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Background

In this paper1, we propose a clustering method for temporal networks specified by 

1-dimensional periodic graphs. A k-dimensional periodic graphs is a graph constructed 

by placing a finite graph to all cells in a k-dimensional lattice. �at finite graph is called 

static graph. A 1-dimensional periodic graph is then a graph that has an infinite copies of 

the static graph. Each of the copies is placed on an integer of a number line. An example 

of a 1-dimensional periodic graph, together with its static graph, can be found in Fig. 1.

�e 1-dimensional periodic graphs have a wide range of applications. �ese include 

the model that illustrated how people move in specific situations, as proposed by Seki-

moto et al. [2], and the model that was used for finding the optimal train schedule based 

on train demand, as proposed by Orlin, Serafini, and Ukovich [3–5]. In this paper, we 

will focus on the application of the graphs to opportunistic communication where 

each object in sensor networks communicates with the others in every given period of 

time [6].

1 �is manuscript is an extension of our paper previously published in the proceeding of CSoNet’15 [1].
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Each sensor i in the opportunistic networks is represented by a node i in a static graph. 

In a periodic graph generated by the static graph, there are infinite copies of the node i, 

(i, 〈h〉) for h ∈ Z. A node (i, 〈h〉) in the periodic graph represents the sensor i for time h. If 

the communication time between the sensor i and a sensor j is r, we know that the infor-

mation from i at time h, represented by the node (i, 〈h〉) in the periodic graph, reaches 

j at time h + r. Since the sensor j at time h + r is represented by a node (j, �h + r�), we 

link the node (i, 〈h〉) with the node (j, �h + r�). Similarly, for any communication between 

two sensors i′ and j′ that takes r′ period of time, we link (i′, �h′�) with (j′, �h′ + r′�) for all 

h
′
∈ Z. �us, we get the periodic structure as shown in Fig. 1.

Because of the applications discussed in the previous paragraph, there are many 

works that proposed algorithms for the graph. �ose works include a work by Orlin, 

who proposes algorithms to determine weakly connected components [7], strongly con-

nected components [7], Eulerian paths [7], minimum cost spanning trees [7], maximum 

flows [8], and minimum cost flows [9]. Later, Cohen and Megiddo propose algorithms 

to test bipartiteness [10] and detect cycles [11] in the periodic graphs. Besides that, an 

algorithm to test a planarity of a given periodic graph is proposed by Iwano and Steiglitz 

in [12], and an algorithm to find a shortest path for an arbitrary periodic graph is pro-

posed by Höfting and Wanke in [13]. In [14], Fu proposes the shortest path algorithm 

for a special class of planar periodic graphs. �e result shows that planarity can help in 

speeding up the computation of the previous shortest path algorithm.

Although there are many periodic extensions for many basic algorithmic problems 

in the literature, there are not many data mining or machine learning techniques spe-

cifically proposed for them. In this paper, we will focus on clustering problem, one of 

the most common problems in data mining. We consider a clustering method based on 

betweenness centrality.

Centrality is a notion that defines the importance of nodes and edges in a given 

graph [15]. It is discussed in [16] that, if we remove all edges with high centrality from 

the graph, each connected component in the remaining graph can represent a cluster. 

Among all centrality indexes, betweenness centrality is known as one of the most com-

mon indexes [17]. Besides its application in clustering, we can also use the betweenness 

value to measure the influence of each node in the network [17, 18].

It is also possible to cluster a periodic graph using the betweenness centrality of its 

static graph. However, we strongly believe that the clustering method ignores some 

Fig. 1 A 1-dimensional periodic graph (right) and its associate static graph (left)
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important information that we have in the periodic graph. A method which considers 

more information should help us find better clustering results.

Our contribution

�e definition of betweenness centrality in the previous works is made only for finite 

graphs. As the number of nodes of an periodic graph is infinite, it is not clear if we can 

directly use the definition in our setting. In  [19], we extend the definition to the peri-

odic case that preserve the meaning of the betweenness centrality. Besides that, we give 

a mathematical proof to show that the new definition is valid, using theoretical results 

on integer programming. Also, we give an algorithm to compute this betweenness cen-

trality for a given network based on dynamic programming and recurrence relations. 

�e algorithm is demonstrated to run in polynomial time when the input graph is VAP-

planar, i.e., there exists a drawing of the input periodic graph with no line crossing and 

no finite area containing an infinite number of nodes.

Although VAP-planar periodic graphs are used in many practical applications, graphs 

obtained from opportunistic communication are usually not VAP-planar graphs. �is 

motivates us to consider a different class of periodic graphs in this paper. In this class, we 

assume that the graphs have the following properties:

1 Recall that a periodic graph contains a repetitive structure, and each part corre-

sponds to a snapshot at time h. Let Vh := {(i, �h′�) : h′ = h} be a set of nodes in time 

h, and the transit value of an edge from Vh to Vh∗ be h∗
− h. We require that the tran-

sit values of all edges are positive.

2 We require that the edge weights, which are used for deciding which paths are the 

shortest paths, are equal to their transit value.

3 We require that the least common multiples of all transit values are bounded by a 

constant K.

�e transit value corresponds to the communication time between two nodes in our 

model. Clearly, the communication time must be positive. Also, since the shortest paths 

should be the communication paths that take smallest amount of time, it is natural to 

consider the weight of each edge as the communication time between nodes. �us, we 

strongly believe that the second assumption is also natural.

�e least realistic requirement could be the third one. However, we observe that there 

are not usually many distinct values of communication time in most of the real-world 

datasets. �erefore, the least common multiplier of the transit values is usually small.

In ‘Algorithm’ section, we propose an algorithm that can find a betweenness centrality 

of a periodic graph satisfying those three conditions. �e ideas behind the algorithm are 

dynamic programming and recurrence relations. �e asymptotic complexity of our algo-

rithm is O(|V|3) when |V| is the number of nodes in the input static graph.

Since there is no algorithm for clustering the periodic graph proposed in literature, we 

compare our computation with the computation time of the fastest algorithm for finite 

graphs [20], for which the asymptotic complexity is O(|V||E |) when |V| is the number 

of nodes and |E | is the number of edges in the input graph. Although our asymptotic 

computation time is larger than the previous algorithm, the experimental results in 
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‘experimental results’ section show that the computation time for both is not that differ-

ent in practice.

Our algorithm takes 3.2  s for an opportunistic network with 125 nodes and 455 

edges constructed from the data according to Fournet and Barrat [21]. By means of our 

betweenness centrality on the periodic graph, we can find clusters with around 50  % 

higher precision and recall, compared to the results obtained from applying the classical 

definition to its static graph. Besides that, we can spread information to 3–10 % more 

nodes in periodic graph, if we use nodes with higher periodic betweenness instead of 

nodes with higher betweenness in static graph.

Related works

It is important to note that the 1-dimensional periodic graphs in this paper are different 

from the 1-dimensional graphs in papers on complex networks such as [22, 23]. While 

each integer on a number line has exactly one node in the 1-dimensional graph, each 

integer has a whole static graph, which can have more than one node, in the 1-dimen-

sional periodic graph.

�ere are many works studying properties that are changed or updated over time 

(see [24, 25] for reviews on this topic). �ere are also works which use those properties 

to propose an algorithm for clustering, such as Aynaud et al.  [26] and influence maxi-

mization Ohsaka et al. [27]. Besides, when the input graph slightly changes, there exist 

works that can efficiently update the value of the influence maximization, e.g., Ohsaka 

et al. [28] and betweenness centrality, e.g., by Hayashi et al. [29].

Besides the opportunistic networks previously discussed, communication networks in 

which nodes send an information to others at every given periods are also studied by 

other models (e.g., models proposed in [30]). In [31, 32], Lahiri and Berger-Wolf model 

the communication by a set of subgraphs of social networks. Each subgraph contains a 

communication at a specific time. �e authors devise an algorithm that can detect all 

subgraphs in polynomial time in the paper. �e centrality of nodes in this model is dis-

cussed by Pfeiffer, and Neville in  [33]. Although the model is used in a wide range of 

applications such as biological studies [34, 35], it assumes that information is immedi-

ately arrived to its receiver after the transmission. �at makes the model slightly differ-

ent from ours.

�e dynamic in communication periods between two nodes is also a well-studied 

research topic. While, in many studies (e.g., [36, 37]), the distribution of periods between 

two communications is approximated by Poisson processes, the study by Barabasi [38] 

shows that the human communications consists of several burst periods and there is a 

long duration between each of the periods. In this work, we consider the case when the 

long duration has a periodic pattern.

While we select the most important nodes to maximize the influence in this paper, 

there are also works that select a transition probability to maximize the delivery effi-

ciency of a given network (e.g., [39–41]).

Also, there are works that transform pseudoperiodic time series to a complex net-

work, and use properties of the network to analyze the series (e.g.,  [42, 43]). Although 

the graph in those works are obtained from dynamic series, the graph is static. Hence, 

methods used for analyzing their graphs are different from ours.
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Problem de�nition

In ‘Definition of Periodic Graphs’ subsection, we will give a formal definition of periodic 

graphs. �en, in ‘Periodic Betweenness Centrality’ subsection, we will give a definition 

of the betweenness centrality for the periodic graphs. �e betweenness definition has 

been introduced in our previous work [19].

De�nition of periodic graphs

A periodic graph is an infinite repetition of a finite structure. We call that finite struc-

ture as static graph, and define it in Definition 1. �en, we define the periodic graph in 

Definition 2.

Definition 1 (Static Graph) �e tuple G = (V , E , w) of a vertex set V = {1, . . . , n}, a set 

of directed edges with vector labels E = {e(1), . . . , e(m)} ⊆ (V × V) × Z
d, and a weight 

function w : E → R>0 is called a static graph.

Definition 2 (Periodic Graph) For a static graph G = (V , E , w), the periodic graph 

G = (V ,E, ŵ) generated by G is an infinite graph with weights of edges, such that 

V = V × Z
d,

and

If G has d-dimensional transit vectors, then we call G a d-dimensional periodic 

graph. Unless otherwise specified, we use G = (V , E , w) to denote a static graph, and 

G = (V ,E, ŵ) to denote the periodic graph generated by G. In this paper, we consider 

only the case when d = 1, which is a case when the vector h and g in the previous defini-

tion are 1-dimensional vectors of integer. For simplicity, we will assume that both the 

static graphs and the periodic graphs considered in this paper are weakly connected. If 

the input graph is not weakly connected, the betweenness results of the graph can be 

straightforwardly obtained from the betweenness results of its connected components.

Definition 3 (Length of a walk) Given a walk W with edges F on G, we define the length 

of W as 
∑

e∈F

ŵ(e). Analogously on G, we define the length of a walk W with edges F  as 

∑

e∈F

w(e).

�e distance from s to t in G, denoted by dG(s, t) (or simply d(s, t) if the graph is omis-

sible), is the length of a walk from s to t in G such that its length is minimized. �is kind 

of walk is also known as a shortest path.

Periodic betweenness centrality

Let H = (U , F) be an undirected graph. For any two vertices s, t ∈ U , we denote by σH
s,t 

the number of distinct shortest paths between s and t in H, and σH
s,t (v) the ones that con-

tains v.

E = {((i,h), (j,h + g)) : h ∈ Z
d
, ((i, j), g) ∈ E} ⊂ V × V ,

ŵ : E → R>0, ŵ((i,h), (j,h + g)) = w(((i, j), g)).
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�e betweenness centrality of a vertex v on a finite graph H = (U , F) is defined as

We will abbreviate gH (v), σH
s,t, σ

H
s,t (v) as g(v), σs,t(v) and σs,t, when the graph is obvious 

from its context.

Now, let G = (V ,E) be a graph that could be infinite, and fix the vertex ν betweenness 

centrality of which is to be computed. We denote the set VD(µ) as follows:

where D ∈ R≥0. Intuitively, the set VD(µ) is a set of vertices to which the distance from 

µ is no longer than D, or from which the distance to µ is no longer than D. Unless oth-

erwise specified, we abbreviate VD(µ) by VD when µ = ν. Let GD the subgraph of G 

induced by a set of nodes VD. Our betweenness centrality of a node ν ∈ V , pbc(ν), can be 

defined as follows.

Definition 4 (Periodic Betweenness Centrality) For ν ∈ V , the periodic betweenness 

centrality of ν on G is

We note that the periodic betweenness centrality is an extension of the betweenness 

centrality on a finite graph H = (U , F). It is straightforward to show that the periodic 

betweenness centrality of any u ∈ U , pbc(u), is equal to g(u)/|U |2, i.e., we can calculate 

the value of pbc(u) by dividing the betweenness centralities of all nodes by |U |2. Since 

the main purpose of the betweenness is to compare the centrality of the vertices, scaling 

does not affect the result.

In [19], we show that, for all 1-dimensional periodic graph G and all nodes ν of G, the 

value of pbc(ν) always converges to some positive real number. In the same paper, we 

give an algorithm that can output pbc(ν) in polynomial time, if the given periodic graph 

is VAP-planar.

Algorithm

We do not give an algorithm for a general 1-dimensional one periodic graph, but a 

periodic graph used for capturing behaviors of an opportunistic network. �erefore, 

we assume that the input periodic graphs must satisfy some assumptions given in the 

‘Assumption’ subsection.

In the ‘Dynamic Programming Idea’ subsection, we will give an algorithm for finding 

a betweenness centrality for nodes in finite graphs. �e algorithm does not improve the 

state-of-the-art algorithm for the finite graphs, but it can be extended to an algorithm 

for the periodic graph. We give the extended algorithm in the ‘Recurrence Relations’ 

subsection, and prove some of its properties in the ‘Properties of Sv’ subsection.

gH (v) =
∑

s �=v �=t

σH
s,t (v)

σH
s,t

.

VD(µ) :=

{

ω ∈ V : dG(µ,ω) < D
}

∪

{

ω ∈ V : dG(ω,µ) < D
}

pbc(ν) = lim
D→+∞

gGD (ν)

|VD|2
.
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Assumption

Before formally defining our assumption, we give the following definitions.

Definition 5 (Positive Periodic Graph) Let G = (V , E , w) be a static graph of a 1-dimen-

sional periodic graph G. If, for all e(t) = (i, j, �g�) ∈ E, the value of g is positive, then G is 

a positive periodic graph.

Since a cycle 〈(i1, i2, 〈g1〉), (i2, i3, 〈g2〉), . . . , (im, i1, 〈gm〉)〉 must have 
∑

i gi = 0, and the 

summation of the values of gi for all paths in a positive periodic graph is positive. We 

know that a positive periodic graph does not contain a cycle.

Definition 6 (Weight-Transit Periodic Graph) Let G = (V , E , w) be a static graph of a 

1-dimensional periodic graph G. If, for all e(t) = (i(t), j(t), �g (t)�) ∈ E, w
(

e(t)
)

= g (t), then 

G is a weight-transit periodic graph.

Also, we define a period of a periodic graph G as follows:

Definition 7 (Period of Periodic Graph) Let G = (V , E , w) be a static graph of a 1-dimen-

sional periodic graph G. Let E = {e(1), . . . , e(|E|)} and, for all e(t), e(t) = (i(t), j(t), �g (t)�). 

�e period of G, p(G), is defined as

We assume the our input periodic graph G (or G) must satisfy the following conditions:

1 G is a positive periodic graph, and

2 G is a weight-transit periodic graph.

When we model an opportunistic network using a periodic graph, each node in the 

static graph, i ∈ V represents a person or a sensor node. A node (i, t) ∈ V  represents a 

person i at a time slot t. An edge from (i, t) to (j, t ′) represents a communication which 

begins at i at time t and arrives at j at time t ′. �erefore, g := t ′ − t represents a commu-

nication time from i to j in our model. Because it is natural to assume that the commu-

nication time is positive, we believe that the first assumption is natural. Also, it is natural 

to assume that the weights of edges are equal to the communication time. Furthermore, 

it is natural to assume that our input graph is a weight-transit periodic graph.

Since the computation time of our algorithm is bounded by a polynomial function of 

|V|, |E |, and p(G), our algorithm will take a long time to terminate if the period of the 

graph G is large. �us, we also assume that the period is much smaller than |V| and |E | . 

�e value of the least common multiple is actually very small in our datasets, since the 

number of distinct values of g in an opportunistic network is usually not greater than 5.

Dynamic programming idea

Recall the notation GD defined in the previous section. For any g ′
∈ Z, we denote

p(G) = lcm

(

g (1)
, · · · , g (|E|)

)

.

V (g ′) := {(i, �g�) ∈ V : g = g ′}.
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Assume without loss of generality that ν ∈ V
(0). We know that the number of shortest 

paths σ
GD

s,t (ν) > 0, only if s ∈ V
(ℓ) ∪ {ν} and t ∈ V (k) ∪ {ν} for some ℓ < 0 and k > 0. 

Otherwise, σ
GD

s,t (ν) = 0.

In this subsection, we will give an idea about how we calculate the value σ
GD

s,t (ν) > 0 

for some specific D ∈ Z+, s ∈ V
(ℓ) and t ∈ V

(u). To calculate the above value, we will first 

compute the number of the shortest paths from s to ν, denoted by σs,ν, and the distance 

from s to ν, denoted by d(s, ν), in GD. Our ideas behind the computation of those values 

are shown in Algorithm 1.

To find the number of the shortest paths from s to t, in Algorithm 1, σs,t, we calculate 

the number of the shortest paths from s to all nodes in V (ℓ+1),V (ℓ+2), . . . ,V ℓ′

 when ℓ′ 

is an integer such that t ∈ V
ℓ
′

. Recall our assumption that, for all edges (u, v) such that 

u ∈ V
(i) and v ∈ V (j), we have j > i. We know that all paths to a node v in V (i) must pass 

through a node in V (i′) for i′ < i before arriving at v. Based on this idea, we calculate 

the number of shortest paths and the distances to all nodes in 
⋃

ℓ<i′<i
V

(i′), and use that 

information to calculate the values for V (i). �e set Sv obtained from the function arg min 

in Line 7 denotes a set of all edges (u, v) that minimize the value d(s,u) + w((u, v)). Since 

d(s, u) denotes the shortest distance from s to u and w((u, v)) denotes the distance from 

u to v, we know that Sv denotes all incoming edges to v that is a part of a shortest path 

between s and v. �us, the number of shortest paths from s to v is the summation of the 

number from s to members of Sv, as described in Line 8.

Input: A graph GD = (VD, ED), ∈ Z−, a node s ∈ V ( ) ∩ VD, and a node ν ∈ V (0).
Output: σs,ν and d(s, ν)

1 Set σs,v ← 0 and d(s, v) ← ∞ for all v ∈
≤

V ( ) ∩ VD \{s}.

2 Set σs,s ← 1 and d(s, s) ← 0.
3 i ← + 1

4 while V (i) ∩ VD = ∅ do

5 forall the v ∈ V (i) do

6 d(s, v) ← min
u:(u,v)∈ED

[d(s, u) + w ((u, v))]

7 Sv ← arg min
(u,v)∈ED

[d(s, u) + w ((u, v))]

8 σs,v ←
u:(u,v)∈Sv

σs,u

9 end

10 i ← i + 1

11 end

Algorithm 1: An algorithm for calculating the number of shortest paths from

s to ν and the distance from s to ν in a finite graph.

Algorithm 1 is clearly slower than the fastest algorithm for the betweenness calcula-

tions proposed in [20]. However, the idea used in the algorithm can be extended to an 

infinite periodic graph in the following subsection. We will show the correctness and the 

computation time of the algorithm in the following theorem.

�eorem 1 Algorithm 1 can calculate the values of σs,ν and d(s, ν) in O(|ED|) when ED 

is the set of edges in VD.
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Proof �e bottleneck of Algorithm  1 is encountered in Lines 6–8 of the algorithm. 

Because each edge will be considered only once in those lines, the computation time of 

the algorithm is O(|ED|).

We will prove the correctness of the algorithm by induction on the variable i. It is clear 

that there are no paths from s to v when the node v is in 
(

⋃

ℓ′≤ℓ V
(ℓ′) ∩ VD

)

\{s}, because 

our periodic graph is positive. �us, σs,v = 0 and d(s, v) = ∞, as assigned in Line 1. 

Because our positive periodic graph contains no cycle, it is clear that the only path from 

s to s is an empty set. �erefore, σs,s = 1 and d(s, s) = 0, as shown in Line 2.

Consider a node v ∈
⋃

ℓ′<i
V (ℓ′) ∩ VD. Assume that Algorithm 1 can give correct val-

ues of σs,v and d(s, v). Since v �= s, we know that a node v needs at least one edge to reach 

the node s. �erefore, d(s, v) can be calculated as shown in Line 6 of the algorithm. All 

the shortest paths to the node v are the paths to some other nodes u added with an edge 

from u to v. �e number of the shortest paths is the summation of the number of short-

est paths to each neighbor u of v such that d(s,u) + w((u, v)) is minimized, as calculated 

in Lines 7–8. �

Using the same method, we can calculate σs,t and d(s,  t) for all s ∈

⋃

ℓ′<0

V
(ℓ′) and 

t ∈

⋃
ℓ′>0

V
(ℓ′). Also, by inverting the sides of all edges, we can calculate the values of σν,t 

and d(ν, t) for each t ∈

⋃
ℓ>0

V
(ℓ). Based on these values, we know that there exist some 

shortest paths from s, t that pass through ν, only if d(s, t) = d(s, ν) + d(ν, t). If there are 

some shortest paths, it is clear that the number σ
GD

s,t (ν) is equal to σ
GD
s,ν · σ

GD

ν,t .

In short, we can calculate the betweenness centrality of ν by

where ps,t,ν = 1 if d(s, t) = d(s, ν) + d(ν, t), and ps,t,ν = 0 otherwise.

Recurrence relations

Recall that V (ℓ) can be written in the form: {(0, �ℓ�), . . . , (n, �ℓ�)}. When D → ∞ and 

Algorithm 1 do not terminate, we will find a betweenness centrality by solving a recur-

rence relation for σs,ν, σν,t, σs,t and |VD|2.

Let gmax := max{g : (i, j, �g�) ∈ E}. Based on Algorithm 1, we know that σs,(v,〈i〉) can be 

written in the form:

ci,r,v,v′ = 1 when 
(

(v′, �i − r�), (v, �i�)
)

∈ S(v,�i�), and ci,r,v,v′ = 0 otherwise.

Let s ∈ V
(ℓ) for some ℓ ∈ Z−. When the given periodic graph is weight-transit, we will 

argue in the next subsection that, for all i > ℓ, ci,r,v,v′ = 1 if ((v′, �i − r�), (v, �i�)) ∈ E and 

(v′, �i − r�) are reachable from s. Otherwise, ci,r,v,v′ = 0. Since σs,(v′,�i−r�) = 0 for any node 

(v′, �i − r�) is unreachable from s, we can still get the same solution even when we set 

ci,r,v,v′ to 1. We can set ci,r,v,v′ = 1 if ((v′, �i − r�), (v, �i�)) ∈ E, and ci,r,v,v′ = 0 otherwise. 

gGD (ν) =
∑

s �=ν �=t

ps,t,ν
σ
GD
s,t (ν)

σ
GD
s,t

=
∑

s �=ν �=t

ps,t,ν
σ
GD
s,ν · σ

GD
ν,t

σ
GD
s,t

,

σs,(v,�i�) =

gmax∑

r=1

∑

(v′,�i−r�)∈V (i−r)

ci,r,v,v′σs,(v′,�i−r�).
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From the periodicity of our graph, we have ci,r,v,v′ = cj,r,v,v′ for any i, j ∈ Z. We can sim-

plify the notation ci,r,v,v′ to cr,v,v′, and get the following recurrence relation:

Since we can calculate the value of σs,(v,〈i〉) for all v ∈ V  using Algorithm 1, we can solve 

the recurrence relation to find a closed form for σs,(v,〈i〉).

�e number of the shortest paths from (v′, �i′�) to (v, 〈i〉) is equal to the number of the 

shortest paths from (v′, �i′ − i�) to (v, 〈0〉), since the transition on a periodic graph does 

not change the number of paths. Hence, σ(v′,�i′�),(v,�i�) = σ(v′,�i′−i�),(v,�0�). Let s = (v′, �i′�) . 

As we have the value of σ(v′,�i′�),(v,�i�) for all v′, v, i from the calculation in the previous 

paragraph, we can use those results to get σ(v′,�j�),(v,�0�) for all v′, v, j. When ν = (v, �0�), we 

can have the closed form for the number of the shortest paths from all nodes to ν.

Using the similar idea, we can find closed forms for σ(v,〈i〉),t, σs,t, and |VD|2. From these 

closed forms, we can calculate pbc(ν) defined in ‘Problem Definition’ section.

�eorem 2 Using our method, we can calculate pbc(ν) for all ν ∈ V in O
(

|V|3p3(G)
)

 

where p(G) := lcm
(

{g : (i, j, �g) ∈ E}
)

.

Proof By means of the properties of Sv shown in the following subsection, we can 

obtain recurrence relations for σs,(v,〈i〉), σ(v,〈i〉),t, σs,t, and |VD|2 in O(|E |p(G)). In this paper, 

we solve the recurrence relations by eigenvalue decomposition. Since the number of var-

iables in our recurrence relations is |V|p(G), the size of a square matrix constructed from 

the recurrence relation is |V|p(G). �e computation time for the eigenvalue decomposi-

tion of a square matrix size s is O(s3). �us, the computation time used for solving the 

recurrence relations is O
(

|V|3p3(G)
)

.

From the previous paragraph, we know that the computation time of our method is 

O
(

|E |p(G) + |V|3p3(G)
)

= O
(

|V|3p3(G)
)

. �

From the previous theorem, we know that the running time of our algorithm is poly-

nomial of |V|, |E |, and p(G). Since we assume that p(G) is smaller than a constant K, our 

computation time, O(|V|3), is slightly larger than those of the fastest algorithm for static 

graphs, which is O(|V||E |) for a static graph with |V| nodes and |E | edges [20].

Properties of Sv

In this subsection, we will prove a property of the set Sv defined in Algorithm 1. Let t be a 

function from a path 〈e1, . . . , em〉 in E to R+ such that

when the corresponding edge of ei in G is (ui,ui+1, �gi�). Also, for all s, t ∈ V , let

σs,(v,�i�) =

gmax∑

r=1

∑

(v′,�i−r�)∈V (i−r)

cr,v,v′σs,(v′,�i−r�).

t(�e1, . . . , em�) =

∑m
i=1 w(ei)
∑m

i=1 gi

Ss,t := arg min{t(P) : P ∈ Ps,t}
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when Ps,t is a set of all paths from s to t and arg min returns a set of paths such that all mem-

bers of the set minimize the value of t(P). From the notation, we have the following lemma.

Lemma 1 Let s ∈ V
(ℓ) and e be an edge in G. �e edge e is in the set S(u,〈i〉), if and only if 

there is a path P ∈ Ss,(u,�i�) such that e ∈ P.

Proof For any path �e′
1
, . . . , e′

m′� from s ∈ V
(ℓ) to (u, 〈i〉), if the corresponding edge of ei 

in G is e′i = (u′
i,u

′
i+1

, �g ′
i �), then we have 

∑m′

i=1
g ′

i = i − ℓ. �us, a path P1 from s ∈ V
(ℓ) 

to (u, 〈i〉) has a smaller summation of weights than a path P2 from s ∈ V
(ℓ) to (u, 〈i〉), if 

and only if t(P1) ≤ t(P2). P
∗ is a shortest path from s ∈ V

(ℓ) to (u, 〈i〉), if and only if P∗ 

minimizes t(P) and P∗ ∈ Ss,(u,�i�). Since e ∈ S(u,�i�) if and only if e is in some shortest path 

from s to (u, 〈i〉), we can prove this lemma. �

We will use our assumption that the input periodic graph is a weight-transit graph in 

the following theorem.

�eorem 3 If, for all e ∈
(

(u′, �i′�), (u, �i�)
)

∈ E, i − i
′
= w(e), then

Proof Based on the assumption, we know that all paths P from s to (u, 〈i〉) has t(P) = 1.  

�erefore, Ss,(u,〈i〉) is a set of all paths from s to (u, 〈i〉). �e edge ((u′, �i′�), (u, �i�)) 

is included in one of the paths from s to (u, 〈i〉), if and only if (u′, �i′�) is reach-

able from s and there is an edge from (u′, �i′�) to (u, 〈i〉). By Lemma  1, we know that 

((u′, �i′�), (u, �i�)) ∈ S(u,�i�), if and only if 
(

(u′, �i′�), (u, �i�)
)

∈ E and (u′, �i′�) is reachable 

from s. �

Our result can be also applied to the case when the input periodic is not a weight-

transit periodic graph. Recall that we denote the set of edges in the static graph by 

E = {e(1), . . . , e(m)}. Let e(i) := (νi,µi, �gi�) and

If the subgraph of the static graph (V , EM , w) is strongly connected, we can calculate the 

betweenness centrality using only the edges in EM. �at is because any path that con-

tains an edge in E\EM is not a shortest path. When we know that the shortest paths con-

tain only edges in EM, we can follow the same argument in Lemma 1 and �eorem 3 to 

obtain the following result:

�eorem 4 If (V , EM , w) is strongly connected, and

S(u,�i�) = {
(

(u′
, �i′�), (u, �i�)

)

∈ E : (u′
, �i′�) is reachable from s}.

EM :=

{

e(i) ∈ E :
w(ei)

gi
= min

1≤j≤m

w(ej)

gj

}

.

EM = {((i, �h�), (j, �h� + �g�)) : �h� ∈ Z, ((i, j), �g�) ∈ EM},
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�en, we have

Example

In this subsection, we will use a periodic graph shown in Fig. 2 to explain our algorithm 

given in this section. To simplify our notation, we will denote a vector with only one 

integer 〈g〉 by g here.

�e static graph is G = (V , E , w) where V = {1, 2, 3, 4}, and

Let e(i) =

(

µi, νi, gi
)

. We have w
(

e(i)
)

= gi, because we assume that the graph is a transit-

weight periodic graph. �e period p(G) is equal to 2.

In our static graph, all edges are reachable from all nodes. �us, we get the following 

recurrence relation for any s ∈ G:

When s = (1, 0), we have σs,(u,ℓ) = 0 for all u ∈ V and ℓ < 0. For ℓ = 0, σs,(1,0) = 1 and 

σs,(u,0) = 0 if u �= 1. By solving the recurrence relation, for t > 0, we have

S(u,�i�) = {
(

(u′
, �i′�), (u, �i�)

)

∈ EM : (u′
, �i′�) is reachable from s}.

E =

{

e
(1)
, . . . , e(8)

}

= {(1, 1, 2), (1, 2, 2, (2, 3, 1), (2, 4, 1), (3, 1, 1),

(3, 2, 1), (4, 1, 1), (4, 2, 1)}

σs,(1,ℓ) = σs,(1,ℓ−2) + σs,(3,ℓ−1) + σs,(4,ℓ−1)

σs,(2,ℓ) = σs,(1,ℓ−2) + σs,(3,ℓ−1) + σs,(4,ℓ−1)

σs,(3,ℓ) = σs,(2,ℓ−1)

σs,(4,ℓ) = σs,(3,ℓ−1)

σ(1,−ℓ),(1,0) = σ(1,−ℓ),(2,0) = σ(1,0),(1,ℓ) = σ(1,0),(2,ℓ) =

{

3ℓ/2−1 ℓ mod 2 ≡ 0,

0 otherwise,

σ(1,−ℓ),(3,0) = σ(1,−ℓ),(4,0) = σ(1,0),(3,ℓ) = σ(1,0),(4,ℓ) =

{

3(ℓ−1)/2−1 ℓ mod 2 ≡ 1 and ℓ > 1,

0 otherwise.

Fig. 2 Input graphs for the ‘Example’ subsection a static graph b periodic graph
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Similarly, we have

When u ∈ {3, 4}, we have

Now, we calculate the betweenness centrality of (1, 0). We know from the solutions of 

the recurrence relations that a node (1, ℓ′) and a node (1, ℓ) will have a shortest path that 

includes (1, 0), if and only if ℓ′, ℓ mod 2 ≡ 0. When ℓ′
< 0 and ℓ > 0, the number of the 

shortest paths is

Since the number of the shortest paths between (1, ℓ′) and (1, ℓ) is 3(ℓ′
−ℓ)/2−1, one-third 

of the shortest paths passes through (1, 0). By the same argument, we know that, if there 

is a shortest path from a node (ν′, ℓ′) to a node (ν, ℓ), that passes through (1, 0), then one-

third of the shortest paths between the points passes through (1, 0). Let S′

D
 be a set of 

nodes in VD which has a path to (1, 0), and let SD be a set of nodes in VD which has a path 

from (1, 0). Based on �eorem 3, we know that there is a shortest path from 
(

u
′, ℓ′

)

 to 

(i, ℓ) that pass through (1, 0), if 
(

u
′, ℓ′

)

∈ S
′

D
 and (u, ℓ) ∈ SD.

Since we know that

Using the same argument, we have pbc((2, 0)) = 1/24, pbc((3, 0)) = 1/32, and 

pbc((4, 0)) = 1/32.

�e conventional betweenness centralities of the nodes 1, 2, 3, and 4 of the static graph in 

Fig. 2a are 6, 10, 6.5, and 6.5, respectively. Although two results look similar, we can observe 

from the periodic graph that the nodes 3 and 4 are much more important than the node 1 

but the classical betweenness centralities of nodes 3 and 4 are larger than that of node 1 by 

only 8.3 %. By means of our definition and algorithm, the betweenness centralities of nodes 3 

and 4 are larger than that of node 1 by 50 %. �erefore, we strongly believe that our between-

ness centralities are better than the classical definition for the 1-dimensional periodic graph. 

In the following section, we provide experimental results to prove the above belief.

σ(2,−ℓ),(1,0) = σ(2,−ℓ),(2,0) = σ(2,0),(1,ℓ) = σ(2,0),(2,ℓ) =

{

2 · 3ℓ/2−1 ℓ mod 2 ≡ 0,

0 otherwise,

σ(2,−ℓ),(3,0) = σ(2,−ℓ),(4,0) = σ(2,0),(3,ℓ) = σ(2,0),(4,ℓ) =

{

2 · 3(ℓ−1)/2−1 ℓ mod 2 ≡ 1,

0 otherwise.

σ(u,−ℓ),(1,0) = σ(u,−ℓ),(2,0) = σ(u,0),(1,ℓ) = σ(u,0),(2,ℓ) =

{

3(ℓ−1)/2 ℓ mod 2 ≡ 1,

0 otherwise,

σ(u,−ℓ),(3,0) = σ(u,−ℓ),(4,0) = σ(u,0),(3,ℓ) = σ(u,0),(4,ℓ) =

{

3ℓ/2−1 ℓ mod 2 ≡ 0,

0 otherwise.

σ(1,ℓ′),(1,0) · σ(1,0),(1,ℓ) = 3
(ℓ−ℓ′)/2−2

.

lim
D→∞

|SD|

|VD|
= lim

D→∞

|S′
D
|

|VD|
=

1

4
,

pbc((1, 0)) = lim
D→∞





1

|VD|2





�

(ν′,ℓ′)∈S′
D ,(ν,ℓ)∈SD

1

3
+

�

(ν′,ℓ′)∈S′
D

1 +
�

(ν,ℓ)∈SD

1







 =
1

48
.
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Experimental results

Our experimental settings and results are as follows.

Dataset

As temporal networks with periodic graphs are an area of emerging research, there are 

not so many published works of datasets with clustering information. We choose to con-

struct a periodic graph based on a dataset collected for a previous research [21].2 In that 

paper, the authors installed a devise on 125 high school students to detect all of their 

communications during four school days.

�e dataset contains 28,561 communication records. Each record consists of IDs of 

two students who make a communication, and a time stamp in which that communica-

tion occurs. We observe from the dataset that there is a clear periodic pattern in those 

communication records. All the students communicate with their friends on daily basis 

(or even on hourly basis with closest ones).

We construct our static graph G = (V , E , w) from that observation. Each node in V 

represents a student. An edge (i, j, 〈g〉) is in the edge set E, if student i communicates 

with student j once in every g hours, and the weight of an edge (i, j, 〈g〉) is equal to g. As a 

result of this construction, we get a static graph with 125 nodes and 455 edges.

Based on the static graph, we will get a periodic graph G = (V ,E, ŵ), where (i, �h�) ∈ V  

represents a student i at time h. An edge 
(

(i, �h�), (j, �h + g�)
)

∈ E represents the fact that 

the information known by i at time h will be known by j at time h + g, as i talks with j 

once in every g hours. �is is because the high school students have a fixed class sched-

ule and they only share physical location with people for other classes (and can speak 

freely) in very specific situations such as lunch breaks or between-class breaks.

Computational time

We implement our betweenness centrality algorithm and the fastest algorithm for finite 

graph in [20] using Python, and run the program on a personal computer with Intel(R) 

Core(TM) i7-3770 @ 3.40GHz CPU, Windows 8.1 64 bits, 16GB RAM. Our algorithm 

takes only 3.2 s for the periodic graph constructed in the previous subsection, while the 

previous algorithm takes 0.4 seconds for computing betweenness for the static graph, 

resulting in only an eightfold slower computation time compared to that when comput-

ing it on the infinite periodic graph.

Clustering using pbc(v)

We can also find each edge-betweenness using the edge-partition technique, and thereby 

the betweenness of that middle node will be the edge betweenness. One of the most 

common clustering methods is to remove edges with highest betweenness, and group 

nodes that are in the same connected component into a cluster.

In this experiment, we set the number of removed edges to p × 455 when p is a real 

number between 0.1 and 1.

In Fig. 3, we compare the clustering results obtained by removing edges with high infi-

nite betweenness and the results obtained by removing edges with high betweenness 

2 �e dataset is published at http://www.sociopatterns.org.

http://www.sociopatterns.org
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in static graph when p = 0.5. �e color of each node represents a class of each student 

given in our dataset. Two nodes are considered to be in the same cluster, if they are con-

nected in the result graphs. We can clearly see from the figure that the pink nodes and 

the green nodes are put into the same cluster in the conventional clustering results, 

while all clusters are almost unicolor in our clustering results.

In Fig. 4, clustering results are evaluated by the precision, the value, and the F-measure 

calculated from the results and clusters given in the dataset. Although our precision is 

smaller than the value from the previous method in some p, our recall is significantly 

larger for all p. �erefore, our F-measure is also larger for all p. When p = 0.5, we 

improve the precision by 51 %, recall by 66 %, and F-measure by 57 %.

Maximizing in�uence using pbc(v)

In this subsection, we intend to model the way some information spreads over the stu-

dents (e.g., a rumor). For this purpose, we select k students, with k being an integer 

Fig. 3 Edge-betweenness clusters using betweenness values on static graph (left) and periodic graph (right); 

Each node represents a student, and the color of each node represents the class of a student correspond-

ing to the node. The edges shown in the figures are edges that remained after we remove edges with high 

betweenness centrality. Each connected component in the remaining graphs represents a cluster of nodes

Fig. 4 Comparison between our results and previous works. a clustering results. b influence maximization
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between 1–10, and with probability p ∈ {0.15, 0.3}, the selected students will send infor-

mation to node adjacent to them in G. �e nodes who receive the information will for-

ward the information with the same probability after adding more content to it.

Because more contents are added, students who did forward the information may for-

ward the message again. To assure that a large number of students can get several con-

tents added during the process, we intend to maximize the number of nodes that are 

forwarded information in periodic graph.

In Fig. 4b, it can be clearly seen that nodes selected by periodic betweenness centrality 

can affect more nodes than nodes selected by betweenness centrality in static graph. As 

seen from our results, it can affect up to 20 % more nodes than the conventional method 

when k = 2 and p = 0.15, and up to 9.9 % when k = 8 and p = 0.3.

Synthesized dataset

To confirm that our algorithm is scalable, we perform an experiment on datasets synthe-

sized from a Facebook ego network. �e network has 4039 nodes and 88234 edges, and 

can be obtained at the Stanford large network dataset collection (SNAP) [44].

Our datasets are subgraphs of the Facebook ego network. �e numbers of nodes in 

each subgraph are 200, 300, 400, 500, 600, 700, 800, 900. To find the subgraphs, we begin 

from a node with highest degree, and perform a breadth-first search from the node. We 

stop the search when the number of nodes reaches the desired number. Our subgraphs 

are subgraphs induced by the set of nodes found by the search. �e numbers of edges in 

the subgraphs with 200, 300, 400, 500, 600, 700, 800, and 900 are 962, 2046, 3120, 3513, 

4326, 5635, 7448, and 9976, respectively. �e weight of the edges are chosen randomly 

from the set {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}.

Although there are many previous works that generated the subgraphs by picking 

nodes at random (e.g., [45]), the method does not work in this experiment as it outputs 

sparse graphs with a large number of small connected components. We strongly believe 

that the subgraphs obtained from the breadth-first search algorithm can maintain prop-

erties of the social network such as small-world phenomenon.

In Fig. 5a, for the subgraphs of the Facebook ego network, we compare the computa-

tion time of our method to those of the method calculating the betweenness centralities 

of static graphs. When the number of nodes becomes larger, the difference between the 

computation times becomes larger. However, when we divide the computation time for 

the static graphs with our computation result, the division results become smaller when 

the number of nodes becomes larger. We can see from Fig. 5b that, when the number 

of nodes is 200, our computation time is about 6.6 times of that in the static graphs. 

When the number of nodes is 900, our computation time is only about 3.8 times of that 

of the previous works. From these results, we expect that our computation time is not 

that larger than the time in the previous works in a large graph.

We also compare the computation times of our algorithm and the algorithm for static 

graphs when the input networks are random graphs. We generated the graphs using the 

Erdős-Rényi model. �e numbers of nodes in the graphs are 50, 100, 150, 200, 250, 300, 

350, 400, and 450. Two nodes in the graphs are connected with probability 0.3. �us, 

the numbers of edges in the graph with 50, 100, 150, 200, 250, 300, 350, 400, and 450 are 

about 377, 1485, 3353, 5970, 9338, 13455, 18323, 23940, 30308, and 37425, respectively. 
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�e computation times for this dataset are shown in Fig.  6a. Unlike the computation 

times in Fig.  5a, we found that the difference between our computation time and the 

previous computation time becomes larger when the number of nodes is larger.

Next, we discuss our experimental results when the input networks have small-world 

properties. To generate graphs that have such properties, we use the Watts-Strogatz 

model [47]. Similar to the random graphs, the numbers of nodes in the graphs are 50, 

100, 150, 200, 250, 300, 350, 400, and 450, and two nodes in the graphs are connected 

with probability 0.3. In this setting, the difference between two computation times does 

not clearly increase when the number of nodes increases. However, we can still observe 

the increasing trend in Fig. 7b.

�e results obtained from the subgraphs of the Facebook ego network are different 

from those obtained from random graphs and graphs with small-world properties. We 

believe that the reason behind that is the number of edges in each input graph. �e 

number of edges in graphs obtained from the ego network grows linearly with the num-

ber of nodes, while the number of edges in the other two datasets grows quadratically. 

We know from the results that the difference between our computation time and the 

previous computation time tends to be larger when the number of edges is larger. �at 

Fig. 5 Computation times when the inputs are synthesized from Facebook dataset obtained from [44]. a 

Comparison between the computation times for the periodic betweenness centrality and the classical cen-

trality on the static graphs. b The computation times for the periodic betweenness centrality divided by the 

computation time for the classical centrality on the static graphs

Fig. 6 Computation times when the inputs are random graphs generated from Erdős-Rényi model [46]. 

a Comparison between the computation times for the periodic betweenness centrality and the classical 

centrality on the static graphs. b the computation times for the periodic betweenness centrality divided by 

the computation time for the classical centrality on the static graphs
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is surprising, since our computational complexity given in �eorem  2, O(|V|3), does 

not depend on the number of edges, while the complexity of the previous algorithm, 

O(|V||E |), depends on the number of edges. Based on this result, we strongly believe that 

our analysis can be improved to reduce our computational complexity to the other level 

depending on the number of edges.

Although our computation time is not much larger than that of the previous works, 

our memory consumption is much larger than them. While the previous algorithms use 

only O(|V|) memory, we use O(|V|2p2(G)). Because, in these synthesized datasets, the 

value of p(G) can be as large as 27,720, we cannot perform an experiment on the datasets 

with more than 1000 nodes. Reducing the memory consumption in our algorithm is cur-

rently one of the goals that we are aiming for.

Conclusion and future work

It usually takes long computation time to extract information from a temporal network, 

as the number of nodes in the graph is usually exceptionally large. We can reduce that 

computation time if the network can be specified as a repetitive structure of a small graph, 

called the static graph. In this paper, we propose an efficient algorithm that can compute 

betweenness centrality of that infinite network. �e computation time of the algorithm 

proposed is comparable to the time that the fastest method required for the static graph.

Currently, we are aiming to find more applications of the betweenness centrality on 

the periodic graph, other than the clustering and the influence maximization. Also, we 

are planning to collect information to construct more periodic datasets, and use those 

datasets to show that our results are more preferable than the results obtained when 

using previous methods on static graph. Besides, we plan to find a mathematical model 

that can capture properties of opportunistic networks. We will use the model to gener-

ate a large periodic graph, before using that large graph to test if our algorithm is scal-

able enough in those practical settings.

Although the time to exactly calculate the betweenness centrality is as large as 

O(|V||E |), there are scalable algorithms proposed to approximate the value of the cen-

trality (e.g., [29]). In future work, we aim to devise an algorithm for approximating the 

periodic betweenness centrality that can terminate in O(|V|).

Fig. 7 Computation times when the inputs are graphs with small-world properties generated from Watts-

Strogatz model [47]. a Comparison between the computation times for the periodic betweenness centrality 

and the classical centrality on the static graphs. b The computation times for the periodic betweenness 

centrality divided by the computation times for the classical centrality on the static graphs
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