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Abstract

Grey wolf optimizer (GWO) is known as one of the recent popular metaheuristic algorithms

inspired from the social collaboration and team hunting activities of grey wolves in nature.

This algorithm benefits from stochastic operators, but it is still prone to stagnation in local

optima and premature convergence when solving problems with a large number of variables

(e.g., clustering problems). To alleviate this shortcoming, the GWO algorithm is hybridized

with the well-known tabu search (TS). To investigate the performance of the proposed hybrid

GWO and TS (GWOTS), it is compared with well-regarded metaheuristics on various cluster-

ing datasets. The comprehensive experiments and analysis verify that the proposed GWOTS

shows an improved performance compared to GWO and can be utilized for clustering appli-

cations.
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1 Introduction

Nature-inspired algorithms mostly fall under a wider umbrella of optimizers called meta-

heuristics. In the last two decades, there has been an increased interest in the applications

of metaheuristics in different machine learning tasks such as optimizing the learning pro-

cess of classification and clustering algorithms [10,48]. In fact, metaheuristics have shown

high capability in finding satisfactory solutions for challenging problems in a very reason-

able time [1,19,49]. There are mainly two types of metaheuristics: population-based and

trajectory-based algorithms [9,20,29,31,32,50,53]. The former type relies on generating a

set of possible solutions for a given problem and improving those solutions using different

operators to find an acceptable solution.

The population-based algorithms try to make a balance between exploring different regions

of the search space (exploration) and local search (exploitation). Achieving a good trade-off

between these two conflicting processes is necessary to obtain better optimization results for

challenging problems [28,30]. In contrast to population-based algorithms, trajectory-based

algorithms rely on updating just a single solution in their optimization cycle. Due to the nature

of trajectory-based algorithms, local search around possible optimal solutions is promoted.

Popular examples of population-based metaheuristics are genetic algorithms (GA) [17],

particle swarm optimization (PSO) [41], differential evolution (DE) [70], while some popular

examples of trajectory algorithms include tabu search (TS) [22] and simulated annealing (SA)

[43].

An important application of nature-inspired algorithms is in the field of clustering. Clus-

tering can be considered as one of the most common unsupervised machine learning tasks.

It is described as partitioning a set of unlabeled data instances into several subgroups (i.e.,

clusters), where points in the same subgroup are expected to have some similar pattern

or behavior and be different from other points in other subgroups. Clustering has a wide

spectrum of real-world applications like in spatial analysis, location-based services, trans-

portation, text analysis, marketing, engineering, and image segmentation [34,77]. Although

clustering is important in many applications, the problem is difficult to solve as an NP-hard

problem.

There is a large number of proposed algorithms for data clustering in the literature. Most of

these algorithms fall mainly within one of two categories: hierarchical clustering algorithms

and partitional clustering algorithms. Hierarchical methods can cluster the data by merging

smaller clusters into larger ones (agglomerative approach) or by splitting large clusters into

smaller ones (divisive approach). On the other hand, partitional methods cluster data directly

into disjoint clusters, while optimizing evaluation criteria over a predefined number of iter-

ations [6,8,12]. Example of such criteria is to minimize the within-cluster sum of squares

in the popular k-means partitional clustering algorithm. Main advantages of the partitional

clustering algorithms are the simplicity and low computational cost. However, the main dis-

advantages of most partitional clustering algorithms are a high dependency on the initial

solution and the probability of being trapped in local optimum solutions.

The problems of partitional clustering have been tackled in the literature in numerous

studies. Researchers have proposed different approaches to overcome these problems. One

of these popular approaches is the nature inspired based on partitional clustering [4,55]. In

this work, one of the main contributions is to develop an effective clustering algorithm using

the nature-inspired algorithm.

One of the recent metaheuristic algorithms that have gained remarkable attention in the

optimization community is the grey wolf optimizer (GWO) algorithm. GWO was first pro-
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posed in 2014 by Mirjalili et al. in [54]. The GWO mimics the ideal hunting behaviors of wolf

packs. Since the release of its code in MATLAB and Python [18,54], the GWO has demon-

strated very promising results when applied in various real-world applications [44,52,69].

Some of its advantages include its simplicity, few parameters to tune, unique population

hierarchy, and the smooth transition from the exploration phase to the exploitation.

This paper presents a new hybrid approach based on GWO and the trajectory-based search

algorithm TS for clustering. In this work, we have made the following key contributions:

– The proposed hybrid approach makes the use of TS to enhance the efficacy and the

balance between the exploratory and exploitative behaviors of the GWO algorithm. To

achieve this goal, the TS algorithm is deployed as an operator in GWO to search the

neighborhood of the leaders.

– The hybrid GWO with trajectory TS algorithm is proposed for the first time to solve the

partitional clustering tasks.

– The proposed algorithm has been tested on real datasets with different settings and char-

acteristics to demonstrate its effectiveness and quality of solutions.

The method proposed in this paper has some potential advantages compared to previous

population-based clustering methods: first, it has a higher local optima avoidance potential in

the case of stagnation problems. The proposed GWO-based method can perform a more stable

balance between exploratory and exploitative trends compared to the conventional methods

and other comparable evolutionary methods with a leadership structure. Second, this method

is locality-informed approach; that is, in the case of finding a high-quality solution, it can

deeply scan the neighborhood regions with a structural step-by-step process based on well-

known TS algorithm. Third, in view of the diversification and intensification mechanisms, this

method utilizes a TS-based strategy to exploit the neighborhood of the leader wolves, which

enrich the quality of cluster vectors found in previous stages. As this is the core engine of the

proposed clustering method, all exploitative advantages are valid for partitional clustering

scenarios.

This paper is structured as follows: Sect. 3 briefly describes the preliminaries of this

work including the TS and GWO algorithms. In Sect. 5, the details of the proposed GWOTS

for clustering problems are provided. The experiments and results are presented in Sect. 6.

Finally, the findings of this work are reported and some possible research directions are

suggested in Sect. 7.

2 Background

Evolutionary clustering-based algorithms are considered as one of the most successful and

applied types of clustering techniques in the last two decades. One of the earliest examples of

this type is GA-based evolutionary clustering. Maulik and Bandyopadhyay [51] developed

a new clustering technique based on genetic algorithm (CGA) in 2000. The exploratory and

exploitative traits of GA were employed to discover the best centroids. The attained results

verified that CGA can outperform the traditional K -means technique. Agustı et al. [2] also

proposed another version of GA called grouping GA (GGA). GGA is developed based on

applying the grouping encoding and evolutionary crossover and mutation operators on the

clustering process. The efficiency of the GGA shows that it can attain competitive accuracies.

Other variants are also available in [13,14,61,64]. A particle swarm optimization (PSO)-based

clustering approach was developed in [74]. The searching capabilities of PSO were utilized

to obtain the best clusters. To utilize the merits of PSO like fast convergence speed in early
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steps, [3] proposed a hybrid variant of PSO and K -means techniques. Parallel implementa-

tion of PSO-based clustering method was introduced in [5–8,26] proposed an evolutionary

clustering strategy according to the searching merits the firefly algorithm (FA). In this paper,

they proposed a hybrid FA-K -means technique. [47] proposed another evolutionary-based

approach to tackle 2D spatial datasets. The assessment and comparisons revealed promising

results for this technique.

In [66], ant colony optimization (ACO) was utilized to realize the best clusters. The results

revealed the superior capabilities of this method compared to previous works. Aljarah and

Ludwig [7] utilized glowworm swarm optimization (GSO) to realize the clustering tasks. In

this work, the CGSO was modified and three objectives were employed to find several best

centroids inside the solution space. The experiments revealed that CGSO-based technique can

outperform four well-established algorithms on used datasets. In [58], a new swarm-based

clustering technique has been developed based on binary artificial bee colony (BABC). Their

motivation was to propose a new solution generation approach for dynamic clustering tasks

in an effective manner based on a series of similarity metrics. Shukri et al. [68] also proposed

evolutionary static and dynamic clustering techniques based on multi-verse optimizer (MVO).

The MVO-based methods validated using 12 problems and the performance of this approach

compared to several classic and population-based clustering strategies. The obtained results

revealed that static and dynamic MVO-based solvers can beat other competitors on used

datasets.

The GWO has also been utilized to deal with clustering scenarios. Fahad et al. [16] pro-

posed a GWO-based clustering approach to deal with vehicular ad hoc networks (VANETs).

The results show the improved results compared to some advanced variants of PSO such as

comprehensive learning PSO (CLPSO). Katarya and Verma [39] proposed a movie-based

collaborative recommender technique that employs the GWO and fuzzy c-mean (FCM) clus-

tering approach to predict the score of an item for a customer with regard to his historical

activity and similarity measures. Kumar et al. [45] proposed a GWO-based technique for

clustering problems. The results were compared with different metaheuristic methods such

as GA and PSO, and the outcomes of the simple GWO-based method were satisfactory.

Kapoor et al. [37] also developed a GWO-based clustering method to deal with satellite

image segmentation problems. For clustering analysis, Zhang and Zhou [78] hybridized the

basic GWO with Powell local search, which is called PGWO, and the clusters revealed

the superior results of PGWO. To deal with large-scale scenarios, Tripathi et al. [73] pro-

posed a map-reduce-based modified GWO (MR-EGWO). Simulation results verified that

the developed MR-EGWO can show a promising performance. All aforementioned studies

on GWO-based approaches agree on the high potential and satisfactory performance of the

conventional GWO in tackling clustering datasets.

There are also some other nature-inspired algorithms utilized for clustering objectives that

can be read in [5,25,27,56,65].

3 Preliminaries

3.1 The GWO algorithm

The GWO is a recent swarm intelligence (SI) technique that was originally proposed by

Mirjalili et al. [54]. The GWO has been successfully applied to many optimization problems

[33,35,42]. The main inspiration of this algorithm came from the social behavior of the grey
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wolves and their dominant hierarchy. In nature, wolves can often be seen in the packs with

5 to 12 individuals on average. Usually, two wolves (a dominant wolf and his mate) lead

the folk, which is called alpha (α), and other pack’s adult wolves follow them in the second

level, which is called beta (β), while delta (δ) wolves come at the third level. Other wolves

come in the lowest level and are called omega (ω). Alpha wolves are often responsible for

guiding the hunting attacks, decision making for the main activities of the pack such as

hunting, maintaining discipline, sleeping places, and waking time. Beta classes play the role

of the advisors for alpha wolves and send the feedback from the other wolves to them. Delta

members are responsible for guarding and protecting the pack from any danger, and delta

group contains the scouts, sentinels, elders, hunters, and caretakers. Group hunting is another

interesting behavior of the grey wolves. Wolves first track, chase, and approach a prey, and

then, they pursue encircle and harass it until it stops moving. Finally, the wolves attack the

stationary prey.

The social intelligence of grey wolves and their hunting mechanisms (tracking, encircling,

and attacking the prey) are mathematically modeled to design the GWO algorithm. The social

behavior is mathematically modeled to solve various problems by assigning the fittest solution

of the population as α and the next two best solutions as β and δ, respectively. The remaining

solutions in the population are called ω. The hunting process is modeled by simulating two

processes: encircling a prey and then hunting it.

3.2 Encircling a prey

Encircling a prey by the hunters is the first step in the hunting process. The distance between

each wolf and the prey can be modeled as in Eq. (1)

−→
D = |

−→
C ·

−→
X P (t) −

−→
X (t)| (1)

−→
C = 2 ·

−→
r2 (2)

where
−→
X P (t) indicates the position vector of the prey,

−→
X P (t) indicates the position vector

of a wolf, and t indicates the iteration.
−→
C is calculated as in Eq. (1), and

−→
r2 is a random

vector (of the same dimensions as
−→
X P (t) and

−→
X P (t)) in the interval [0, 1]. The · between

−→
C and

−→
X P (t) means corresponding componentwise multiplication.

3.3 Hunting a prey

When hunting a prey, wolves should get closer to the prey. Based on the distance of each

wolf to the prey [
−→
D in Eq. (1)], the next move of a wolf can be modeled as in Eq. (3).

−→
X (t + 1) =

−→
X P (t) −

−→
A ·

−→
D (3)

−→
A = 2

−→
a ·

−→
r1 −

−→
a (4)

where
−→
a should be linearly decreased from 2 to 0 over the optimization, and r2 is a random

vector inside [0, 1].

Regarding the social hierarchy of wolves, the best three hunters suppose to have more

knowledge for determining the location of the prey more than the wolves in the ω group.
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Therefore, all wolves should update their positions according to the positions of α, β, and δ.

The distance between any wolf and the leaders of the pack can be calculated using Eq. (5).

−→
D α = |

−→
C 1 ·

−→
X α −

−→
X |,

−→
D β =

−→
|C 2 ·

−→
X β −

−→
X |,

−→
D δ = |

−→
C 3 ·

−→
X δ −

−→
X |

(5)

The obtained distances from Eq. (5) are utilized to reposition a wolf using Eqs. (6) and

(7).

−→
X 1 =

−→
X α −

−→
A 1 · (

−→
D α),

−→
X 2 =

−→
X β −

−→
A 2 · (

−→
D β),

−→
X 3 =

−→
X δ −

−→
A 3 · (

−→
D δ)

(6)

−→
X (t + 1) =

−→
X 1 +

−→
X 2 +

−→
X 3

3
(7)

By repeating the encircling and hunting operators, the best location (prey) can be located.

As shown in Eq. (4), decreasing the values of
−→
a from 2 to 0 means that the values of

−→
A

are random numbers in the interval [−2a, 2a]. When the values of
−→
A are inside [−1, 1],

then a search agent can update its position to any location between his current position and

the prey’s position. The motions of wolves when |A| < 1 or |A| > 1 are shown in Fig. 1.

The 3D view of motion is also depicted in Fig. 2. When |A| > 1, the wolves will check the

unexplored space for finding any better preys. Hence, |A| > 1 has an effective role during

the exploration phase of the GWO. It encourages all agents to still search the entire space

in the first half of iterations for exploring better areas nearby the optimum. When |A| < 1,

the wolves try to focus on the observed prey; hence, it assists the GWO in exploiting the

neighborhood of solutions. It can decrease the size of jumps around the prey. The C vector

also assists GWO during all iterations in escaping from the local optima (LO) in the situation

(X,Y)

(XP,YP)

(XP,Y)

(X,Y)(XP-X,Y)

(XP-X,YP)

(XP-X,YP-Y)

(XP,YP-Y)

(X,YP)

(X,YP-Y)

Location of

wolves

If |A|>1If |A|<1

Location of the

prey

Previous

locations

Fig. 1 Effect of A on the direction of motions
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(X,YP -Y,ZP-Z)(XP,YP -Y,ZP-Z)

Current position of wolves

Current location

of the prey

(XP,YP,ZP)

3D trajectory of

wolves

Fig. 2 3D motion of agents around the victim

of immature convergence. It enriches the random behaviors of GWO in dealing with more

multifaceted landscapes. GWO intrinsically pulls all wolves toward the prey, which promotes

exploitation. The random vectors can help GWO to make an effective transition from global

to local searching phase. The pseudocode of the GWO is presented in Algorithm 1.

Algorithm 1 Pseudocode of the GWO

set the maximum number of iterations L

Initialize the population Xi (i = 1, 2, . . . , n)

Initialize a, A, and C

Calculate the fitness of wolves

Xα = the best search agent

Xβ = the second best search agent

Xδ = the third best search agent

while (t < L) do

for each search agent do

Update the position of the current search agent by Eq. (5)

end for

Update a, A, and C

Calculate the fitness of all search agents

Update Xα , Xβ and Xδ

t = t + 1

end while

return Xα

3.4 Tabu search (TS)

Tabu search (TS) is a metaheuristic algorithm that was originally proposed by Fred Glover

[21]. The main feature of TS is that it uses an adaptive memory (called tabu list) to avoid

returning to recently visited solutions to prevent the search from stacking at the local optima

[72]. A key element of the tabu list is to create a balance between search exploration (diversi-
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fication) and exploitation (intensification) [23]. Exploitation strategies are based on searching

the attractive regions in the search space (the neighborhood of good solutions). Exploration

strategies, on the other hand, aim to explore new regions in the search space that were not

examined in the search process previously.

TS behaves like a hill-climbing algorithm (local search), but it accepts non-improving

solutions to escape from local optima [22]. In TS, usually the whole neighborhood is explored

and the best moves that improve the best solution so far are selected. In each iteration of the

simple TS algorithm as shown in Algorithm 2, many trial solutions are generated in the

neighborhood of the best solution. This generation process is designed to avoid the recently

visited solutions. The best trial solution will be adopted as the next solution. The TS can be

terminated if the number of iterations without any improvement exceeds a predetermined

maximum iteration number. There are several works that hybridized the TS as a local search

strategy with other optimizers such as PSO [67], SA [57], and ant colony optimization (ACO)

[38].

Algorithm 2 Pseudocode of Tabu Search (TS)

Sbest = S0|∗Construct I ni tial Solution∗|

bestCandidate = Sbest

TabuList ← [ ] |∗ I ni tiali ze T abuList∗|

while (NOT StoppingCondition ()) do

Generate candidate solutions in the neighborhood of Sbest

set SCandidate as the first candidate in the Sbest Neighborhood

for (SCandidate in Sbest Neighborhood) do

if (SCandidate NOT in T abuList AND fitness(SCandidate) > fitness(bestCandidate)) then

bestCandidate ← SCandidate

end if

end for

if (fitness(bestCandidate) > fitness(Sbest )) then

Sbest ← bestCandidate

end if

Update T abuList (push the bestCandidate)

if (tabuList Ssi ze > maxT abuList Si ze) then

Remove the first element from the T abuList

end if

end while

return Sbest

4 The proposed hybrid GWOTS

The efficacy of the GWO is highly affected by its exploratory factors and exploitative hunting

motions. It has a sufficient exploration potential and can find high-quality solutions compared

to several well-established optimizers. When the algorithm explores a series of fruitful loca-

tions that have more chance to be the global best, the exploitation mechanism of GWO helps

it to further focus on those solutions. However, if the wolves move toward the leader wolves

during exploitation, it cannot scan the neighborhood of leader before updating all wolves

in their direction. This situation happens when the algorithm needs a deep exploitation with

occasional ‘jumps,’ but it cannot further increase the quality of solutions. After that, the algo-

rithm cannot focus on exploitation of the neighborhood of best wolves found so far, which

decreases the convergence rate and optimality of final results.
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In GWO, the movement of ω wolves (the whole population except the leaders) highly

relies on the situations of the leaders α, β, and δ. Since alpha, beta, and delta are selected to

be the best three solutions obtained so far over the course of iterations, the leaders tend to

converge to the same solution that might result in trapping in a location solution. To alleviate

this drawback, a TS-based effective operator is considered here to be integrated into the

GWO.

The key idea behind the hybrid GWOTS is to utilize the concept of adaptive memory in

TS for discovering the neighborhood of each leader before updating the positions of the rest

of the pack. Therefore, the TS algorithm is applied only to the locations of the leader wolves.

The GWOTS is equipped with the adaptive memory and responsive exploration advantages

of the TS. The role of the new TS-based operator is as an exploratory local search (ELS) that

first receives a position of a leader. Then, it starts searching some attractive regions in the

neighborhood space of the received position while considering a tabu list of recently visited

positions to avoid returning of GWOTS to them, which consequently prevents the search

from stacking at local solutions and goes toward better solutions. The movement mechanism

of GWOTS is also demonstrated in Fig. 3.

Due to the use of TS inside the main GWOs loop, its computational complexity directly

impacts that of GWO. The computational complexity of GWO is of O(t1dn2), where t1
indicates the number of iterations, d is the number of variables, and n shows the number

of solutions. In addition, the computational complexity of the tabu search (TS) is of O(t2s),

where t2 is the number of iterations and s is the neighborhood size. TS is run in each iteration

for three of the GWO solutions, so the overall complexity is O(t1(t2s + dn2)). Note that the

cost of objective function has not been considered in this complexity analysis since it highly

depends on the problem. The pseudocode of the GWOTS is presented in Algorithm 3.

The following remarks can explain why the GWOTS can potentially demonstrate a better

efficacy compared to the GWO:

– The GWOTS is able to show a faster convergence rate because it has an enhanced TS-

based local search engine and can explore more promising solutions from the vicinity of

leaders in each hunting phase.

– The simultaneous use of the unique local searching capacities of TS within the exploration

and exploitation phases of the GWO can constructively lead to improved results and

performance.

– The utilized TS-based operator can avoid the GWO from cycling drawback. The reason

is that it can guide the agents toward some trial positions in the vicinity of leaders, which

assists the proposed GWOTS in avoiding the recently visited locations.

– In GWOTS, the leaders are guided to reach to the better local choices around them using

the info collected throughout the hunting process.

– The use of TS within the GWO as a local search engine allows the hybrid algorithm to

preserve the diversity of wolves and prevent leading to deceptive local solutions.

5 GWOTS for clustering

In this section, the GWOTS is evaluated and applied to the clustering task. The proposed

GWOTS-based clustering approach aims to formulate the clustering problem as an optimiza-

tion problem by following the same concept of the partitional clustering-based algorithms.

The main objective of the GWOTS is to distribute some of the data instances into a number

of predefined groups. In the proposed algorithm, the GWOTS tries to locate the optimal
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Fig. 3 The 3D motion of wolves in GWOTS

Algorithm 3 Pseudocode of GWOTS

Initialize the grey wolf population Xi (i = 1, 2, . . . , n)

Initialize a, A, and C

Calculate the fitness of each search agent

Xα = the best search agent

Xβ = the second best search agent

Xδ = the third best search agent

while (t < Max number of iterations) do

for each leader in ( Xα , Xβ and Xδ) do

Update the position of the leader agent by Algorithm 2 ⊲ Call Algorithm 2

end for

for each search agent do

Update the position of current search agent by Eq. (5)

end for

Update a, A, and C

Calculate the fitness of all search agents

Update Xα , Xβ and Xδ

t = t + 1

end while

return Xα

centroid for each group in such a way that each wolf in GWOTS represents a solution that

contains the cluster/group of centroids. The following subsections will discuss the proposed

GWOTS-based clustering technique in details.

5.1 Clustering preliminaries

Clustering problem can be formulated as follows. Suppose we have a dataset D, which

consists of R data points; r1, r2,…, rR . Each data point is represented with m-dimensions

such as ri = (ri1, ri2,…,rim). Given D dataset, a clustering algorithm tries to locate a

123



Clustering analysis using a novel locality-informed grey…

set of k clusters such as C = {C1, C2,…,Ck}. Clusters C are represented by centroids c j ,

j = 1, 2, . . . , k. In general, the clustering algorithm objective is to maximize the similarity

between clusterś members and minimize the similarity between the members from different

clusters.

5.2 The proposed GWOTS-based clustering approach

The proposed algorithm is based on GWOTS and consists of four main phases: individual

encoding and population initialization, fitness evaluation and update, centroids update, and

clustering evaluation. Each of these phases is discussed as follows:

– Individual encoding and population initialization: The method is used to encode the

population individuals and form the final clustering solution considering each individual

of the population as a complete clustering solution. Each individual of the population

represents a vector of centroids with length k, which represents the predefined number

of the clusters. Each centroid represents a sub-vector consisting of m dimensions, which

reflects the number of the attributes in the dataset D. The length of each individual S is

calculated based on the following formula: S = k × m. Figure 4 shows the encoding of

the individual.

All population individuals with size N are initialized randomly such that each individual

is initialized by S data points, which are selected from the given dataset.

– Fitness evaluation: Similarly to other optimization problems, a fitness function should

be defined to assess the clustering quality. As mentioned in the previous subsection, the

clustering algorithm tries to minimize and maximize some similarity measures to achieve

the best clustering results. In this paper, the most known clustering quality measure called

sum of squared errors (SSE) [46,62] is used as the fitness function. The SSE fitness

function is calculated based on the Euclidean distances between the data points in the

dataset and the nearest centroids in the clusters. The SSE can be calculated using Eq.

(8):

SSE =

k
∑

j=1

|C j |
∑

i=1

σ(c j , ri )
2 (8)

where σ represents the Euclidean distance between the centroid c j and i th data point ri

and is given by Eq. (9):

σ(c j , ri ) =

√

√

√

√

m
∑

w=1

(c jw − riw)2 (9)

where riw represents wth dimension of the i th data point that belongs to the cluster with

c j centroid.

The fitness function SSE is utilized here to evaluate the goodness of each wolf, such as

each wolf tries to minimize its fitness.

– Centroids update: Through the process of GWOTS algorithm, each individual updates

its centroids using the best three individuals (α, β, and δ). These three individuals are

further enhanced and improved by applying the TS algorithm (Algorithm 2) on each

of them independently in an attempt to improve the quality of the leaders. The resulted

enhanced leader by the mechanisms of TS will be referred to as (α′, β ′, and δ′). Then, each

individual moves toward these best individuals (α′, β ′, and δ′) by updating its centroids.
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Fig. 4 Individual encoding

The next step is to re-evaluate the SSE of the updated individuals. This iterative process

is continued until the maximum number of iterations is achieved. After the clustering

process is terminated, the best individual α, which contains the optimal centroids, is

utilized to evaluate the clustering results. In this procedure, the TS-based local search

exploits the vicinity of the top solutions (α, β, and δ) in each iteration to find any possible

better position in the same iteration (see the dotted spheres in Fig. 3). Therefore, the new

variant of GWO is locality-informed and neighborhood of each top solution is detected

before any further progress in exploration and exploitation trends.

– Clustering evaluation: To assess the clustering quality of the final solution, we used two

popular clustering measures: purity and entropy measures [7,63,71]. The purity is the

percentage of the number of data points that are clustered correctly. Purity is calculated

using Eq. (10):

Purity =
1

R

k
∑

i=1

|L i

⋂

Ci | (10)

where R represents the number of data points in the dataset; k represents the number

of clusters in the dataset; L i represents the data points that are truly assigned to the

actual cluster; and Ci represents the data points that are assigned to cluster i using the

clustering algorithm. Entropy measures the semantic distribution of the data points within

each cluster, and it is calculated by Eq. (11):

Entropy =

k
∑

i=1

|Ci |

n
E(Ci ) (11)

where E(Ci ) represents the individual entropy of the i th cluster. E(Ci ) is given by Eq.

(12):

E(Ci ) =
−1

log(k)

k
∑

i=1

|L i

⋂

Ci |

Ci

log(
|L i

⋂

Ci |

Ci

) (12)

The flow chart of the GWOTS-based clustering algorithm is depicted in Fig. 5. Further-

more, Fig. 6 shows an example of a clustering process on an artificial dataset with 2 attributes.

6 Experimental results and discussion

In this section, the proposed GWOTS is applied to a series of 13 well-studied clustering

benchmark tasks with various features and instances, which are obtained from the UCI

machine learning repository [15]. Table 1 shows the details of the utilized benchmarks.

In order to further substantiate the exploration and exploitation capacities of the GWOTS, it

is compared to several well-recognized evolutionary and swarm-based optimizers such as the
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Fig. 5 Flow chart of the GWOTS clustering algorithm
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(a) Original Data set (b) Start State (c) Final State

Fig. 6 Clustering process for the artificial dataset, a maximum number of iterations = 200. The individuals

start from an initial random data points that are selected from the given dataset and move to the solution

(optimal centroids). a The original dataset. b The initial random individual’s locations (small black crosses)

with dataset instances (red points). c The final solution centroids locations after the clustering process with 4

centroids (small squares), and each cluster in the dataset has a different color based on the minimum distances

to the centroid (color figure online)

Table 1 List of utilized datasets
Dataset Features Instances Classes

Iris 4 150 3

Blood 4 778 2

Breast cancer 10 683 2

Glass 9 214 6

Seeds 7 210 3

Wine 13 178 3

Australian 15 653 2

Diabetes 8 768 2

Haberman 3 306 2

Heart 13 270 2

Liver 6 345 2

Planning relax 12 182 2

Tic-tac-toe 9 958 2

TS [23], SA [57], GA [24], PSO [40], DE [70], and original GWO [54] on clustering problems.

Several works have utilized these widespread algorithms to substantiate the competences of

their methodologies in dealing with clustering test suites, and these approaches revealed

efficient performances in handling difficult tasks [12,51,60]. Hence, they also utilized here

to validate the efficacy of the proposed GWOTS in handling the clustering tasks. In addition,

we compare the results of GWOTS with those computed by commonly used methods such

as the well-regarded K -means [36], K -medoids [59], hierarchical clustering (HC) [75], and

furthest first (FF) [11] techniques.

All the experiments and comparative evaluations in this research are performed and orga-

nized using a PC with Intel Core(TM) i5-2400 3.1GHz CPU and 4.0GB RAM. All tests are

implemented under the same fair computational conditions.

The parameters of utilized techniques are tabulated in Table 2. The maximum iterations

for SA and TS (trajectory-based algorithms) were set to 10,000, and for others (population-
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Table 2 The parameters of

algorithms
Algorithm Parameter Value

PSO Inertia factor 0.1

c1 2

c2 2

FFA α 0.5

β 0.2

γ 1

DE C Crossover 0.5

F Scaling [0.2 0.8]

CS pa 0.25

GA Crossover 0.8

Mutation 0.02

GWO a [2 0]

MFO a [−2 −1]

b 1

TS bw 0.01

T abu si ze 5

based optimizers), it was set to 200. The population size was set to 50 for population-based

methods. The results are collected over 30 independent runs.

In order to detect the significant improvements of the GWOTS over other algorithms, the

results of the Wilcoxon rank sum test are also provided in addition to the mean and standard

deviation values. For these tests, the proposed GWOTS for each benchmark is marked as the

base method to calculate the p values versus other approaches.

6.1 Comparison with other evolutionary approaches

The results and efficacy of the proposed GWOTS and other algorithms are compared and

discussed based on the utilized measures on clustering, namely SSE, purity, and entropy.

Table 3 exposes the SSE results of GWOTS and other competitors in realizing all benchmark

datasets.

From Table 3, it is observed that the GWOTS can provide the lowest SSE results for 10

datasets: Iris, Blood, Breast, Glass, Seeds, Wine, Australian, Diabetes, Heart, and Tic-tac-

toe. It is also the second best metaheuristic on the rest of datasets: Haberman, Liver, and

Planning relax. According to STD values, the accuracy of the GWOTS is improved in all

cases compared to the basic GWO, especially for Australian, Breast, and Diabetes cases. For

Iris, Glass, and Wine, it is seen that the worst SSE results of GWOTS are still better than the

best SSE values attained by the GWO to some extent. The median index of GWOTS and TS

is similar, but the average results of GWOTS are superior to those of TS on 10 datasets.

Based on the overall ranks, the GWOTS outperforms all others and the TS, GWO, DE,

PSO, SA, and GA are in the subsequent places. The GWOTS can demonstrate improved

behaviors and searching capabilities and determine relatively preferable results because it

can switch from exploration to an extensive TS-based local search more smoothly during the

clustering process in comparison with the GWO and other examined metaheuristics. With

adding more iterations, it can avoid cycling drawbacks and convergence to local optima.
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Clustering analysis using a novel locality-informed grey…
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Clustering analysis using a novel locality-informed grey…
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Fig. 7 Convergence curves of the GWOTS versus other methods for all data benchmarks
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Table 6 P values of the Wilcoxon test for SSE results of the GWOTS versus other algorithms on all datasets

(p ≥ 0.05 are underlined)

Dataset TS GWO DE PSO GA SA

Iris 9.35E-10 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Blood 5.48E-04 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Breast 2.14E-09 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Glass 2.31E-08 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Seeds 1.15E-04 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Wine 6.95E-01 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Australian 6.14E-06 4.81E-09 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Diabetes 1.14E-05 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Haberman 8.91E-04 1.06E-08 2.87E-11 6.11E-05 2.87E-11 2.87E-11

Heart 2.09E-05 1.06E-08 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Liver 9.00E-01 8.91E-04 2.87E-11 1.06E-08 2.87E-11 2.87E-11

Planning relax 5.99E-01 2.87E-11 2.87E-11 2.87E-11 2.87E-11 2.87E-11

Tic-tac-toe 2.24E-03 2.40E-02 2.87E-11 4.92E-08 2.87E-11 2.87E-11

(a) Mouse dataset (b) Vary Density dataset

Fig. 8 Synthetic datasets

Table 7 shows the purity results of different optimizers in dealing with all datasets.

Regarding the purity results in Table 7, the GWOTS can outperform all methods on 7

datasets (Iris, Glass, Seeds, Wine, Australian, Diabetes, and Heart). For Haberman and Tic-

tac-toe, all methods have found the same indexes. In the sense of other metrics, several

substantial improvements can also be detected in the purity grades. According to the sum-

mation of ranks, the GWOTS has classified more objects correctly and the TS, GWO, DE,

GA, SA, and PSO have achieved to the subsequent ranks. The TS-based mechanism has

effectively increased the chance of GWOTS to avoid the local optima stagnation problem

and deepened its exploitative patterns when it wants to exploit the neighborhood of superior

leaders during the last steps of the search (Table 4).

Table 5 shows the entropy results of the proposed GWOTS and other algorithms on all 13

datasets.

Inspecting the entropy results in Table 5, it can be seen that once again, the GWOTS

shows the highest quality (lowest entropy) compared to the GWO and other competitors.

It has enriched the semantic distribution of the data points within each cluster and can
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Table 7 Purity clustering results of GWOTS compared with other traditional clustering algorithms

Dataset Metric GWOTS K -means K -medoids HC FF

Iris Rate 0.88667 0.84267 0.84667 0.88 0.86

Rank 1 5 4 2 3

Blood Rate 0.76203 0.76203 0.56551 0.76738 0.76738

Rank 3 3 5 1 1

Breast Rate 0.95422 0.95422 0.9113 0.90987 0.83834

Rank 1 1 3 4 5

Seeds Rate 0.95506 0.94382 0.8764 0.93258 0.69663

Rank 1 2 4 3 5

Wine Rate 0.95506 0.94382 0.8764 0.93258 0.69663

Rank 1 2 4 3 5

Australian Rate 0.83797 0.73333 0.67826 0.73333 0.55507

Rank 1 2 4 2 5

Diabetes Rate 0.6681 0.66458 0.18099 0.65104 0.65755

Rank 1 2 5 4 3

Haberman Rate 0.73529 0.73529 0.52614 0.73529 0.73529

Rank 1 1 5 1 1

Heart Rate 0.77704 0.59259 0.58889 0.70741 0.56667

Rank 1 3 4 2 5

Liver Rate 0.57971 0.57971 0.26377 0.57971 0.58261

Rank 2 2 5 2 1

Planning relax Rate 0.71429 0.71429 0.4011 0.71429 0.71429

Rank 1 1 5 1 1

Tic-tac-toe Rate 0.65344 0.65344 0.58664 0.65344 0.65344

Rank 1 1 5 1 1

Mouse Rate 0.38878 0.838778 0.86612 0.91 0.8

Rank 5 3 2 1 4

Vary density Rate 0.95333 0.86733 0.85333 0.667 0.667

Rank 1 2 3 4 4
∑

21 30 58 31 44

Overall 1 2 5 3 4

reach the lowest entropy in dealing with 7 datasets. The incorporation of TS as a local

enhancement operator permits the GWOTS approach to overleap LO and reveal a satisfactory

efficacy. Similar to the efficacies in the sense of purity, all algorithms have competitive entropy

indexes in dealing with Blood, Haberman, Liver, Planning relax, and Tic-tac-toe datasets.

Regarding the overall ranks, the GWO, TS, and DE are the next superior algorithms. The

overall performances also express that PSO, GA, and SA have the same efficacy.

The convergence behaviors are demonstrated and compared in Fig. 7. It is evident that

the GWOTS finds promising and superior solutions during the initial steps of the hunting for

all datasets. The reason is that the GWOTS can attain better solutions around the leaders in

every step, which assist it in maintaining a better balance between the broad exploration and

extensive exploitation inclinations as compared to the GWO algorithm.
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Fig. 9 Visual comparison of purity results

Table 6 presents the statistical test for SSE results of the GWOTS versus other algorithms

on all 13 datasets. From Table 6, it is seen that the GWOTS can attain significant improvements

over GWO, DE, PSO, GA, and SA optimizers in realizing all datasets. It also provides

significantly superior results compared to the TS in the majority of problems.

6.2 Comparison with commonly used clustering techniques

In this section, we compare the results of GWOTS with those obtained by commonly used

approaches including the well-known K -means, K -medoids, hierarchical clustering (HC),

and furthest first (FF) techniques. These methods have been utilized in various applications

as the well-regarded approaches in clustering tasks.

We also include two synthetic datasets to compare the performance of the GWOTS-based

clustering approach with the commonly used techniques. The first synthetic dataset is Mouse

case, which has 490 records, two features, and three classes. The other case is Vary Density,

which includes 150 records, two features, and three classes. These datasets are shown in Fig. 8

as well. These two datasets are generated using ELKI generator and available at (https://elki-

project.github.io/datasets/).

Tables 5 and 7 expose the purity and entropy results of the GWOTS compared to K -means,

K -medoids, HC, and FF techniques.

As per results in Table 7, we see that the proposed GWOTS has obtained the best results

on 12 datasets. If we consider the overall ranks, the best method is GWOTS, followed by

K -means, HC, FF, and K -medoids techniques, respectively. For Planning relax, Tic-tac-toe,

and Haberman cases, we see the GWOTS, FF, HC, and K -means have the same purity index,

while for all datasets, the GWOTS is superior to K -medoids technique.

Based on results in Table 5, we see that the proposed GWOTS shows the best efficacy on

eight datasets including Breast, Glass, Wine, Australian, Heart, Tic-tac-toe, Mouse, and Vary

Density. The second best competitor is K -means, which only obtained the best results on two

datasets, and for Breast dataset, its entropy index is the same with GWOTS approach. Based

on the overall ranks, we detect that the GWOTS has outperformed all methods in terms of

entropy index and the next approaches are K -means, HC, K -medoids, and FF techniques,

respectively. The purity and entropy results are also compared visually in Figs . 9 and 10. It

is visually observed that the best curve belongs to GWOTS compared to other peers. Table 9
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Table 8 Entropy clustering results of GWOTS compared with other traditional clustering algorithms

Dataset Metric GWOTS K -means K -medoids HC FF

Iris Rate 0.26358 0.30548 0.28607 0.25587 0.30656

Rank 2 4 3 1 5

Blood Rate 0.79142 0.79142 0.98431 0.78254 0.78254

Rank 3 3 5 1 1

Breast Rate 0.26793 0.26793 0.34782 0.42933 0.59458

Rank 1 1 3 4 5

Glass Rate 0.56357 0.59502 0.7502 0.59921 0.64638

Rank 1 2 5 3 4

Seeds Rate 0.33019 0.33557 0.32559 0.39118 0.53748

Rank 2 3 1 4 5

Wine Rate 0.14427 0.17831 0.3342 0.22074 0.52536

Rank 1 2 4 3 5

Australian Rate 0.60691 0.83495 0.90612 0.83473 0.9799

Rank 1 3 4 2 5

Diabetes Rate 0.88531 0.56451 0.34861 0.93204 0.92655

Rank 3 2 1 5 4

Haberman Rate 0.83309 0.83309 0.99797 0.83361 0.82172

Rank 2 2 5 4 1

Heart Rate 0.74351 0.96516 0.97524 0.86958 0.94954

Rank 1 4 5 2 3

Liver Rate 0.98154 0.61931 0.40033 0.98153 0.98021

Rank 5 2 1 4 3

Planning relax Rate 0.86039 0.5443 0.70646 0.54447 0.86308

Rank 4 1 3 2 5

Tic-tac-toe Rate 0.92405 0.92624 0.96571 0.92505 0.93086

Rank 1 3 5 2 4

Mouse Rate 0.30153 0.30153 0.374223 0.30165 0.351

Rank 1 1 5 3 4

Vary density Rate 0.14481 0.22755 0.29313 0.421 0.466

Rank 1 2 3 4 5
∑

29 35 53 44 59

Overall 1 2 4 3 5

shows the CPU time spent by GWOTS compared to other peers. As per results, the GWOTS is

fast enough and time results are acceptable and expected, but to be fair, all traditional methods

are faster than GWOTS. The main reason is that we proposed a swarm-based approach and the

nature of operators and the new TS-based mechanism are time-consuming and have their side

effect, despite the observed improvements in the clustering results. However, the GWOTS

can solve these datasets in a very reasonable time with better quality indexes for most of the

cases.

Based on these results, we conclude that the efficacy of the GWOTS is very competitive

and better than commonly used methods in most of the cases. The main reason is that the

123



Clustering analysis using a novel locality-informed grey…

0.0

0.2

0.4

0.6

0.8

1.0

GWOTS K-means K-medoids HC FF

E
n

tr
o

p
y
 r

es
u

lt
s

Datasets

Fig. 10 Visual comparison of entropy results

Table 9 Elapsed time results for GWOTS versus well-known clustering algorithms

Dataset GWO-TS K -means K -medoids HC FF

Iris 20.26 2 2 2 3

Blood 68.95 3 3 11 3

Breast 71.37 3 3 3 2

Glass 40.05 3 3 2 2

Seeds 25.64 3 3 2 3

Wine 25.74 3 3 2 3

Australian 80.66 3 3 3 2

Diabetes 78.76 2 2 10 2

Haberman 28.58 2 2 3 2

Heart 33.80 3 3 4 3

Liver 36.23 3 3 5 3

Planning relax 19.17 3 3 2 2

Tic-tac-toe 123.88 11 11 6 3

Mouse 60.9911 3 3 3 3

Vary density 16.2686 2 2 2 2

GWOTS can establish a fine balance between main exploratory and exploitative trends and

in the case of finding any high-quality solution; it is locality-informed and can intensify the

exploitation around that position, which leads to enhancing the level of quality.

6.3 Discussions

Taken together, the results supported the hypothesis of the paper. It was confirmed that

hybridizing GWO and TS improves the performance of GWO, significantly. A wide range

of case studies with different difficulties showed that this improvement is beneficial. It can

be concluded from the extensive results and comparisons that the proposed GWOTS-based

clustering approach has an improved efficacy in terms of SSE, purity, and entropy on different
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clustering datasets. Therefore, it can be considered as an capable clustering method with

several advantages inherited from both GWO and TS algorithms.

Compared to other swarm- and trajectory-based methods, GWOTS shows a very com-

petitive and superior performance and provides faster convergence behaviors, and it makes

a more stable balance between exploration and exploitation trends. The GWOTS inherits all

advantages of conventional GWO compared to other swarm-based methods such as dynamic

searching mechanisms. It also demonstrates more enhanced exploitative capacities compared

to the GA, DE, and PSO due to the effective role of TS-based local search mechanism. Com-

pared to the TS and SA, it has extensive exploration potentials that can assist GWOTS in

avoiding local optima and stagnation shortcomings. Compared to well-known traditional

methods, it provides very competitive and high-quality results. However, we observed the

computational time of the GWOTS is higher than GWO as a side effect of the TS operator.

Hence, it is obvious that the GWOTS method needs more computational time compared to

the traditional methods for obtaining the optimum clusters, while well-known methods such

as K -means and FF should be faster. We proposed a swarm-based method and compared it

with some swarm-based and trajectory-based evolutionary methods. The GWOTS method is

better than GWO and similar optimizers from the same family with comparable exploration

and exploitation operators. We did not intend to claim that GWOTS is the best method in the

world because based on no free lunch (NFL) theorem for search and optimization [76], such

a method does not exist. There is a rich literature for swarm-based optimizers for clustering,

and this is obvious and widely accepted that the traditional methods such as K -means are

often faster than swarm-based methods. However, it does not mean that methods such as

K -means are also better in terms of the accuracy of the results and local solutions avoidance.

In addition, it is evident that when adding TS, the run time of GWO will increase, but in

turn, we will get more accurate results. In addition, local search methods often increase the

time of the algorithm and they are time-consuming, especially methods like TS. Run time

is just one measure of comparison. We have used the accuracy in this word since our main

contribution is to improve the accuracy and not the speed. This holds for the majority of

swarm-based clustering methods as well. However, there are many techniques to improve

the run-time performance of swarm-based methods such as parallel computing, which can

be used to speed up the GWOTS-based method as well.

7 Conclusions and future directions

In this paper, an improved GWO-based optimizer was proposed to deal with clustering

applications. In GWOTS, an effective TS-based strategy was employed to further search in the

proximity of the best solutions obtained so far and improve the performance of GWO. Thirteen

clustering datasets were utilized besides ranksum statistical test to assess the efficiency of

GWOTS in comparison with former algorithms. The comprehensive results and analysis

disclosed the superiority of the GWOTS in terms of optimality of the results and convergence

behaviors in dealing with clustering datasets.

The future studies can utilize the proposed GWOTS for tackling other class clustering

problems. There are many spatial applications in the field of location-based services (LBS)

that the proposed GWOTS-based clustering approach can also be evaluated. In future works,

we will investigate the performance of swarm-based and evolutionary clustering methods

such as GWOTS on synthetic datasets with different sizes and arbitrary shapes. We will also

utilize parallel computing to reduce the run time of the proposed GWOTS method.
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