈ EM},

Page 12 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

�en, we have

Example

In this subsection, we will use a periodic graph shown in Fig. 2 to explain our algorithm

given in this section. To simplify our notation, we will denote a vector with only one

integer 〈g〉 by g here.

�e static graph is G = (V , E , w) where V = {1, 2, 3, 4}, and

Let e(i) =

(

µi, νi, gi
)

. We have w
(

e(i)
)

= gi, because we assume that the graph is a transit-

weight periodic graph. �e period p(G) is equal to 2.

In our static graph, all edges are reachable from all nodes. �us, we get the following

recurrence relation for any s ∈ G:

When s = (1, 0), we have σs,(u,ℓ) = 0 for all u ∈ V and ℓ < 0. For ℓ = 0, σs,(1,0) = 1 and

σs,(u,0) = 0 if u �= 1. By solving the recurrence relation, for t > 0, we have

S(u,�i�) = {
(

(u′
, �i′�), (u, �i�)

)

∈ EM : (u′
, �i′�) is reachable from s}.

E =

{

e
(1)
, . . . , e(8)

}

= {(1, 1, 2), (1, 2, 2, (2, 3, 1), (2, 4, 1), (3, 1, 1),

(3, 2, 1), (4, 1, 1), (4, 2, 1)}

σs,(1,ℓ) = σs,(1,ℓ−2) + σs,(3,ℓ−1) + σs,(4,ℓ−1)

σs,(2,ℓ) = σs,(1,ℓ−2) + σs,(3,ℓ−1) + σs,(4,ℓ−1)

σs,(3,ℓ) = σs,(2,ℓ−1)

σs,(4,ℓ) = σs,(3,ℓ−1)

σ(1,−ℓ),(1,0) = σ(1,−ℓ),(2,0) = σ(1,0),(1,ℓ) = σ(1,0),(2,ℓ) =

{

3ℓ/2−1 ℓ mod 2 ≡ 0,

0 otherwise,

σ(1,−ℓ),(3,0) = σ(1,−ℓ),(4,0) = σ(1,0),(3,ℓ) = σ(1,0),(4,ℓ) =

{

3(ℓ−1)/2−1 ℓ mod 2 ≡ 1 and ℓ > 1,

0 otherwise.

Fig. 2 Input graphs for the ‘Example’ subsection a static graph b periodic graph

Page 13 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Similarly, we have

When u ∈ {3, 4}, we have

Now, we calculate the betweenness centrality of (1, 0). We know from the solutions of

the recurrence relations that a node (1, ℓ′) and a node (1, ℓ) will have a shortest path that

includes (1, 0), if and only if ℓ′, ℓ mod 2 ≡ 0. When ℓ′
< 0 and ℓ > 0, the number of the

shortest paths is

Since the number of the shortest paths between (1, ℓ′) and (1, ℓ) is 3(ℓ′
−ℓ)/2−1, one-third

of the shortest paths passes through (1, 0). By the same argument, we know that, if there

is a shortest path from a node (ν′, ℓ′) to a node (ν, ℓ), that passes through (1, 0), then one-

third of the shortest paths between the points passes through (1, 0). Let S′

D
 be a set of

nodes in VD which has a path to (1, 0), and let SD be a set of nodes in VD which has a path

from (1, 0). Based on �eorem 3, we know that there is a shortest path from
(

u
′, ℓ′

)

 to

(i, ℓ) that pass through (1, 0), if
(

u
′, ℓ′

)

∈ S
′

D
 and (u, ℓ) ∈ SD.

Since we know that

Using the same argument, we have pbc((2, 0)) = 1/24, pbc((3, 0)) = 1/32, and

pbc((4, 0)) = 1/32.

�e conventional betweenness centralities of the nodes 1, 2, 3, and 4 of the static graph in

Fig. 2a are 6, 10, 6.5, and 6.5, respectively. Although two results look similar, we can observe

from the periodic graph that the nodes 3 and 4 are much more important than the node 1

but the classical betweenness centralities of nodes 3 and 4 are larger than that of node 1 by

only 8.3 %. By means of our definition and algorithm, the betweenness centralities of nodes 3

and 4 are larger than that of node 1 by 50 %. �erefore, we strongly believe that our between-

ness centralities are better than the classical definition for the 1-dimensional periodic graph.

In the following section, we provide experimental results to prove the above belief.

σ(2,−ℓ),(1,0) = σ(2,−ℓ),(2,0) = σ(2,0),(1,ℓ) = σ(2,0),(2,ℓ) =

{

2 · 3ℓ/2−1 ℓ mod 2 ≡ 0,

0 otherwise,

σ(2,−ℓ),(3,0) = σ(2,−ℓ),(4,0) = σ(2,0),(3,ℓ) = σ(2,0),(4,ℓ) =

{

2 · 3(ℓ−1)/2−1 ℓ mod 2 ≡ 1,

0 otherwise.

σ(u,−ℓ),(1,0) = σ(u,−ℓ),(2,0) = σ(u,0),(1,ℓ) = σ(u,0),(2,ℓ) =

{

3(ℓ−1)/2 ℓ mod 2 ≡ 1,

0 otherwise,

σ(u,−ℓ),(3,0) = σ(u,−ℓ),(4,0) = σ(u,0),(3,ℓ) = σ(u,0),(4,ℓ) =

{

3ℓ/2−1 ℓ mod 2 ≡ 0,

0 otherwise.

σ(1,ℓ′),(1,0) · σ(1,0),(1,ℓ) = 3
(ℓ−ℓ′)/2−2

.

lim
D→∞

|SD|

|VD|
= lim

D→∞

|S′
D
|

|VD|
=

1

4
,

pbc((1, 0)) = lim
D→∞





1

|VD|2





�

(ν′,ℓ′)∈S′
D ,(ν,ℓ)∈SD

1

3
+

�

(ν′,ℓ′)∈S′
D

1 +
�

(ν,ℓ)∈SD

1







 =
1

48
.

Page 14 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Experimental results

Our experimental settings and results are as follows.

Dataset

As temporal networks with periodic graphs are an area of emerging research, there are

not so many published works of datasets with clustering information. We choose to con-

struct a periodic graph based on a dataset collected for a previous research [21].2 In that

paper, the authors installed a devise on 125 high school students to detect all of their

communications during four school days.

�e dataset contains 28,561 communication records. Each record consists of IDs of

two students who make a communication, and a time stamp in which that communica-

tion occurs. We observe from the dataset that there is a clear periodic pattern in those

communication records. All the students communicate with their friends on daily basis

(or even on hourly basis with closest ones).

We construct our static graph G = (V , E , w) from that observation. Each node in V

represents a student. An edge (i, j, 〈g〉) is in the edge set E, if student i communicates

with student j once in every g hours, and the weight of an edge (i, j, 〈g〉) is equal to g. As a

result of this construction, we get a static graph with 125 nodes and 455 edges.

Based on the static graph, we will get a periodic graph G = (V ,E, ŵ), where (i, �h�) ∈ V

represents a student i at time h. An edge
(

(i, �h�), (j, �h + g�)
)

∈ E represents the fact that

the information known by i at time h will be known by j at time h + g, as i talks with j

once in every g hours. �is is because the high school students have a fixed class sched-

ule and they only share physical location with people for other classes (and can speak

freely) in very specific situations such as lunch breaks or between-class breaks.

Computational time

We implement our betweenness centrality algorithm and the fastest algorithm for finite

graph in [20] using Python, and run the program on a personal computer with Intel(R)

Core(TM) i7-3770 @ 3.40GHz CPU, Windows 8.1 64 bits, 16GB RAM. Our algorithm

takes only 3.2 s for the periodic graph constructed in the previous subsection, while the

previous algorithm takes 0.4 seconds for computing betweenness for the static graph,

resulting in only an eightfold slower computation time compared to that when comput-

ing it on the infinite periodic graph.

Clustering using pbc(v)

We can also find each edge-betweenness using the edge-partition technique, and thereby

the betweenness of that middle node will be the edge betweenness. One of the most

common clustering methods is to remove edges with highest betweenness, and group

nodes that are in the same connected component into a cluster.

In this experiment, we set the number of removed edges to p × 455 when p is a real

number between 0.1 and 1.

In Fig. 3, we compare the clustering results obtained by removing edges with high infi-

nite betweenness and the results obtained by removing edges with high betweenness

2 �e dataset is published at http://www.sociopatterns.org.

http://www.sociopatterns.org

Page 15 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

in static graph when p = 0.5. �e color of each node represents a class of each student

given in our dataset. Two nodes are considered to be in the same cluster, if they are con-

nected in the result graphs. We can clearly see from the figure that the pink nodes and

the green nodes are put into the same cluster in the conventional clustering results,

while all clusters are almost unicolor in our clustering results.

In Fig. 4, clustering results are evaluated by the precision, the value, and the F-measure

calculated from the results and clusters given in the dataset. Although our precision is

smaller than the value from the previous method in some p, our recall is significantly

larger for all p. �erefore, our F-measure is also larger for all p. When p = 0.5, we

improve the precision by 51 %, recall by 66 %, and F-measure by 57 %.

Maximizing in�uence using pbc(v)

In this subsection, we intend to model the way some information spreads over the stu-

dents (e.g., a rumor). For this purpose, we select k students, with k being an integer

Fig. 3 Edge-betweenness clusters using betweenness values on static graph (left) and periodic graph (right);

Each node represents a student, and the color of each node represents the class of a student correspond-

ing to the node. The edges shown in the figures are edges that remained after we remove edges with high

betweenness centrality. Each connected component in the remaining graphs represents a cluster of nodes

Fig. 4 Comparison between our results and previous works. a clustering results. b influence maximization

Page 16 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

between 1–10, and with probability p ∈ {0.15, 0.3}, the selected students will send infor-

mation to node adjacent to them in G. �e nodes who receive the information will for-

ward the information with the same probability after adding more content to it.

Because more contents are added, students who did forward the information may for-

ward the message again. To assure that a large number of students can get several con-

tents added during the process, we intend to maximize the number of nodes that are

forwarded information in periodic graph.

In Fig. 4b, it can be clearly seen that nodes selected by periodic betweenness centrality

can affect more nodes than nodes selected by betweenness centrality in static graph. As

seen from our results, it can affect up to 20 % more nodes than the conventional method

when k = 2 and p = 0.15, and up to 9.9 % when k = 8 and p = 0.3.

Synthesized dataset

To confirm that our algorithm is scalable, we perform an experiment on datasets synthe-

sized from a Facebook ego network. �e network has 4039 nodes and 88234 edges, and

can be obtained at the Stanford large network dataset collection (SNAP) [44].

Our datasets are subgraphs of the Facebook ego network. �e numbers of nodes in

each subgraph are 200, 300, 400, 500, 600, 700, 800, 900. To find the subgraphs, we begin

from a node with highest degree, and perform a breadth-first search from the node. We

stop the search when the number of nodes reaches the desired number. Our subgraphs

are subgraphs induced by the set of nodes found by the search. �e numbers of edges in

the subgraphs with 200, 300, 400, 500, 600, 700, 800, and 900 are 962, 2046, 3120, 3513,

4326, 5635, 7448, and 9976, respectively. �e weight of the edges are chosen randomly

from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Although there are many previous works that generated the subgraphs by picking

nodes at random (e.g., [45]), the method does not work in this experiment as it outputs

sparse graphs with a large number of small connected components. We strongly believe

that the subgraphs obtained from the breadth-first search algorithm can maintain prop-

erties of the social network such as small-world phenomenon.

In Fig. 5a, for the subgraphs of the Facebook ego network, we compare the computa-

tion time of our method to those of the method calculating the betweenness centralities

of static graphs. When the number of nodes becomes larger, the difference between the

computation times becomes larger. However, when we divide the computation time for

the static graphs with our computation result, the division results become smaller when

the number of nodes becomes larger. We can see from Fig. 5b that, when the number

of nodes is 200, our computation time is about 6.6 times of that in the static graphs.

When the number of nodes is 900, our computation time is only about 3.8 times of that

of the previous works. From these results, we expect that our computation time is not

that larger than the time in the previous works in a large graph.

We also compare the computation times of our algorithm and the algorithm for static

graphs when the input networks are random graphs. We generated the graphs using the

Erdős-Rényi model. �e numbers of nodes in the graphs are 50, 100, 150, 200, 250, 300,

350, 400, and 450. Two nodes in the graphs are connected with probability 0.3. �us,

the numbers of edges in the graph with 50, 100, 150, 200, 250, 300, 350, 400, and 450 are

about 377, 1485, 3353, 5970, 9338, 13455, 18323, 23940, 30308, and 37425, respectively.

Page 17 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

�e computation times for this dataset are shown in Fig. 6a. Unlike the computation

times in Fig. 5a, we found that the difference between our computation time and the

previous computation time becomes larger when the number of nodes is larger.

Next, we discuss our experimental results when the input networks have small-world

properties. To generate graphs that have such properties, we use the Watts-Strogatz

model [47]. Similar to the random graphs, the numbers of nodes in the graphs are 50,

100, 150, 200, 250, 300, 350, 400, and 450, and two nodes in the graphs are connected

with probability 0.3. In this setting, the difference between two computation times does

not clearly increase when the number of nodes increases. However, we can still observe

the increasing trend in Fig. 7b.

�e results obtained from the subgraphs of the Facebook ego network are different

from those obtained from random graphs and graphs with small-world properties. We

believe that the reason behind that is the number of edges in each input graph. �e

number of edges in graphs obtained from the ego network grows linearly with the num-

ber of nodes, while the number of edges in the other two datasets grows quadratically.

We know from the results that the difference between our computation time and the

previous computation time tends to be larger when the number of edges is larger. �at

Fig. 5 Computation times when the inputs are synthesized from Facebook dataset obtained from [44]. a

Comparison between the computation times for the periodic betweenness centrality and the classical cen-

trality on the static graphs. b The computation times for the periodic betweenness centrality divided by the

computation time for the classical centrality on the static graphs

Fig. 6 Computation times when the inputs are random graphs generated from Erdős-Rényi model [46].

a Comparison between the computation times for the periodic betweenness centrality and the classical

centrality on the static graphs. b the computation times for the periodic betweenness centrality divided by

the computation time for the classical centrality on the static graphs

Page 18 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

is surprising, since our computational complexity given in �eorem 2, O(|V|3), does

not depend on the number of edges, while the complexity of the previous algorithm,

O(|V||E |), depends on the number of edges. Based on this result, we strongly believe that

our analysis can be improved to reduce our computational complexity to the other level

depending on the number of edges.

Although our computation time is not much larger than that of the previous works,

our memory consumption is much larger than them. While the previous algorithms use

only O(|V|) memory, we use O(|V|2p2(G)). Because, in these synthesized datasets, the

value of p(G) can be as large as 27,720, we cannot perform an experiment on the datasets

with more than 1000 nodes. Reducing the memory consumption in our algorithm is cur-

rently one of the goals that we are aiming for.

Conclusion and future work

It usually takes long computation time to extract information from a temporal network,

as the number of nodes in the graph is usually exceptionally large. We can reduce that

computation time if the network can be specified as a repetitive structure of a small graph,

called the static graph. In this paper, we propose an efficient algorithm that can compute

betweenness centrality of that infinite network. �e computation time of the algorithm

proposed is comparable to the time that the fastest method required for the static graph.

Currently, we are aiming to find more applications of the betweenness centrality on

the periodic graph, other than the clustering and the influence maximization. Also, we

are planning to collect information to construct more periodic datasets, and use those

datasets to show that our results are more preferable than the results obtained when

using previous methods on static graph. Besides, we plan to find a mathematical model

that can capture properties of opportunistic networks. We will use the model to gener-

ate a large periodic graph, before using that large graph to test if our algorithm is scal-

able enough in those practical settings.

Although the time to exactly calculate the betweenness centrality is as large as

O(|V||E |), there are scalable algorithms proposed to approximate the value of the cen-

trality (e.g., [29]). In future work, we aim to devise an algorithm for approximating the

periodic betweenness centrality that can terminate in O(|V|).

Fig. 7 Computation times when the inputs are graphs with small-world properties generated from Watts-

Strogatz model [47]. a Comparison between the computation times for the periodic betweenness centrality

and the classical centrality on the static graphs. b The computation times for the periodic betweenness

centrality divided by the computation times for the classical centrality on the static graphs

Page 19 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

Authors’ contributions

NF contributed the problem formulation, organized this research, and provided a theoretical insight of periodic graphs.

VS devised the algorithm, proved the theorems, performed the experiment, and wrote the first draft of this paper. Both

authors revised the final draft. Both authors read and approved the final manuscript.

Author details
1 JST, ERATO Kawarabayashi Large Graph Project, Global Research Center for Big Data Mathematics, National Institute

of Informatics (NII), 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-0003, Japan. 2 Department of Computer Science, The

University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Acknowledgements

The authors would like to thank Mr. Alonso J. Gragera Aguaza who read our papers and edited some of the critical parts,

Mr. Saran Tarnoi who introduces us to the opportunistic network communication, Prof. Hiroshi Imai who introduced

us to some previous works in periodic graphs, three anonymous reviewers of CSoNet’15, three anonymous reviewers

of Computational Social Networks, and Prof. My T. Thai who provided several comments which significantly helped in

improving the quality of this paper. The comments also gave us an idea to extend this work in the future.

Competing interests

The authors declare that they have no competing interests.

Received: 18 December 2015 Accepted: 28 September 2016

References

 1. Fu N, Suppakitpaisarn V. Clustering 1-dimensional periodic network using betweenness centrality. In: the Proceed-

ings of the 4th International Conference on Computational Social Networks (CSoNet’15). LNCS, vol. 9197, 2015. p.

128–39.

 2. Sekimoto Y, Watanabe A, Nakamura T, Kanasugi H, Usui T. Combination of spatio-temporal correction methods

using traffic survey data for reconstruction of people flow. Perv Mobile Comput. 2013;9(5):629–42.

 3. Anderegg L, Eidenbenz S, Gantenbein M, Stamm C, Taylor DS, Weber B, Widmeyer P. Train routing algorithms: con-

cepts, design choices, and practical considerations. In: Proc. ALENEX’03. 2003. p. 106–18.

 4. Orlin JB. Minimizing the number of vehicles to meet a fixed periodic schedule: an application of periodic posets.

Oper Res. 1982;30(4):760–76.

 5. Serafini P, Ukovich W. A mathematical model for periodic scheduling problems. SIAM J Discret Math.

1989;2(4):550–81.

 6. Hossmann T, Legendre F, Carta P, Gunningberg P, Rohner C. Twitter in disaster mode: opportunistic communication

and distribution of sensor data in emergencies. In: Proc. ExtremeCom’11. 2011. p. 1–6.

 7. Orlin J. Some problems on dynamic/periodic graphs. In: Progress in combinatorial optimization. Orlando: Academic

Press; 1984. p. 273–93.

 8. Orlin JB. Maximum-throughput dynamic network flows. Math Prog. 1983;27(2):214–31.

 9. Orlin JB. Minimum convex cost dynamic network flows. Math Oper Res. 1984;9(2):190–207.

 10. Cohen E, Megiddo N. Recognizing properties of periodic graphs. DIMACS Ser Discret Math Theor Comput Sci.

1991;4:135–46.

 11. Cohen E, Megiddo N. Strongly polynomial-time and NC algorithms for detecting cycles in periodic graphs. JACM.

1993;40(4):791–830.

 12. Iwano K, Steiglitz K. Planarity testing of doubly periodic infinite graphs. Networks. 1988;18:205–22.

 13. Höfting F, Wanke E. Minimum cost paths in periodic graphs. SIAM J Comput. 1995;24(5):1051–67.

 14. Fu N. A strongly polynomial time algorithm for the shortest path problem on coherent planar periodic graphs. In:

the Proceedings of the 23rd international symposium on algorithms and computation (ISAAC). 2012. p. 392–401.

 15. Freeman LC. Centrality in social networks conceptual clarification. Soc Netw. 1978;1(3):215–39.

 16. Dunn R, Dudbridge F, Sanderson CM. The use of edge-betweenness clustering to investigate biological function in

protein interaction networks. BMC Bioinformatics. 2005;6(1):39.

 17. Freeman L. A set of measures of centrality based on betweenness. Sociometry. 1977;40(1):35–41.

 18. Cuzzocrea A, Papadimitriou A, Katsaros D, Manolopoulos Y. Edge betweenness centrality: a novel algorithm for QoS-

based topology control over wireless sensor networks. J Netw Comput Appl. 2012;35(4):1210–7.

 19. Fu N, Gragera A, Suppakitpaisarn, V. Betweenness centrality for 1-dimensional periodic graphs. (manuscript in

preparation).

 20. Yang J, Chen Y. Fast computing betweenness centrality with virtual nodes on large sparse networks. PloS One.

2011;6(7):22557.

 21. Fournet J, Barrat A. Contact patterns among high school students. PLoS One. 2014;9(9):107878.

 22. Barrat A, Weigt M. On the properties of small-world network models. Eur Phys J B Condens Matter Complex Syst.

2000;13(3):547–60.

 23. Stam CJ. Functional connectivity patterns of human magnetoencephalographic recordings: a small-world network?

Neurosci Lett. 2004;355(1):25–8.

 24. Newman M. Networks: an introduction. Oxford: Oxford University Press; 2010.

 25. Albert R, Barabási A-L. Statistical mechanics of complex networks. Rev Mod Phys. 2002;74(1):47.

 26. Aynaud T, Fleury E, Guillaume J-L, Wang Q. Communities in evolving networks: definitions, detection, and analysis

techniques. Dyn Complex Netw. 2013;2:159–200.

Page 20 of 20Fu and Suppakitpaisarn Comput Soc Netw (2016) 3:6

 27. Ohsaka N, Yamaguchi Y, Kakimura N, Kawarabayashi K. Maximizing time-decaying influence in social networks. In:

Proc. ECML-PKDD’16. 2016. (accepted).

 28. Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K. Dynamic influence analysis in evolving networks. Proc VLDB Endow.

2016;9(12):1077–88.

 29. Hayashi T, Akiba T, Yoshida Y. Fully dynamic betweenness centrality maintenance on massive networks. Proc VLDB

Endow. 2015;9(2):48–59.

 30. Braha D, Bar-Yam Y. From centrality to temporary fame: dynamic centrality in complex networks. Complexity.

2006;12(2):59–63.

 31. Lahiri M, Berger-Wolf TY. Mining periodic behavior in dynamic social networks. In: Proc. ICDM’08. 2008. p. 373–82.

 32. Lahiri M, Berger-Wolf TY. Periodic subgraph mining in dynamic networks. Knowl Inf Syst. 2010;24(3):467–97.

 33. Pfeiffer JJ, Neville J. Probabilistic paths and centrality in time. In: Proc. SNA-KDD Workshop’10. 2010.

 34. Holder LB, Cook DJ, et al. Learning patterns in the dynamics of biological networks. In: Proc. SIGKDD’09. 2009. p.

977–86.

 35. Li Z, Han J, Ding B, Kays R. Mining periodic behaviors of object movements for animal and biological sustainability

studies. Data Min Knowl Discov. 2012;24(2):355–86.

 36. Carofiglio G, Gallo M, Muscariello L, Perino D. Modeling data transfer in content-centric networking. In: Proc. ITC’11.

2011. p. 111–8.

 37. Oueslati S, Roberts J, Sbihi N. Flow-aware traffic control for a content-centric network. In: Proc. INFOCOM’12. 2012. p.

2417–25.

 38. Barabasi AL. The origin of bursts and heavy tails in human dynamics. Nature. 2005;435(7039):207–11.

 39. Roberson MR, Ben-Avraham D. Kleinberg navigation in fractal small-world networks. Phys Rev E. 2006;74(1):017101.

 40. Oliveira CL, Morais PA, Moreira AA, Andrade JS Jr. Enhanced flow in small-world networks. Phys Rev Lett.

2014;112(14):148701.

 41. Weng T, Small M, Zhang J, Hui P. Lévy walk navigation in complex networks: a distinct relation between optimal

transport exponent and network dimension. Sci Rep. 2015;5:17309.

 42. Zhang J, Small M. Complex network from pseudoperiodic time series: topology versus dynamics. Phys Rev Lett.

2006;96(23):238701.

 43. Lacasa L, Luque B, Ballesteros F, Luque J, Nuno JC. From time series to complex networks: the visibility graph. Proc

Natl Acad Sci. 2008;105(13):4972–5.

 44. Leskovec J, Sosič R. SNAP: a general purpose network analysis and graph mining library in C++. 2014. http://www.

snap.stanford.edu/snap. Accessed 15 Dec 2014.

 45. Cheng J, Fu AW, Liu J. K-isomorphism: privacy preserving network publication against structural attacks. In: Proc.

SIGMOD’10. 2010. p. 459–70.

 46. Erdös P, Rényi A. On random graphs I. Publ Math Debrecen. 1959;6:290–7.

 47. Watts DJ, Strogatz SH. Collective dynamics of small-world networks. Nature. 1998;393(6684):440–2.

http://www.snap.stanford.edu/snap
http://www.snap.stanford.edu/snap

	Clustering 1-dimensional periodic network using betweenness centrality
	Abstract
	Background:
	Methods:
	Results:
	Conclusion:

	Background
	Our contribution
	Related works

	Problem definition
	Definition of periodic graphs
	Periodic betweenness centrality

	Algorithm
	Assumption
	Dynamic programming idea
	Recurrence relations
	Properties of
	Example

	Experimental results
	Dataset
	Computational time
	Clustering using pbc(v)
	Maximizing influence using pbc(v)
	Synthesized dataset

	Conclusion and future work
	Authors’ contributions
	References

