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In this paper, formalism for cluster analysis, based on the ‘“Rank of Links”-theory, is suggested. It tackles
resemble measures, cross-distance matrices, ‘“rank of links”’-metric and some other cluster characteristics.
Using these notions, an algorithm of clustering has been designed. Its application to estimation and
prognosis of decision-making process shows nice workability and reliability.
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1 INTRODUCTION

The cluster analysis, in general, is a technique for the classification of objects into groups
based on their similarities. There is a wide choice of methods with different requirements in
computer resources. Below we present a short survey of last publications within this area. So,
in the paper of Bouguettaya and Le Viet [1] the authors present the result of a fairly
exhaustive study to evaluate three commonly used clustering algorithms, namely, single
linkage, complete linkage, and centroid. The cluster analysis study is conducted in the two
dimensional (2-D) space. Three types of statistical distribution are used. Two different types
of distances to compare lists of objects are also used. The results point to some startling,
similarities in the behavior and stability of all clustering methods.

Kollios et al. [6] present a new approach for indexing animated objects and efficiently
answering queries about their position in time and space. In particular, they consider an
animated movie as a spatiotemporal evolution. A movie is viewed as an ordered sequence of
frames, where each frame is a 2D space occupied by the objects that appear in that frame. The
queries of interest are range queries of the form, “find the objects that appear in area S
between frames /(i) and () as well as nearest neighbor queries such as, “find the ¢ nearest
objects to a given position A between frames f(7) and f(;)’. The straightforward approach to
index such objects considers the frame sequence as another dimension and uses a 3D access
method (such as, an R-Tree or its variants), This, however, assigns long “lifetime’ intervals to
objects that appear through many consecutive frames. Long intervals are difficult to cluster
efficiently in a 3D index. Instead, the authors propose to reduce the problem to a partial-
persistence problem. Namely, a 2D access method is used that is made partially persistent. It is
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shown that this approach leads to faster query performance while still using storage propor-
tional to the total number of changes in the frame evolution. What differentiates this problem
from traditional temporal indexing approaches is that objects are allowed to move and/or
change their extent continuously between frames. Some novel methods are presented to
approximate such object evolutions. The authors formulate an optimization problem for which
an optimal solution is provided for the case where objects move linearly. Finally, an extensive
experimental study of the proposed methods is presented. While it is concentrated on ani-
mated movies, the suggested approach is general and can be applied to other spatiotemporal
applications as well. The paper of Weir et a/. [11] describes the design and implementation of a
software system for producing, managing, and analyzing catalogs from the digital scans of the
Second Palomar Observatory Sky Survey. The system (SKICAT) integrates new and existing
packages for performing the full sequence of tasks from raw pixe! processing, to object
classification, to the matching of multiple, overlapping Schmidt plates and CCD calibration
frames. The authors describe the relevant details of constructing SKICAT plate, CCD, mat-
ched, and object catalogs. Plate and CCD catalogs are generated from images, while the latter
are derived from existing catalogs. A pair of programs complete the majority of plate and CCD
processing in an automated, pipeline fashion, with the user required to execute a minimal
number of pre- and post-processing procedures. They apply a modified version of FOCAS for
the detection and photometry, and new software for matching catalogs on an object-by-object
basis. SKICAT employs modem machine-learning techniques, such as decision trees, to
perform automatic star-galaxy-artifact classification with a > 90% accuracy down to similar
to 1 mag above the plate detection limit. The suggested system also provides a variety of tools
for interactively querying and analyzing the resulting object catalogs. In making a prediction,
Hartigan [5] divides his attention between objects presently perceived and previously
experienced objects. The present objects are recognized as similar to objects previously
experienced, and the qualities remembered from previous examination are predicted for the
present objects. Prediction is fallible, in that the author may make errors in recognizing
the present object, or in past observations of the experienced object, or in assigning qualities to
the present object which hold for the experienced objects similar to the present object, but not
for the present object, Probability to quantify these errors is used. The classification in
organizing the experiences, and in recognizing present objects as being similar to some
species of experienced objects, is represented. Prabhakar and Jain [7] have proposed a scheme
for classifier combination at decision level which stresses the importance of classifier selection
during combination. The proposed scheme is optimal (in the Neyman-Pearson sense) when
sufficient data are available to obtain reasonable estimates of the join densities of classifier
outputs. Four different fingerprint-matching algorithms are combined using the proposed
scheme to improve the accuracy of a fingerprint verification system. Experiments conducted
on a large fingerprint database (similar to 2700 fingerprints) confirm the effectiveness of the
proposed integration scheme. An overall matching performance increase of similar to 3% is
achieved. Further there is shown that a combination of multiple impressions or multiple
fingers improves the verification performance by more than 4% and 5%, respectively. Analysis
of the results provides some insight into the various decision-level classifier combination
strategies. A software signal and image processing laboratory, which has proved effective both
as an educational “workbench” and in practical operational use, is suggested by Campbell
et al. [2]. It requires a pedagogical tool, a research environment, and a fully operational data
analysis system, i.e, it is used not only in undergraduate engineering courses, but also in
graduate study and general research. The system must be easily extendable, e.g., to allow
undergraduates to perform practical programming of standard digital filters and image pro-
cessing algorithms, or to provide a realistic platform upon which novel algorithms can be
implemented. On a further dimension, the system must handle seamlessly and efficiently three
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broad data types: digital signals (sequences), images ( possibly muitiband), and multivariate
data sets.

In this paper, following to [8-10], the formalism for cluster analysis, based on the ‘“Rank
of Links”-theory, is developed. It operates with resemble measures, cross-distance matrices,
“rank of links”-metric and some other cluster characteristics. Then an algorithm of clus-
tering, using these notions, has been designed and applied to estimation and prognosis of
decision-making reliability.

2 SUGGESTED FORMALISM FOR CLUSTER ANALYSIS

2.1 Resemblance Measure

Measuring of some characteristics, called below features, may designate a material plant. The
measurements of n features may correspond to m plants. Let us represent the results of these
measurements as a (m x n) matrix (see Fig. 1).

Every row of this matrix corresponds to one plant. Let E be a set of m plants with »n
features, that is £ = {X), X3, ..., X,,}). The space of such plants is called the n-dimensional
feature space where every plant is associated with a point.

The resemblance measure between two plants X;, X; we will characterize by the corres-
ponding distance function d(X;, X;) (below, for the simplicity, d(7, j)), which, as any metrics,
satisfies three axioms: reflectivity (d(i, i) = 0), symmetry (d(i,j) = d(J, i)) and the triangle
inequality (d(i,j) < d(i, k) + d(k,j) valid for any i, k and j). Sometimes, an ultra metric
d(i, j) [3], satisfying the axioms of reflectivity, symmetry and the generalized triangularity
0, /) < Sup[o(G, k), B(k, j)}), is used.

Cluster analysis basically tackles two problems: clustering process itself and clustering
identification. The main purpose of the clustering process is to construct a partition of the set
E=1{X,,X,,...,X,) into disjoint subsets, called clusters, using a resemblance measure.
The main goal of the clustering identification is puting a new submitted plant X in to one of
these clusters.

2.2 Rank of Links

Let us calculate the distances between every pair of m plants within the subset E = {X;}
obtaining the cross-distance matrices |D;;||i = 1-m, j = 1-m. The symmetry property of the

F E A T U R E S

1 _J2 f3 J. f. }. 1. |n ]

0 X1 Xy X12 X1 . . . . Xin

B X2 X2 X2 X23 . . . . X

J X3 X311 X132 X33 . . . . Xin

E

C

T | .

S Xm| Xmi  Xm2  Xm3 . . . Xmn

FIGURE 1 A feature table,
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metric d(i, /) = d(J, i) permits us to calculate only one half of the distance matrix. The matrix
IID; ;)i defines the relative positions of the points within the subset {X} of the given features
space.

Align every row of this matrix by growing. Note that the first element of the aligned row is
zero, that is, D; | = 0. Let us use the following rule for numbering of the aligned row:

1. The number of the first element of the aligned row is 0, that is, Num(D; ) = 0.
2. The number of the element D; ;, which is the next to the element D;y, is calculated as
follows:

Num(D,-,j) =Num(D;;)+1 If Dj; < D,
Num(D,;j) = Nllm(D,"k) If D,',k = D,'J'

Based on this rule and using ||D;;||, we may construct a new matrix ||Num,;}{j with non-
negative and bounded (NUM;; < m) elements.

DEFINITION 1 The operator “rank of link” between X; and X; elements is defined as
rank(X;, X;) = NUM;; )

The matrix of distances between 4 points is given below as an example. Figure 2 shows the
process of the rank matrix construction from the distances matrix for X;.

Denote the obtained rank-of-links matrix by [rank(X;, X;)|li,j = 1-m. This matrix is
invariant to the choice of the origin point and has the following properties.

LEMMA 1 The operator “rank of link” is invariant to a linear transformations of a
compression and stretching.

Proof A linear compression and stretching is realized by multiplying the matrix of distances
|Dy|| by A = const. Hence, since the multiplication by the scalar A the elements of the matrix
IIDy|l doesn’t change regularity of distances in the rows, thus the rank of the links matrix is
not changed. |

Remark 1 The operator “‘rank of links” is reflexive, that is, rank(X;, X; = 0) = 0.

Remark 2 The operator “rank of links” is not symmetric. Indeed, consider 3 points in
Figure 2 for which rank(X1, X;) = rank(X, X;) = 1. It is symmetry, but the rank(X>, X3) =2
and rank(X3;, X3) = 1. It means that the points X3, X3 have not the property of symmetry.

distances matrix ulati i result !
X1 X2 [ X3 |x4 X2 [ X3 [X1 [X4
xt{o {7 [2 |4 rank(X2,X1)=NUM2,1=2
X217 o |5 |7 0 5 7 7 ] rank(X2,X2=NUM2,2=0
x3{2 |5 {o |3 rank(X2,X3)=NUM2,3=1
X414 17 13 Jo 0o 1 [2 2 rank(X2,X4)=NUM2 4=2
numbers

FIGURE 2 The rank matrix construction from the distance matrix for X;.
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DEFINITION 2 Value of the “closed rank of link” between X;, X; € E points is equal to
Sup{rank(X;, X;), rank(X;, X;)} and marked as Rank|.X;, X;].

Closed rank of link satisfies the conditions of reflectivity and symmetry:

Rank[X;, X;] = 0, Rank|.Y;, X;| = Rank|.X;, X;].

Example 1 For the simplest situation depicted at Figure 3 we have:

Rank[X;, X3] = 1,  Rank[X3, X5] = Rank[X3, X3] = 2.

2.3 Clusters Representation

DEFINITION 3 The subset {X1} € {X} is said to be ““closed by r-rank” if it fulfills 3 following
conditions:

1. For every Xy; € (X1} point there exists at least one Xj € {Xi} point such that
RankLle,leJ <r

2. For every Xy; € (X} and X; € {X)\{Xi1} points Rank|Xy;, X\;] > r;

3. There exists at least one pair of X\;, X1; € {X;} points such thaf\ Rank|Xy;, Xy; = 7.

The number r is called the closing rank for {X;} subset. Consider some subset of {X} set,
closed by rank 1. Denote it by {X[1]}. Form a new subset by adding new points to {X[1}} such
that for every new Xpey point Rank[Xnew, Xi} < 2 (X; € {X[1]}). Denote this new set by
{X{2]}. Iterating this procedure, we can get {X[3]} from {X[2]}, {X[4]} from {X]3]}, etc.

DEFINITION 4 The rank of links are called “non-break” by r on the subset {X|rl} if
XINXGE -1} #8, i=2—r )

The value [ is called a “missing of ranks” for the subset {X[r]} if {(X[[IN\{X[i -1} #@
(i = 2-r), (XIFINXTr + /1) # 00 = 1-D), and (X[ IN{XTr + 1+ 1]} # 0.

If condition (2) does not fulfill we will say that the “breaking” of rank of links on the subset
{X[r]} takes place.

DEFINITION 5 4 subset {X.} € {X} of points is called cluster if there is ““hon-break’” v vank
of links on the {X.} subset and beginning from r + | there exists at least one *“‘missing of
rank”.

X2

X1
FIGURE 3 Rank of links itlustration.
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The fact that {X,} subset is cluster we will mark as C = {X_}. Two properties hold for the
existing cluster: {X.[r + (\{X.[r]} # @ and

XNl -1 #0 ((=2-7) ©)

The corresponding number # is called the rank of cluster forming. For every cluster C the
following descriptions are suggested to be in use: set of the cluster’s points ~ {X,.}, number of
the cluster’s points — m, rank of forming of cluster — #, number of missing of rank — /.

DEFINITION 6 The cluster C, is said to be strictly isolated on set of {X} if
rn+hzm—1 iz “

It means that the cluster C; is strictly isolated, if the closed rank of links between any pair of
X;, X; € Cy is not greater than m,.

2.4 Identity and Isolation of Clusters

If the cluster C consists only coincident points, then the rank of forming of cluster is equal to
zero. If the cluster contains only points of the even grid (Fig. 4a), rank of forming is equal to 1.

If any X; point form the even grid (Fig. 4a) is moved and distance between this point and
the nearest neighbor is less than step of grid (the degree of identity is growing (Fig. 4b)), then
rank of forming of this cluster is equal to two. Consider the Figure S containing an odd set of
the points on the one-dimensional space such that d; j;1 > dy;; i = 1-m (m is the number of
points).

The neighbors of these points m — 1 rank of links are required. Note that m — 1 rank of
link is the maximum possible one for every set of points. One can see that if the unevenness
of the cluster is growing then the forming rank of the cluster is growing too. Thus, the rank of
a cluster forming can be used to describe unevenness of cluster.

THEOREM |  More missing of rank for a given cluster corresponds to a more degree of
isolated clusters quality from other set of points.

Proof Let there be two clusters Cy and C; on the set of {X'} with parameters (ry; /|, m;) and
(r2, I, my) (Fig. 6). The minimum distance between points of these clusters are d{X;, Xj},
X € Ci; Xj € X5, thus

d(Cy, &) = d(X; X)) (5)
Besides, we have
m>r+l; m>r+bh (6)
* X,

[ ] [ ] [ ] [ ] [ [ ] [ ]

[ ] [ ® [ ] L] L ] [ ]

L ] L L] [ ] ® [ ] [ ]

L L ] L] * * [ ] [ ]

FIGURE 4a, b Moving within a point grid.
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X3 X3 X4 X3

FIGURE 5 Aligned set of points.

Let us construct two spheres with 2 centers X;, X; and diameters d(X;, X;) and mark by
X, € C, the point, which is nearest to the first sphere, and then mark by X; € C, the point,
which is nearest to the second sphere. The distances between these points and its sphere are
AX, =d(X;, X,) — d(X;, X;) and AX; = d(X;, X;) — d(X;, Xj). According to the previous
definitions, r; -+ /; + [ = rank(X;, X;) and r; + L, + ! = rank(X;, X;). Let move cluster C,
such that its structure will remain unchangeable. Then the distance between clusters
will increase by max(A Xy, AX,). Mark new parameters with *. So, after moving we
obtain d*(i,j) = d(i,j) + max(A Xy, AX,); ri48+1=rank*(X, X); r+d+1=
rank*(X;, X;); that implies, rank™(X;, X;) = rank(X;, X;) + 1; rank*(X}, X;) = rank(X}, X;) + 1;
andrj +5+l=r+h+ Ly +i+1=r+]+ 1 According to the Lemma 1, r} = r;
r; = ry; and, hence, If = I + 1; r; = r; + 1, that completes the proof. |

In the same way, we can show that if the distance between the nearest points of different
clusters decreases, the “missing of rank™ of each cluster will also decrease. An important
result follows from Theorem 1: we can define the isolating degree of cluster by value of
“missing of ranks”.

2.5 Some Cluster Characteristics

The descriptive cluster parameters /, » and m provide the possibility to define correctly the
degree of isolated cluster.

THEOREM 2 If Cluster C, is strictly isolated, then the maximum distance between points of
Cluster C) is smaller than distance between them and other points of {X}\C; set.

Proof Consider Figure 7, where X; € {X}\C; point is the nearest to the X; point of Cluster
Cy, and X; € C) point is the nearest to the point X;. We wish to show that the following
inequality is valid: d(X;, X;) > d(X;, Xx), where X;, X; € C,. By Definition 6, in Cluster C) it
is possible to fulfill (»; + /;) number rank of links for any point of cluster. But, if the number
of points m; in Cj cluster is less than value (r; + [,),

FATE

FIGURE 6 Clusters and a set of points.
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FIGURE 7 [Hlustration to Theorem 2.

then fulfilled ranks of links values are not more than (m; — 1) value. Let us suppose that
rank(X;, X;) = m; — 1. Considering that X; point is the nearest for the point X; from the set of
points {X}/C;, we obtain rank(X;, X;) = ri + I} + | > rank(X;, X;). The definition of rank of
links together with the image above implies d(X;, Xi) < (X, X;). n
THEOREM 3 If C, cluster is strictly isolated, then the inequality I, > (m, — 1)/2 holds.
Proof For the strictly isolated clusters we have the following system of inequalities:

Fotly=mg—1, Ily>ry

Summing both inequalities implies:

my — 1

Fo+ 20, >my—14+r, = >

We will say that C, cluster is well isolated in {X} set of points, if the following inequalities
hold:

L>ry retly <my—1

Let us suppose that all other clusters are simply isolated. Then a cluster, which consists of
one point, is strictly isolated (well isolated or isolated) from the set of other points, if the
nearest cluster is strictly isolated (well isolated or isolated). A set {X} of points is usually said
to be unstructured (doesn’t contain individual clusters), if after the process of clustering there
is only one cluster.

To solve the tasks of pattern recognition, the following question is of great importance:
how are different kinds of objects isolated from each other? This represents a problem of
compactness.

DEFINITION 7 Any cluster is compact if it consists of only one kind of objects. A cluster is
called strictly compact, compact or weakly compact if it is strictly isolated, well isolated or
isolated.

By definition of compactness in the given feature space a pattern could consist of more
than one cluster. These kinds of clusters could be situated near each other (Fig. 8) or could be
separated by other kinds of clusters (Fig. 9). These pictures show compact cluster C, of 4,
pattern and the clusters C,, Cs of A pattern.

In the n-dimensional space a reciprocal situation of clusters is not so obvious as in the two-
dimensional space. Thus, it is necessary to detect situation with one kind of clusters. Is it
possible to unite these clusters and group from then one cluster? It is clear that for the situation,
which is given in Figure 8, it is possible, and for that given in Figure 9 it is impossible.
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c2

FIGURE 8 A pattern with several clusters.

Let us increase value of rank of links for the points of one of the cluster from r| + /
rank. In this case there will be new points in the given cluster. If these points are the points
of the same kind of clusters, then we can unite them and this cluster is called “consisted
cluster”. I new points are the points of different kind of clusters, then this kind of uniting
is impossible.

For the determination of missing of ranks for the “consisted cluster” it is necessary to
increase the value of ranks until other kinds of point are united in the “consisted cluster”. Let
us mark rank of forming of “‘consisted” cluster as R*. For the value of missing of ranks let us
mark it as L. We have L = R* — R, where R represents the rank of forming of the first cluster.
So, the number of points in the consisted cluster is equal to the sum of the number of the
points of the initial clusters.

2.6 Algorithm of Clustering

The process of clustering, using rank of links, has some specificity, that must be provided for
in the process of building of algorithms, that is, for any set of points there exists at least
one couple of points connected with closed rank of link equal to one. Note that this kind of
couple of points is situated in one cluster; it gives us possibility to start the process
of clustering from this couple of points.

In view of this note, we may suggest the following algorithm of clustering which consists
of the next stages:

Step 1 Calculate matrices of distances and ranks of links.

Step 2 Define Cy, (3, ..., C, subsets of points closed with zero and one rank.
Step 3 Define new subsets closed by next rank, adding new points to the Cy, C,...,C,
subsets.

Cc3

FIGURE 9 Ungrouped clusters.



484 O. VERULAVA AND R. KHURODZE

Step 4 Define subsets number of points, which have not grown. Form new clusters for these
subsets and exclude relative points from further review.

Step 5 If the sum of number of all formed cluster points is less than number of initial points
go to step 3.

Step 6 Stop.

In the next sections we will discuss the application of the suggested technique to some
concrete problems.

3 ESTIMATION AND PROGNOSIS OF DECISION MAKING
RELIABILITY BY “RANK OF LINKS”

The correct decision-making in pattern recognition depends on variety of factors such as
choosing or formation of feature space. It should be mentioned, that in this section we do not
consider the feature choosing or estimation problem in relation to recognition reliability or in
any other point of view. The feature space is assumed to be given and the recognition
reliability estimation and prognosis problem is considered according to the rules and methods
of the decision-making. Besides, we consider only the decision making rules formed by the
rank of links method that are presented by Duda and Hart [4]. In the sequent we will call
“realizations” the outcomes obtained by measuring the pattern features. Thus, a point cor-
responds to each realization in the feature space, and a cluster in this space represents a
collection of the points (realizations). The realization interlocation in the feature space gives
the complete information of the patterns isolation or intersection. It is natural, that the farther
the realizations of a pattern from another pattern’s realizations, the less the possibility of error
in recognition of unknown realization of the pattern, and, conversely, if the realizations of
different patterns are located together, i.e., the patterns intercast, then in the intersection area
the error making possibility increases. Therefore it is possible, in principle, to make prog-
nosis of the recognition results if the isolating degree is known and what really matters, it is
represented in quantitative terms. In such cases the reliability prognosis problem may
be treated as the determination of regularities, which link the pattern isolating degree and the
error making possibilities in the recognition process. Here, certain circumstances should be
taken into account, which, as a rule, are of heuristic nature and are known beforehand.
Example whether it is admissible to make multivalued decisions, rejection of the recognition,
whether the admissible level of errors exists, etc. 1t is natural that, according to these cir-
cumstances, we will have various methods and indicators of estimation and prognosis.

3.1 The Problem Formalization

Let a pattern set {4} be given for which the realization representative set {X} exists. Any
realization from the space {X} is obtained by measuring the feature set {X}. Denoting by N
the number of features, for the realization set {X} we will have N-dimensional Euclidean
feature space where each realization may be represented by one of points. The collection of
points, isolated from other points in the sense given above, is a cluster. Denote by {C} the set
of clusters obtained by grouping the points of set {X}, by #; the rank of cluster creation for
any C; € {C}, by I, the number of rank omissions, and by m; the number of realizations in
this cluster. The set of clusters, contained in cluster C;, denote by {X;}, and the set of rea-
lizations of type 4; € {4}, denote by {X;}. If the cluster Ci contains only realizations of type
A;, then we have {X;} C {X;}. If, moreover, the condition {X;} = {X;} is valid, then the pattern
A; is compact. Note that compact patterns may have several clusters consisting of only the
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realizations of this type. If the realizations of several patterns are integrated in any cluster
then these patterns are noncompact.

Figure 10 shows the clusters C, C, Cy; that correspond to the compact patterns 4; and
A3, and the cluster Cs4 corresponding to the noncompact patterns A3 and 44. The shaded area
of the cluster Cy4 gives the intersection of patterns 43 and 44. Any number of patterns from
the set {4} may intersect.

Denote by “CLS” the procedure by means of which the cluster set {C} is obtained from
the elements of the set {X'}. Then the clustering process may be represented by the following
expression:

CLS: (X} — {C} @)

If we take into consideration that the set {X'} represents the realizations of the pattern set {4},
denoting this fact by {4[X]} and that the cluster set {C} may be represented by the set of its
parameters {m, r, [}, then (7) takes the following form

CLS: {4[X]} = {C[m,r, 1]} 8)

Denote by {k} the elements of the set the prognosis estimations of the correct recognition of
each pattern from the pattern set {4}. For the elements of the set {k} let us specify the
*“advantage’ of widespread estimates:

1. The percentage - in this case the elements of {k} take values 0 < k; < 100; i = 1-/ where
i is the number of patterns in the set {4};
2. The probability — in this case we have: 0 < k; < 1;i= 1.

Denote by “BWT”’ the recognition reliability estimating process. Then like expression (2),
the process of obtaining the elements of {K} may be described as

BWT: {C[m, r, ]} — {k} )]

Thus, in order to estimate the recognition process reliability, the following initial information
is needed: the set of patterns {4}, the realization study collection {4[X]} and the clustering
procedure — CLS. The intermediate procedure is the cluster set assignment {Clm,r,[]}
obtained by the procedure CLS, and the final step is the determination of the values of the

FIGURE 10 The compact patterns 4, and 4, and the noncompact patterns 43 and A4.
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elements from the set {k} by means of the BWT procedure (algorithm). The aim of this
section is to develop the BWT procedure and to demonstrate its efficiency.

3.2 BWT Procedure

3.2.1 Forecasting the Reliability of Decisions, Obtained by
Clustering Process for Compact Patterns

Denote by “ERK” the decision making process in recognition of unknown realization. Then
decisions, obtained by clustering, may be expressed by the symbols ERK{CLS}. According
to this notation the estimate determination process may be described by the following
expression:

BWT[ERK{CLS}] = {k} (10)

In order to formalize the process given by (10) it is necessary to state several axioms.

AXIOM 1 In given feature space the cluster topology is assumed to be formed and does not
depend on the observers estimate,

AXIOM 2 A realization, integrated in any compact pattern cluster, may or may not belong
fo the given pattern.

Assume that in pattern set {4} there exist two compact patterns 4; and 4;. Each of them
creates the clusters Ci(r;; ;; m;) and Cj(r;; I;; m;) respectively, in the feature space (Fig. 10).
The unknown realization recognition process, like the clustering process, is carried out by
means of the rank links that exist among the points either integrated in the same cluster or
belonging to different clusters. Denote by {X;} the set of points integrated in the cluster C;.
Then for any points, integrated in the cluster C;, the following inequality holds

Rang(VXj €Cj; Xjq €Cj} <rj +1j, q=1 1+l (I

If an unknown realization belongs to cluster, e.g., the point X; (Fig. 11) — to the cluster C;,
then instead of expression (11) we will have the following decision making procedure:

X' ed; ifRang(X';X,€eCl<r+1l, q=I1-(+1) (12)

FIGURE 11 The identical links with two or more compact pattern clusters.
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According to Axiom 1, if the condition of expression (12) is valid, then the recognition is
precise; that enables us, while forecasting the recognition reliability, to give to this situation
the highest grade equal to max{k} = K, where X is a forming factor.

The most ambiguous situation in the recognition point of view will occur when the
unknown realization has identical links with two or more compact pattern clusters, e.g. the
point X, (Fig. 11), in this case we have

ERK{Cj(ry; [j; mj)} = ERK{Ci(ri; Ii; my)} 13)
In case of rank links expression (13) takes the following form:
Rang(X%; X;;} = Rang{X; X; ;} < min{(r; + 1), (s + 1)} = Q (14)

where g = 1-Q. The realization of expression (14) means that in clusters C; and C; points are
located symmetrically to the unknown realization X2. It is natural that in this case the pre-
ciseness of recognition or of adopted decision is minimal, that should give the minimal value
of its estimation or prognosis equal to min{k}. Note that if it is possible to give up the
recognition in cases when all patterns are compact and condition (12) is not valid for any
pattern, then according to Axiom 2 we will have precise recognition. For cases, when it is
necessary to make decision while condition (12) is not valid for any pattern, then it is
necessary to make into consideration the cluster interlocation or their parameters.

DEFINITION 8  The influence zone of any cluster C; € {C} is the area, where at least one of
the points integrated in the cluster establishes closed vank with a point located outside the
cluster not exceeding the rank link value (r + ).

Denote by symbol “V” the predicate “there exists at least one” and by *“V”’ symbol its
negation “‘there does not exist any”. Denote by Ers(Rang{X; X; € C;}) the first closed rank
link that is established by the unknown realization X with a certain point of cluster C;. Then
the decision making of belonging of unknown realization may be carried out only for the
patterns to whose corresponding cluster influence zone belongs the realization. For such
clusters the following property is valid

Ers(Rang{X;VX; € C) < +1;; i= 1, (15)

where I} < I is the number of the patterns to whose corresponding cluster zone belongs the
unknown realization. For the decision making rule we have

X € 4; if Ers(Rang{X; VX; € C;}) = min{Ers(Rang{X,VX; € C;})}, i=1-, (16)

DEFINITION 9 The patterns influence zone is the union of their corresponding cluster zones.
They are disjoint, if there does not exist a point belonging simultaneously to influence zones
of the clusters that correspond to the given patterns.

The pattern influence zones in Euclidean space may have extremely complicated forms and
locations. Therefore in order to formalize. Definition 9, it is necessary to find out the
influence zones of clusters for which there exists potential possibility of intersection. In the
case of clusters located in the plane, e.g., (Fig. 11), the intersection of influence zones of
clusters C; and C; may happen in the area where the point X' 2 is located. In order to determine
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such area, e.g., for clusters C; and C, (Fig. 11), let us evaluate the minimal closed rank link
by which a point from one cluster is linked to a point from another cluster. There are such
points: X; € C; and X, € C, (Fig. 2), for which the following conditions holds

Ers(Rang{C;; C,}) = Rang{X;, X,,} = min(Rang{VX, € C;; VXp e C)})

Here, Ers(-) is the minimal rank link established by a point of cluster C; to a point of cluster
C,. Assume that point X3 is between points X; and X, that means that it belongs to the
intersection of the two hyper spheres having radii the distance between points X; and X, and
these points as centers. The interpretation of this situation is given in Figure 11, in case of
two dimensional Euclidean space, namely, the shaded area, where point X* is located,
represents the intersection area. Denote this domain by C,. If for such points the condition
from Definition 9 is valid then the following inequality systems hold:

Ers(Rang(VX> € Cy; VX € Ci)) < ri+; 17)
Ers(Rang{VX> € C;; VX, € C,)) <1, +1,

Ers(Rang(VX> € Cy; ¥X, € G)) <71, + 1, (18)
Ers(Rang{VX> € C;s VX; € CY) < 7 +

In the first case the point X3, according to Definition 1, is in the influence zone of cluster C;,
and in the second case it is in the influence zone of cluster C,.

Assume that we have the situation described by (17). Then the unknown realization can be
conferred on the pattern 4;, but quantitative estimation of the precision of such conferment
will be less than that of the decision obtained before. We express the estimation of the
precision of the decision obtained the following equality:

ERS(Rang{X?; X; € Ci})
1+

BWT(X® € 4) = (i + 1) — K (19)

where i =1,...,m, and K = max{k} represents the norming factor and depends on the
estimation scale chosen by us. The same can be written when estimating the situation given
by expression (17) for the pattern 4,

ERS(Rang{X*; X, € C,})

BWT(X? = -
X € 4p) = (r, + 1) s

K (20)

In the case of the cluster influence zones intersection, e.g., for the patterns 4; and 4,
conditions, given by the following inequality system, are valid:

Ers(Rang{VX; X;VX; € C})) <1, + | @1)
Ers(Rang{VvX; X; e X; e G} <r; +1;

In this case, the unknown realization can be conferred on to the pattern 4; as well as to A4;.
According to expression (19) for the estimators of decision making precision we will have:
K; = BWT(X € 4)), Ki = BWT(X € 4;). Taking into account the decision making rule
given by the expression (16) we obtain X € 4; if K; € K; and X € 4; if K; € K.
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THEOREM 4  The pattern influence zones do not intersect, if the minimal closed rank link
between the clusters corresponding to the patterns is greater than the sum of the cluster
construction and rank omissions.

Proof Denote by G{4} the cluster influence zones. Then the condition of this theorem for
the clusters 4; and 4; takes the following form

GA)NGA) =0 if ErsRang{X,; e C; Xie G >ri+Li+r+]; (22)

Assume that we are given the clusters that correspond to the patterns 4; and 4; as well as the
points X; € C; and X; € C;, that realize the minimal closed rank link between the clusters
(Fig. 12).

Ers(Rang{X;; X}) = Ry (23)
According to the expression (23), we get the following form for (22):
Ry> (i + 1)+ +1) (24)

As one rank link establishes relationship between only two points, therefore any point, e.g.,
an unknown realization, should establish rank link of value (» + /) with (» + /) points. As
Rang{X;, X;} = max Rang{X;; X, € Cj}a = 1-m; (Fig. 12), we have that for the cluster of the
pattern 4; the maximum capacity area for establishing link with an unknown realization is
equal to the space area confined by the hyper sphere with the radius equal to the distance
between the points X}, and X, and center X, but for the pattern 4; that of the distance between
X; and X, and center X;. These hyper spheres intersect only in the case if
Ry < (rj + 1) + (r; + 1;), and do not intersect Ry > (r; + L) + (r; + ). |

The greater the intersection area, the greater the error making possibility when recognizing 4;
and A; pattern realizations and vice versa. In this case, for the estimation of recognition
reliability we have

i+ L)+ (ri+ 1) — Ry
i+ + i+ )

BWT(4;; 4;) = (25)

If the condition, given by expression (18), is valid, then, according to (25), we obtain the
negative values of estimators that are unacceptable for any scale of reliability estimation.
Thus, for this situation we can use the following expression

BWT(Aj;Ai):(Ri_(rj +le +"'+lf)).1< 26)
distances matrix regulati { result 1
X1 [ X2 [x3 x4 X2 [ X3 [X1 [x4
xt{o |7 {2 |4 rank(X2,X1)=NUM2, I=2
X217 Jo s |12 0 5 7 7 ] rank(X2,X2=NUM2,2=0
X312 |5 (o |3 rank(X2,X3)=NUM2,3=1
X4[4 |7 |3 fo 0 [1 f2 |2 rank(X2,X4)=NUM2,4=2
numbers
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Expressions (25) and (26) allow us to estimate the reliability of decision making for one
pattern in respect with others, in the meaning that for any pattern we have the set of esti-
mators of (I — 1) elements. If required, it is possible to average these estimators obtaining
one value of an estimator or a scalar.

3.2.2 Prognosis of Recognition Reliability for Noncompact Patterns

Assume that the patterns 4; and 4; intersect, that is, the realizations, corresponding to these
patterns, create the same cluster (Fig. 13) denote it by Cj:

Naturally in this case the pattern influence zones intersect significantly, but for their
determination the existence of separate isolated clusters is necessary that is not the case in the
given situation. Therefore we have to work out another method for the prognosis of the
recognition reliability.

DEFINITION 10 Any pair of points represents neighbors in a cluster if the closed rank link
between them does not exceed the rank link value of the cluster formation.

Let the points given by Definition 10 be X; € C; and X; € Cy; (Fig. 13). Then according
Definition 10, it follows

Rang((Xj € 4)); (X; e 4)) <1y 27)

If the neighboring points X; € 4; and X; € 4; belong to different patterns, then these points
participate (belong) in the patterns intersection.

Denote by mj; the number of points of the pattern 4; that participate in the intersection with
the pattern 4;, and that of the pattern 4, by m;;. Reliability of precise recognition of the unknown
realization in the intersection area is minimal, but besides the intersection area there may exist
in a cluster such an area where the neighboring points belong to only one pattern, that implies
that the patterns do not intersect in this area. Example, in Figure 13 such are the areas outside
the shaded stretch. For the prognosis of the decision making reliability we should take into
account the relationship of these areas, that can be realized by the following relationships:

Mji . my

J i

Note that the values of the estimators obtained by expression (27) belong to the range 0—k.
Besides, the form of these expressions will not change by the increase of patterns that
participate in the intersection.

FIGURE 13 The Intersecting patterns.
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If the realizations that participate in intersection are taken out of study collection, then
noncompact patterns transform into compact ones and the method from the previous para-
graph may be applied.

3.3 Algorithmization of Prognosis and Estimation Process

The decision making and estimation problem can be divided into several consecutive pro-
cedures, that allows the algorithm realization of this process. Thus, if we are given a pattern
set and for each pattern the study collection {X;} € {X} j = 1/ of realizations is known, then
for carrying out the outlined problem we have the following sequence of required procedures:

1. Calculation of the distances matrix between any pair of realizations from the study
collection;

Calculation of rank links matrix using the distances matrix;

Formation of the clustering process;

Determination of the clusters and their parameters;

Determination of intersection areas and of realizations located in these areas for any
cluster;

Evaluation of the recognition reliability estimators for each pair of patterns that participate
in the intersections;

7. Determination of the influence zones for disjoint patterns;

8. Evaluation of the recognition reliability estimators for each pair of disjoint patterns;

9. Calculation of an integrated (scalar) estimator of the recognition reliability for any pattern.

i

&

According to the item 9, the obtained estimators are final, but the result depends on the
method of working out of an integrated estimator. The most widespread method is
the arithmetic mean calculation of the separate estimators. In the other cases, it is possible to
take into consideration the most “‘dangerous” patterns as regards of precise recognition
or averaging the estimators obtained concerning several estimators of this type.

The most widespread scale of estimators is the percentage scale, with the norm coefficient
K = 100. The probabilistic scale is wide spread as well as with the norm coefficient being
equal to 1. The choice of the norm coefficient depends on a specific problem and the scale
accepted in a given field.

4 CONCLUSIONS

The use of clustering process for the prognosis of decision-making results may be considered
as an original method in pattern recognition.

Experimental research has shown the good coincidence of the prognosis with the results
obtained by recognition of check realizations that allows us to confirm the effectiveness and
good prospects of the given method for cases when the rank link method is used for clus-
tering and decision-making process as well.

The system is implemented in some programming languages. Data-Lab system has been
operational for four years and it has been used in the undergraduate image-processing course,
and as a platform for different MS and Ph.D dissertation projects. In addition, it is in
everyday use within a university signal and image processing research group. The following
developments may be related to some nets analysis and their descriptions such as neural and
wavelet networks.
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