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CLUSTERING AND PERCOLATION ON SUPERPOSITIONS OF

BERNOULLI RANDOM GRAPHS

MINDAUGAS BLOZNELIS AND LASSE LESKELÄ

Abstract. A simple but powerful network model with n nodes and m partly overlapping
layers is generated as an overlay of independent random graphs G1, . . . , Gm with variable
sizes and densities. The model is parameterised by a joint distribution Pn of layer sizes
and densities. When m grows linearly and Pn → P as n → ∞, the model generates
sparse random graphs with a rich statistical structure, admitting a nonvanishing clustering
coefficient together with a limiting degree distribution and clustering spectrum with tunable
power-law exponents. Remarkably, the model admits parameter regimes in which bond
percolation exhibits two phase transitions: the first related to the emergence of a giant
connected component, and the second to the appearance of gigantic single-layer components.

1. Introduction

Applications in natural sciences, social sciences, and technology often deal with large
networks of nodes linked by pairwise interactions which involve uncertainty due to noisy
observations and missing data. Such uncertainties have been investigated using statistical
models ranging from classical Bernoulli random graphs and uniform random graphs with
given degree distributions to stochastic block models and more complex generative models
involving various preferential attachment and rewiring mechanisms [1, 24, 29, 42, 49]. While
succeeding to obtain a good fit for degree distributions and tractable percolation analysis,
most earlier models fail to capture second-order effects related to clustering and transitivity.
Random intersection graphs [5, 11, 17, 33, 44], spatial preferential attachment models [26, 27,
28], and hyperbolic random geometric graphs [13, 23, 34, 35] have been introduced to conduct
percolation analysis on networks with nonvanishing transitivity and clustering properties.

Despite remarkable methodological advances, most sparse network models still appear
somewhat rigid in what comes to modeling finer clustering properties, such as the clustering
spectrum (degree-dependent local clustering coefficient) [3, 46, 50], which may significantly
impact the percolation properties of the network [4, 18]. A decreasing clustering spectrum
manifests the fact that high-degree nodes tend to have sparser local neighbourhoods than low-
degree nodes. Motivated by analysing this phenomenon in a tractable quantitative frame-
work, this article discusses a statistical network model generated as an overlay of mutually
independent Bernoulli random graphs G1, . . . , Gm which can be interpreted as layers or com-
munities. The layers have a variable size (number of nodes) and strength (link probability),
and they may overlap each other. A key feature of the model is that the layer sizes and layer
strengths are assumed to be correlated, which allows to model and analyse a rich class of
networks with a tunable frequency of strong small communities and weak large communities.

1.1. Main contributions. This article presents a rigorous mathematical analysis of clus-
tering and percolation of the overlay graph model in the natural sparse limiting regime where
the number of nodes n tends to infinity, the number of layers m is linear in the number of
nodes, and the joint distribution Pn of layer sizes and layer strengths converges to a limit-
ing distribution P . We derive exact formulas for the limiting degree distribution, clustering
coefficient, clustering spectrum, and the largest component size in terms of cross-factorial
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moments and functional transforms of P . We also investigate the model under bond and site
percolation, and characterise critical parameter values of the associated phase transitions.

The descriptive power of the model is illustrated by a detailed investigation of an instance
where the layer size follows a power law, and the layer strength is a deterministic function
of the layer size following another power law. This setting leads to a power-law degree
distribution and a power-law clustering spectrum with tunable exponents in ranges (1,∞)
and [0,2], respectively. A special case in which layer strengths are inversely proportional to
their sizes corresponds to layers of bounded average degree. In this natural parameter regime
we discover a remarkable double phase transition phenomenon with two critical values: the
first characterising the emergence of a giant component in the overlay graph, and the second
characterising the emergence of gigantic components in layers covering a typical node.

Finally, we highlight that the modelling framework in this article covers both deterministic
and random layer types. Our approach of characterising the regularity of layer types using
averaged empirical distributions allows both cases to be treated in a uniform manner.

1.2. Related work. The overlay network model discussed in this article is naturally moti-
vated and implicitly described by classical works in social networks [16, 21]. The explanatory
power and wide applicability of the model in the context of social, collaboration, and infor-
mation networks has been demonstrated in [51, 52] by experimental studies of a community-
affiliation graph, which represents an instance of the present model where the node sets of
layers are nonrandom or otherwise known to the observer. The superposition of Bernoulli
random graphs considered here serves as a null model for sparse community-affiliation graphs.

The mathematical analysis in this article builds on earlier works on component evolution
and clustering in inhomogeneous random graphs [14] and random intersection graphs [8, 9].
The special model instance with unit layer strengths reduces to the so-called passive random
intersection graph [25], and as a byproduct, the present article also provides the first rigorous
analysis of giant components in general passive random intersection graphs, extending [15,
37]. When layer strengths are constant but not necessarily one, clustering properties and
subgraph densities of the model have been analysed in [31, 32, 43], and the recovery of the
layers in [20]. Another related work [48] (also part of [47]) on percolation in overlapping
community networks assumes that layers are sampled from an arbitrary distribution on
the space of finite connected graphs, and the layers are assigned to nodes via a bipartite
configuration model. The restriction to connected layers and the use of a configuration
model makes the model in [48] and its analysis fundamentally different from the present one,
and limits its applicability by ruling out networks composed of weak communities.

Clustering spectra with power-law exponent 1 have been shown for random intersection
graph models [7, 9] and spatial preferential attachment models [26, 36], and with a tunable
power-law exponent in [0, 1] for random intersection graphs [10, 12] and recently also for
a hyperbolic random geometric graph model [23]. Furthermore, [46] discusses an inhomo-
geneous Bernoulli graph model where the clustering spectrum vanishes, but its normalised
version displays evidence of a power-law behaviour with exponent in range (0,2).

To the best of our knowledge, the present work is the first of its kind where a nonvan-
ishing clustering spectrum with a tunable power-law exponent in the extended range [0,2] is
rigorously derived in terms of a simple statistical network model. This model admits a clear
explanation of the values of power-law exponents, and introduces a new analytical framework
for studying ordinary and double phase transitions in bond and site percolation on sparse
networks of overlapping communities of variable size and strength.

1.3. Outline. In the rest of the article, Section 2 presents model details and notations, and
Section 3 the main results. Section 4 illustrates the main results in a power-law setting, and
confirms the existence of double phase transition. The remaining Sections 5–8 are devoted
to proofs, with technical details postponed to Appendix A.
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2. Model description

2.1. Multilayer network. A multilayer network model with n nodes and m layers is de-
fined by a list ((G1,X1, Y1), . . . , (Gm,Xm, Ym)) of mutually independent random variables
with values in Gn × {0, . . . , n} × [0, 1], where Gn is the set of undirected graphs with node
set contained in {1, . . . , n}. We assume that conditionally on (Xk, Yk), the probability dis-
tribution of V (Gk) is uniform on the subsets of {1, . . . , n} of size Xk, and conditionally on
(V (Gk),Xk, Yk), each node pair of V (Gk) is linked with probability Yk, independently of
other node pairs. Thus, Gk is a Bernoulli random graph on node set V (Gk), with edge set
denoted E(Gk). The variables Xk, Yk, and (Xk, Yk) are called the size, strength, and type of
layer k, respectively. Aggregation of layers produces an overlay random graph G defined by

(2.1) V (G) = {1, . . . , n} and E(G) = ∪mk=1E(Gk).

This setting includes as special cases: (i) models with deterministic layer types, and (ii)
models where the layer types are independent and identically distributed random variables.

2.2. Large networks. A large network is analysed by considering a sequence of network

models ((G
(n)
1 ,X

(n)
1 , Y

(n)
1 ), . . . , (G

(n)
m ,X

(n)
m , Y

(n)
m )) indexed by the number of nodes n = 1, 2, . . .

so that the number of layers m = mn tends to infinity as n→∞. We shall focus on a sparse
parameter regime where there exists a probability measure P on {0, 1, . . . } × [0, 1] which
approximates in sufficiently strong sense the averaged layer type distribution

(2.2) Pn(A) =
1

m

m∑

k=1

P((X
(n)
k , Y

(n)
k ) ∈ A).

In this fundamental regime, the network features are described by limiting formulas with
rich expressive power captured by cross moments and tail characteristics of P .

2.3. Notations. We denote Z+ = {0, 1, . . . }, (a)+ = max{0, a}, and (x)s = x(x−1) · · · (x−
s+ 1). The indicator function of a condition A is denoted by 1(A) or 1A, whichever is more
convenient. Sets of size x are called x-sets. Unordered pairs and triples are abbreviated
as ij = {i, j} and ijk = {i, j, k}. We write

∑′
i,j and

∑′
i,j,k to indicate sums over ordered

pairs and ordered triples with distinct elements. We write an ≪ bn and an = o(bn) when
an/bn → 0, an . bn and an = O(bn) when lim sup |an/bn| <∞, and an ∼ bn when an/bn → 1.

A graph is a pair G = (V,E) where E is a set of unordered pairs of elements of V . The
degree and component of node i in graph G are denoted by degG(i) and CG(i), respectively.
The transitive closure of graph G is defined as the graph Ḡ with V (Ḡ) = V (G) and E(Ḡ) =
{ij : i ∈ CG(j)} consisting of unordered node pairs connected by a path in G.

The probability distribution of a random variable X is denoted by L(X). For probability

measures, dtv(f, g) denotes the total variation distance, f ∗g the convolution, and fn
w
−→ f

refers to weak convergence. On countable spaces, the same letter is used for both a probability
measure f(A) and its density f(t) with respect to the counting measure. The Dirac measure
at x is denoted by δx. The densities of the binomial distribution Bin(x, y) and the Poisson
distribution Poi(λ) are denoted by

Bin(x, y)(t) =

(
x

t

)

(1− y)x−tyt, Poi(λ)(t) = e−λ
λt

t!
,

with the convention that the densities are zero for t outside {0, . . . , x} and Z+, respectively.
The Bernoulli distribution is denoted Ber(y)(t) = Bin(1, y)(t). We also denote by

(2.3) Bin+(x, y)(t) = P(degH̄x+1,y
(1) = t)

the degree distribution of any particular node in the transitive closure H̄x+1,y of a Bernoulli
random graphHx+1,y on node set {1, . . . , x+1}, where each node pair is linked with probabil-
ity y, independently of other node pairs. Alternatively, Bin+(x, y)(t) equals the probability
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that the connected component of any particular node in Hx+1,y has size t+1. Both distribu-
tions have the same support {0, . . . , n}, and Bin(x, y) ≤st Bin

+(x, y) in the strong stochastic
order. No simple closed form expression is know for Bin+(x, y)(t), but its values can be
efficiently computed with the help of Gontcharoff polynomials [2, 5]. The compound Pois-
son distribution with rate parameter λ and increment distribution g is denoted CPoi(λ, g);

recall that this is the law of a random variable
∑Λ

k=1Xk where Λ,X1,X2, . . . are mutually
independent and such that L(Λ) = Poi(λ) and L(Xk) = g.

For any probability measure P on Z+ × [0, 1], any P -distributed random variable (X,Y ),
and integers r, s ≥ 0, we denote

(P )rs = E(X)rY
s =

∫

(x)ry
s P (dx, dy),(2.4)

and when this quantity is finite and nonzero, we define mixed probability distributions
Binrs(P ) and Bin+rs(P ) on Z+ with probability mass functions

Binrs(P )(t) = E

(

Bin(X − r, Y )(t)
(X)rY

s

(P )rs

)

,(2.5)

Bin+rs(P )(t) = E

(

Bin+(X − r, Y )(t)
(X)rY

s

(P )rs

)

.(2.6)

3. Main results

3.1. Degree distribution. The model degree distribution is defined by

(3.1) f (n)(t) =
1

n

n∑

i=1

P(degG(n)(i) = t),

and represents the probability distribution of the number of neighbours of a randomly chosen
node. Because G(n) is an exchangeable random graph, we see that f (n) = L(degG(n)(1)).

Theorem 3.1. Assume that m
n → µ ∈ (0,∞) and Pn → P weakly together with (Pn)10 →

(P )10 ∈ (0,∞) for some probability measure P on Z+×[0, 1]. Then the model degree distribu-

tion f (n) converges weakly to a compound Poisson distribution f = CPoi(µ(P )10,Bin10(P )).

The limiting degree distribution f in Theorem 3.1 can be represented as the law of
D =

∑Λ
k=1Dk where Λ is Poisson distributed with mean µ(P )10, D1,D2, . . . follow a mixed

binomial distribution Bin10(P ), and the random variables in the sum are mutually indepen-
dent. Here Λ represents the number of layers covering a particular node, and Dk the number
of neighbours in a typical layer covering the node. The mean equals E(D) = µ(P )21 ≤ ∞,
and the variance equals Var(D) = µ

(
(P )21+(P )32

)
for (P21) <∞. Moreover, E(Dr) <∞ if

and only if (P )r+1,r < ∞. The generating function is given by E(zD) = eλ(ĝ10(z)−1), where

ĝ10(z) =
∫
(1 − y + yz)x−1 xP (dx,dy)

(P )10
. The structure of P determines whether or not the lim-

iting degree distribution is light-tailed or heavy-tailed. Section 4 illustrates both cases and
provides examples of power laws with a tunable exponent.

3.2. Clustering. The clustering (a.k.a. transitivity) coefficient of the model is defined by

τ (n) =

∑′
ijk P(G

(n)
ij , G

(n)
ik , G

(n)
jk )

∑′
ijk P(G

(n)
ij , G

(n)
ik )

,

where G
(n)
ij represents the event that node pair ij is linked, and the sums are taken over

ordered triples of distinct nodes. We may interpret τ (n) as the conditional probability that
node pair JK is linked given that IJ and IK are linked, where (I, J,K) is an ordered triple
of distinct nodes selected uniformly at random.
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Theorem 3.2. Assume that (Pn)rs → (P )rs < ∞ for rs = 21, 32, 33, and (P )21 > 0. Then

the model clustering coefficient is approximated by τ (n) → τ , where

τ =







(P )33
(P )32

when m≪ n and (P )32 > 0,

(P )33
(P )32 + µ(P )221

when m
n → µ ∈ (0,∞),

0 when n≪ m≪ n2.

Remark (Constant layer strengths). When Yk = q is constant for all k, we see that (P )rs =
(p)rq

s where (p)r equals the r-th factorial moment of the limiting layer size distribution. In

this case the limiting model clustering equals q(p)3
(p)3+µ(p)22

and agrees with [9, 32].

The clustering spectrum of the model is defined by

σ(n)(t) =

∑

ijk P(degG(n)(i) = t, G
(n)
ij , G

(n)
ik , G

(n)
jk )

∑

ijk P(degG(n)(i) = t,G
(n)
ij , G

(n)
ik )

, t ≥ 2,

and can be interpreted as the conditional probability that node pair JK is linked given
that J and K are neighbours of a node I with degree t, where (I, J,K) is an ordered triple
of nodes selected uniformly at random. Section 4 illustrates examples where the limiting
clustering spectrum below follows a power law.

Theorem 3.3. Assume that m
n → µ ∈ (0,∞), and Pn → P weakly together with (Pn)rs →

(P )rs ∈ (0,∞) for rs = 10, 21, 32, 33. Then σ(n) → σ pointwise to the limit

(3.2) σ(t) =
(P )33 (f ∗g33)(t− 2)

(P )32(f ∗g32)(t− 2) + µ(P )221(f ∗g21∗g21)(t− 2)
,

where f = CPoi(µ(P )10,Bin10(P )) is the limiting degree distribution in Theorem 3.1, and
the distributions grs = Binrs(P ) are defined by (2.5).

3.3. Connected components. We denote by N1(G
(n)) ≥ N2(G

(n)) the two largest com-

ponent sizes in G(n). For a probability distribution f on Z+, we denote by

ρ(f) = 1−min
{

s ≥ 0 :
∑

x≥0

sxf(x) = s
}

the probability of eternal survival of a Galton–Watson branching process with offspring
distribution f .

Theorem 3.4. Assume that m
n → µ ∈ (0,∞) and Pn → P weakly together with (Pn)10 →

(P )10 ∈ (0,∞). Then the largest two component sizes in G(n) are approximated by

N1(G
(n))

n

P
−→ ρ(f+) and

N2(G
(n))

n

P
−→ 0,

where f+ = CPoi(µ(P )10,Bin
+
10(P )) is a compound Poisson distribution with rate parameter

µ(P )10 and increment distribution Bin+10(P ) defined by (2.6).

3.4. Site percolation. We may analyse how a subset of nodes Sn ⊂ {1, . . . , n} is connected
by considering a site-percolated graph defined as the subgraph

(3.3) Ǧ(n) = G(n)[Sn]

of G(n) induced by Sn. The site-percolated graph is an instance of the overlay graph model
(2.1) with layers (Ǧ1, X̌1, Y̌1), . . . , (Ǧm, X̌m, Y̌m) such that the conditional distribution of
X̌k = |V (Ǧk)| given Xk = V (Gk) is hypergeometric, and Y̌k = Yk. An approximation of
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the hypergeometric distribution by a binomial distribution Bin(Xk, θ) with
|Sn|
n ≈ θ suggests

replacing the limiting layer type distribution P by

P̌ (A) =

∫

(Bin(x, θ)× δy)(A)P (dx, dy).

The following result confirms that this modification is well justified, and summarizes the
results of Theorems 3.1–3.4 adjusted to site percolation.

Theorem 3.5. Assume that m
n → µ ∈ (0,∞), Pn → P weakly together with (Pn)10 →

(P )10 ∈ (0,∞), and Sn ⊂ {1, . . . , n} satisfies |Sn|
n → θ ∈ (0, 1]. Then the following approxi-

mations are valid for the site-percolated graph Ǧ(n) = Ǧ(n)[Sn]:

(i) The degree distribution converges weakly to f̌ = CPoi(µ(P̌ )10,Bin10(P̌ )).

(ii) The largest two component sizes are approximated by n−1N1
P
−→ ρ(f̌+) and n−1N2

P
−→ 0

with f̌+ = CPoi(µ(P̌ )10,Bin
+
10(P̌ )).

If we also assume that (Pn)rs → (P )rs ∈ (0,∞) for rs = 21, 32, 33, then

(iii) The clustering coefficient converges to τ̂ = τ where τ is the corresponding limit of the
nonpercolated graph G(n).

(iv) The clustering spectrum converges pointwise to σ̌ defined by replacing f and grs in (3.2)
by f̌ and ǧrs = Binrs(P̌ ).

3.5. Bond percolation. Bond percolation studies how well the nodes of a graph are con-
nected along a subset of links obtained by random sampling. In a multilayer networks, we
may either sample (i) a subset of links of the overlay graph, or (ii) independent subsets of
links for each layer separately. To analyse these cases for the overlay graph model G = G(n)

in (2.1), we define an overlay bond-percolated graph by

(3.4) Ĝ = G ∩H,

and a layerwise bond-percolated graph G̃ by

(3.5) V (G̃) = {1, . . . , n} and E(G̃) = ∪mk=1E(Gk ∩Hk),

where H,H1, . . . ,Hm are mutually independent random graphs on {1, . . . , n} in which each
node pair is linked with probability θ, independently of other node pairs, and independently
of the layers (Gk,Xk, Yk).

In an epidemic modeling context, the standard SIR epidemic model is used to model indi-
viduals who infect their neighbours with probability θ, independently of each other [2]. The
links of a graph G represent social contacts, and the bond-percolated component of node i
corresponds to the set of eventually infected individuals in a population where node i is ini-
tially infectious and the other nodes susceptible. Bond percolation on the overlay graph can
be used to develop finer models to model contacts of individuals generated by social commu-
nities (households, workplaces, schools) of variable size and strength. Layerwise percolation

Ĝ then models the case where infections occur independently inside the communities, and
the overlay bond-percolation G̃ models the case where infections occur between individuals
regardless of the underlying community structure.

The layerwise bond-percolated graph is an instance of the overlay model (2.1) with layer
types (Xk, θYk). This suggests considering a modified limiting layer type distribution

P̂ (A) =

∫

(δx × δθy)(A)P (dx, dy).

We expect the overlay bond-percolated model to behave similarly to the layerwise bond-
percolated model in sparse regimes where the layers do not overlap much. The following result
confirms this, and summarises the results of Theorems 3.1–3.4 adjusted to bond percolation.
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Theorem 3.6. Assume that m
n → µ ∈ (0,∞), and Pn → P weakly together with (Pn)10 →

(P )10 ∈ (0,∞), and θn → θ ∈ (0, 1]. Then the following approximations are valid for both

the overlay bond-percolated graph Ĝ(n) and the layerwise bond-percolated graph G̃(n):

(i) The degree distribution converges weakly to f̂ = CPoi(µ(P̂ )10,Bin10(P̂ )).

(ii) The largest two component sizes are approximated by n−1N1
P
−→ ρ(f̂+) and n−1N2

P
−→ 0

with f̂+ = CPoi(µ(P̂ )10,Bin
+
10(P̂ )).

If we also assume that (Pn)rs → (P )rs ∈ (0,∞) for rs = 21, 32, 33, then:

(iii) The clustering coefficient converges to τ̂ = θτ where τ is the corresponding limit of the

nonpercolated graph G(n).
(iv) The clustering spectrum converges pointwise to σ̂ defined by replacing P , f , and grs in

(3.2) by P̂ , f̂ , and ĝrs = Binrs(P̂ ).

3.6. Double phase transition. Theorem 3.6 shows that the largest relative component size
in the bond-percolated graph is approximated by the survival probability ρ(f̂+) of a Galton–

Watson process with compound Poisson offspring distribution f̂+ = CPoi(µ(P̂ )10,Bin
+
10(P̂ )).

The mean of the offspring distribution can be written as1

(3.6) R0(θ) = µ

∫

R(x− 1, θy)xP (dx, dy).

where R(x, y) =
∑

t≥0 tBin
+(x, y)(t) defined using (2.3) represents the expected transitive

degree in a homogeneous Bernoulli graph with x+ 1 nodes and link probability y. Classical
branching process theory tells that ρ(f̂+) > 0 if and only if R0(θ) > 1. Hence the largest
component in the bond-percolated graph is sublinear for θ < θ1, and linear for θ > θ1, where
the critical threshold is defined by

θ1 = sup{θ ∈ [0, 1] : R0(θ) < 1}.

The overlay graph model in studied in this article involves another nontrivial phase transition
associated with a critical threshold value

θ2 = sup{θ ∈ [0, 1] : R0(θ) <∞}.

Section 4 describes an example where 0 < θ1 < θ2 < 1.
The first phase transition at θ1 characterises the emergence of a giant component in a

bond-percolated overlay graph. To understand the second phase transition, note that R0(θ)
is proportional to the expected number of nodes which can be reached by paths within a
typical bond-percolated layer covering a particular node. The second phase transition at
θ2 hence amounts to the emergence of gigantic components inside bond-percolated layers
covering a typical node.

In the epidemic context discussed in Section 3.5, we note that the critical quantity R0(θ)
does not refer to the number of individuals directly infected by a reference individual in an
otherwise susceptible population, unlike in classical SIR models. Rather, R0(θ) also counts
the number of individuals indirectly infected by the reference individual via single-layer
infection paths.

4. Power-law models

This section illustrates the rich statistical features of the overlay model by discussing the
results of Section 3 in a setting where the layer strength is a deterministic function of layer
size according to Yk = q(Xk) for some q : Z+ → [0, 1], and the limiting layer type distribution
factorises according to

(4.1) P (dx, dy) = p(dx)δq(x)(dy)

1R0(θ) can be interpreted as the basic reproduction number “R naught” in the epidemiological context.
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where the layer size distribution p is a probability on Z+. For concreteness, we assume that
the probability mass function p(x) of the layer size distribution and q(x) follow power laws

(4.2) p(x) = (a+ o(1))x−α and q(x) = (b+O(x−1/2))x−β

as x→∞, with exponents α > 2, β ≥ 0 and constants a, b > 0. In this case

(P )rs =
∑

x≥0

(x)rq(x)
sp(x) =

∑

x≥0

(
abs + o(1)

)
xr−sβ−α

shows that (P )rs is finite if and only if α+ sβ > r + 1.

4.1. Degree distribution and clustering spectrum. Theorems 4.1 and 4.2 below estab-
lish power laws for the limiting degree distribution and clustering spectrum. Figures 1 and 2
illustrate how the associated power-law exponents relate to the corresponding exponents of
layer sizes and layer strengths. Remarkably, the power law of the clustering spectrum admits
a tunable exponent in [0, 2]. A similar power law with exponent 1 has earlier been established
for a random intersection graph [9] and for a spatial preferential attachment random graph
[26], and with exponent restricted to [0, 1] for inhomogeneous random intersection graphs
[7, 10, 12] and a hyperbolic random geometric graph model [23].

Theorem 4.1. Assume (4.2) for some α > 2, β ≥ 0, and a, b > 0.

(i) If β ∈ (0, 1), then the limiting degree distribution satisfies

(4.3) f(t) ∼ dt−δ

for δ = 1 + α−2
1−β and d = µ(1− β)−1abδ−1.

(ii) Relation (4.3) holds also for β = 0, provided that either b < 1, or b = 1 and q(x) = 1
for all but finitely many x.

(iii) If β ≥ 1, then the limiting degree distribution is light-tailed with generating function

bounded by
∑

t≥0 z
tf(t) ≤ eµ(P )10(eM(z−1)−1) for all z ≥ 0, whereM = supx≥1(x−1)q(x).

α2 3 4

β

0

1

Power law
(1 < δ < 2)

Power law
(2 < δ < 3)

Power law
(δ > 3)

Figure 1. (Color online.) Power-law exponent of degree distribution as a
function of layer size exponent α and layer strength exponent β.

Theorem 4.2. Assume (4.2) for some α ∈ (2,∞) and β ∈ (0, 1) such that α+2β > 4, and
that (Pn)rs → (P )rs ∈ (0,∞) for rs = 10, 21, 32, 33. Then the limiting clustering spectrum
defined by (3.2) follows a power law according to

σ(t) ∼







c1t
−β/(1−β), β < 2/3,

c2t
−2, β = 2/3,

c3t
−2, β > 2/3,

where c1 = b1/(1−β), c3 = µ(P )33, and c2 = c1 + c3. Furthermore, if (4.2) holds for α ∈
(4,∞) and β = 0, and q(x) = b ∈ (0, 1] for all but finitely many x, then σ(t) ∼ b.
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Networks with σ(t) ≪ t−1 are sometimes call weakly clustered, and those with σ(t) ≫
t−1 strongly clustered [4]. According to Theorem 4.2, the overlay graph model produces
weakly clustered networks for β > 1

2 , and strongly clustered networks for β < 1
2 . Using

techniques in [10], Theorem 4.2 can be generalised to the case where p(x) in (4.2) has a
regularly varying tail, and we believe that it can be extended to more general subexponential
distributions as well. We do not pursue this line here to avoid unnecessary technicalities.

α2 3 4

β

0

1

(P )21 = ∞
(P )32 = ∞

(P )32 = ∞
Power law:

β/(1− β) ∈ (0, 1)

Power law: β/(1− β) ∈ (1, 2)

Power law with exponent 2

Figure 2. (Color online.) Power-law exponent of clustering spectrum as
a function of layer size exponent α and layer strength exponent β. The
assumptions of Theorem 4.2 do not hold in the grey areas where (P )32 =∞.

4.2. Existence of double phase transition. For the power-law model (4.2), the function
in (3.6) can be computed as R0(θ) = µ

∑

xR(x − 1, θq(x))xp(x). By applying a classical
giant component result for Bernoulli random graphs [29, Theorem 5.4], one may verify that2

(4.4)
lim sup
x→∞

θxq(x) ≤ 1− ε =⇒ lim sup
x→∞

R(x− 1, θq(x)) ≤ 2ε−2

lim inf
x→∞

θxq(x) ≥ 1 + ε =⇒ lim inf
x→∞

x−1R(x− 1, θq(x)) > 0,

If α > 3, then the limiting layer size distribution p has a finite second moment and R(x −
1, y) ≤ x− 1 implies that R0(1) <∞. Hence θ2 = 1, and the second phase transition cannot
occur. On the other hand, when α ∈ (2, 3], the limiting layer size distribution has infinite
second moment. In this case (4.4) yields the following conclusions:

(1) β = 1 with b > 1. Then R0(θ) <∞ for θ < b−1, and R0(θ) =∞ for θ > b−1. Hence
θ2 = b−1 ∈ (0, 1). Assume in addition that the constant a in (4.2) is large enough

so that µθ(P )21 ≥ 1 for θ = 1
2θ2. Then f̂+ ≥st f̂ implies that R0(θ) =

∑

t tf̂
+(t) ≥

∑

t tf̂(t) = µθ(P )21 ≥ 1 for θ = 1
2θ2, and the continuity of R0(θ) on [0, θ2) implies

that θ1 ∈ (0, 12θ2). There are hence two critical values 0 < θ1 < θ2 < 1 in which the
model displays two distinct phase transitions.

(2) β ∈ (1,∞), or β = 1 with b < 1. Then R0(θ) < ∞ for all θ ∈ [0, 1], so that θ2 = 1,
and the second-type phase transition cannot occur.

(3) β ∈ [0, 1). Then one can show that R0(θ) =∞ for all θ ∈ (0, 1], and hence θ1 = θ2 =
0, and there are no phase transitions of either type.

The above observations confirm the existence of a double phase transition in bond per-
colation, as postulated in [18], for a natural network model admitting tunable power-law
exponents for both the degree distribution and the clustering spectrum. Together with
Theorems 4.1 and 4.2, this opens up a flexible framework for studying the significance and
interrelations of these power laws to bond and site percolation properties in clustered complex

2The first implication in (4.4) follows by noting that if xy < 1, then the proof of [29, Theorem 5.4] shows

that E|CHxy (1)| =
∑

t≥1 P(|CHxy(1)| ≥ t) ≤
∑

t≥1 e
− 1

2
(1−xy)2t ≤

∫∞

0
e−

1
2
(1−xy)2t ≤ 2(1 − xy)−2, so that

R(x− 1, y) = E|CHxy(1)| − 1 ≤ 2(1 − xy)−2.
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networks. The investigation of how these phase transitions are reflected in the core-periphery
organisation of the network [4, 18] remains an important topic for future research.

5. Analysis of degree distributions

5.1. Quantitative approximation for deterministic layer types. The following quan-
titative estimate is valid for every scale.

Proposition 5.1. If the layer types are nonrandom and (Pn)10 > 0, then the model de-
gree distribution f (n) defined by (3.1) is approximated by a compound Poisson distribu-

tion CPoi(λ(n), g
(n)
10 ) with rate parameter λ(n) = m

n (Pn)10 and increment distribution g
(n)
10 =

Bin10(Pn) defined by (2.5) according to

(5.1) dtv

(

f (n), CPoi(λ(n), g
(n)
10 )
)

≤
(

1 +
m

n

)2
||X||4∞n

−1,

where ||X||∞ = max1≤k≤mXk.

Proof. We approximate the degree Di = degG(i) of node i by a random integer Li =
∑m

k=1 degGk
(i). Observe that Li 6= Di if and only if there exists a node j 6= i and some

distinct layers k < ℓ such that ij ∈ E(Gk) and ij ∈ E(Gℓ). Hence by the union bound and
the independence of Gk and Gℓ,

P(Li 6= Di) ≤
∑

j 6=i

∑

1≤k<ℓ≤m

P(ij ∈ E(Gk))P(ij ∈ E(Gℓ)).

Hence, noting that P((ij ∈ E(Gk)) =
(Xk)2
(n)2

Yk ≤
X2

k
n2 Yk ≤ n

−2||X||2∞, it follows that

(5.2) dtv(Di, Li) ≤ (n− 1)

(
m

2

)

(n−2||X||2∞)2 ≤
m2

n3
||X||4∞.

Now denote by Wxy = {k : (Xk, Yk) = (x, y)} the set of layers with size x and strength
y, and let mxy = |Wxy|. Also denote S = {(x, y) : mxy > 0}. Then we see that Li =
∑

(x,y)∈S

∑

k∈Wxy
degGk

(i). Let us define a random variable

(5.3) L̂i =
∑

(x,y)∈S

Mxy∑

ℓ=1

Axy(ℓ),

where L(Mxy) = Bin(mxy,
x
n), L(Axy(ℓ)) = Bin(x − 1, y), and all random variables on

the right side are mutually independent. Then for any (x, y) ∈ S,
∑

k∈Wxy
degGk

(i)
d
=

∑Mxy

ℓ=1 Axy(ℓ), because the summands on the left are mutually independent, the number of
layers k ∈Wxy containing node i is Bin(mxy,

x
n)-distributed, and because L(degGk

(i) |V (Gk) ∋

i) = Bin(x− 1, y) for each k ∈Wxy. As a consequence, it follows that Li
d
= L̂i.

Now denote λxy = mxy
x
n and define a new random variable

(5.4) L′
i =

∑

(x,y)∈S

M ′
xy∑

ℓ=1

Axy(ℓ)

︸ ︷︷ ︸

L′
xy

,

where M ′
xy are Poi(λxy)-distributed, mutually independent, and independent of the ran-

dom variables Axy(ℓ). Because L(L′
xy) = CPoi(λxy,Bin(x− 1, y)), Lemma A.5 implies that
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L(L′
i) = CPoi(λ(n), g

(n)
10 ) with rate parameter λ(n) =

∑

(x,y)∈S λxy = m
n (Pn)10 and mixed

binomial increment distribution

g
(n)
10 =

∑

(x,y)∈S

Bin(x− 1, y)
λxy

λ(n)
=

∑

(x,y)∈S

Bin(x− 1, y)
xPn({(x, y)})

(Pn)10
.

As a consequence of Le Cam’s inequality [45] it follows that dtv(Mxy,M
′
xy) ≤ mxy

(
x
n

)2
≤

n−2||X||2∞mxy, and hence

dtv(L̂i, L
′
i) ≤

∑

(x,y)∈S

dtv

(Mxy∑

ℓ=1

Axy(ℓ),

M ′
xy∑

ℓ=1

Axy(ℓ)
)

≤
∑

(x,y)∈S

dtv(Mxy,M
′
xy)

implies that dtv(Li, L
′
i) = dtv(L̂i, L

′
i) ≤ n

−2m||X||2∞. By combining this with (5.2), the claim
follows. �

5.2. Proof of Theorem 3.1. We prove the claim in three stages: (i) under an extra as-
sumption that the space of layer types is finite, (ii) under an extra assumption that the
layer sizes are bounded, (iii) under no extra assumptions. In what follows, Dn = degG(n)(1)
and we consider all models n = 1, 2, . . . to be defined on a common probability space (see
Section A.1 for formal details).

(i) Assume that the supports of Pn, n ≥ 1, and P are contained in a finite set A ⊂
Z+× [0, 1]. Denote by Pθn = 1

m

∑m
k=1 δ(Xn,k ,Yn,k) the empirical layer type distribution of the

n-th model, and denote by L(Dn | θn) the conditional distribution of Dn given layer types
θn = ((Xn,1, Yn,1), . . . , (Xn,m, Yn,m)). Let us define λθn = m

n (Pθn)10, and

gθn(t) =

{

Bin10(Pθn), (Pθn)10 > 0,

δ0(t), else,

where Bin10(Pθn) is defined by (2.5) and δ0 is the Dirac measure at zero. Then by applying
Proposition 5.1 and Lemma A.6,

dtv

(

L(Dn | θn),CPoi(λ, g)
)

≤ dtv

(

L(Dn | θn),CPoi(λθn , gθn)
)

+ dtv

(

CPoi(λθn , gθn),CPoi(λ, g)
)

≤
(

1 +
m

n

)2
M4n−1 + |λθn − λ|+ λdtv(gθn , g),

where the inequalities remain valid also on the event that (Pθn)10 = 0 because in this case

all layers are empty and L(Dn | θn) = δ0. On the event that Pθn
w
−→ P , we see that λθn =

m
n (Pθn)10 → µ(P )10 = λ and gθn

w
−→ g (see Lemma A.10), so that dtv

(
L(Dn | θn),CPoi(λ, g)

)
→

0. Observe next that dtv(Pθn , P )
P
−→ 0 by Lemma A.2. By applying Lemma A.1 with

Φn(θn, ξn) = L(Dn | θn), we conclude that dtv
(
L(Dn | θn),CPoi(λ, g)

) P
−→ 0. Because dtv is a

bounded metric, it follows that dtv
(
L(Dn),CPoi(λ, g)

)
≤ Edtv

(
L(Dn | θn),CPoi(λ, g)

)
→ 0.

(ii) Assume now that the supports of Pn and P are all contained in {0, 1, . . . ,M} × [0, 1].
We will discretise the unit interval [0, 1] as in Section 7.5. Fix an integer L ≥ 1, and denote by
GL−n (resp. GL+n ) an overlay graph generated by a modified model where the layer strengths
Yn,k are replaced by ⌊Yn,k⌋L (resp. ⌈Yn,k⌉L), defined by (7.26). Denote by DL−

n ,DL+
n the

degrees of node 1 in GL−n , GL+n , respectively. Under a natural coupling of the Bernoulli
variables describing the link indicators of the layers we have GL−n ⊂ Gn ⊂ GL+n almost
surely, and hence

(5.5) P(DL−
n ≥ t) ≤ P(Dn ≥ t) ≤ P(DL+

n ≥ t).

for all integers t ≥ 0 and L ≥ 1.
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The averaged layer type distribution of GL±n is given by Pn ◦ σ
−1
L±, where σL−(x, y) =

(x, ⌊y⌋L) and σL+(x, y) = (x, ⌈y⌉L). By Lemma 7.12, Pn ◦ σ
−1
L±

w
−→ P ◦ σ−1

L± and (Pn ◦

σ−1
L±)10 → (P ◦ σ−1

L±)10. Hence by part (i), it follows that P(DL±
n ≥ t)→ P(DL± ≥ t), where

L(DL±) = CPoi(λ, gL±) with gL±(t) = Bin10(P ◦ σ
−1
L±). Hence by (5.5),

P(DL− ≥ t) ≤ lim inf
n→∞

P(Dn ≥ t) ≤ lim sup
n→∞

P(Dn ≥ t) ≤ P(DL+ ≥ t).

Lemma 7.12 also shows that P ◦ σ−1
L±

w
−→ P and (P ◦ σ−1

L±)10 → (P )10, so that (Lemma A.10)

gL±
w
−→ g and hence also (Lemma A.6) L(DL±)

w
−→ L(D) as L → ∞, where L(D) =

CPoi(λ, g). The above inequalities then imply that P(Dn ≥ t) → P(D ≥ t) for all t. Hence

L(Dn)
w
−→ L(D).

(iii) Let us now prove Theorem 3.1 without making any extra assumptions. Let GMn be
an overlay graph generated by truncated layers

(5.6) GMn,k =

{

Gn,k if |V (Gn,k)| ≤M,

empty graph otherwise.

Denote by DM
n the degree of node 1 in GMn . Observe that Dn 6= DM

n implies that there exists
a layer Gn,k of size larger than M which contains node 1, and this occurs with probability

P(V (Gn,k) ∋ 1, |V (Gn,k)| > M) = E
Xn,k

n
1(Xn,k > M).

Hence by the union bound,

(5.7) dtv(L(Dn),L(D
M
n )) ≤

m∑

k=1

E
Xn,k

n
1(Xn,k > M) ≤

m

n
h(M),

where h(M) = supn≥1

∫
x1(x > M)Pn(dx, dy).

Observe next that GMn is an instance of the overlay model with layer types (Xn,k1(Xn,k ≤

M), Yn,k) and averaged layer type distribution Pn ◦ σ
−1
M where σM (x, y) = (x1(x ≤ M), y).

By Lemma 7.12, Pn ◦ σ
−1
M

w
−→ P ◦ σ−1

M together with (Pn ◦ σ
−1
M )10 → (P ◦ σ−1

M )10. Hence by
part (ii), it follows that

dtv(L(D
M
n ),CPoi(λM , gM ))→ 0,

where λM = µ(P ◦ σ−1
M )10 and gM = Bin10(P ◦ σ

−1
M ). Now by (5.7) and Lemma A.6, we find

that

dtv(L(Dn),CPoi(λ, g)) ≤ dtv(L(D
M
n ),CPoi(λM , gM ))

+ |λM − λ|+ λdtv(g
M , g) +

m

n
h(M),

so that

(5.8) lim sup
n→∞

dtv(L(Dn),CPoi(λ, g)) ≤ |λ
M − λ|+ λdtv(g

M , g) + µh(M).

Lemma 7.12 also implies that h(M)→ 0, and that P ◦σ−1
M

w
−→ P together with (P ◦σ−1

M )10 →

(P )10 as M →∞. Hence gM
w
−→ g by Lemma A.10. The claim of Theorem 3.1 now follows

because the right side of (5.8) can be made arbitrarily small by choosing a large enough
M . �
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6. Analysis of clustering

6.1. General subgraph densities. Subgraph frequencies in the overlay graph will be char-
acterised using cross moments

(6.1) (Pn)rs =

∫

(x)ry
sdPn, (Pn)rs,tu =

∫

(x)ry
s (x)ty

udPn

of the averaged layer type distribution Pn defined by (2.2), and normalised cross moments
defined by

(6.2) µ(n)rs =
m∑

k=1

p(n)rs (k), µ
(n)
rs,tu =

m∑

k=1

p(n)rs (k) p
(n)
tu (k),

where p
(n)
rs (k) = (n)−1

r E(X
(n)
k )r(Y

(n)
k )s. These definitions are motivated by the following

result, where Gk∗ = G
(n)
k∗ represents a randomly chosen layer, and we recall the the mixed

binomial distribution Binrs(Pn) defined in (2.5).

Lemma 6.1. Let Frs be a graph with node set in {1, . . . , n} such that |V (Frs)| = r and
|E(Frs)| = s, and let i be a node in V (Frs) with degFrs

(i) = r − 1. Select k∗ ∈ {1, . . . ,m}
uniformly at random and independently of the layers. Then:

(i) P(Gk∗ ⊃ Frs) = m−1µ
(n)
rs ,

(ii) P(degGk∗
(i) = t |Gk∗ ⊃ Frs) = Binrs(Pn)(t− r + 1) for all t.

Proof. (i) Because P(V (Gk) ⊃ V (Frs) |Xk, Yk) = (Xk)r
(n)r

for any k, we see that P(Gk ⊃

Frs) = E
(Xk)r
(n)r

Y s
k = p

(n)
rs (k). The corresponding probability for a randomly selected k∗ equals

P(Gk∗ ⊃ Frs) =
1
m

∑m
k=1 p

(n)
rs (k) = (Pn)rs.

(ii) Denote Dk = degGk
(i). On the event that Gk ⊃ Frs, we see that Dk = d+D′

k where
D′
k = |NGk

(i) \ V (Frs)| and d = r− 1. Conditionally on (Xk, Yk) = (x, y) and Gk ⊃ Frs, the
random integer D′

k is Bin(x− r, y)-distributed. Hence

P(Dk = t, Gk ⊃ Frs) = E

(

Bin(Xk − r, Yk)(t− d)
(Xk)r
(n)r

Y s
k

)

.

The corresponding probability for a randomly chosen k∗ is

P(Dk∗ = t, Gk∗ ⊃ Frs) =

∫ (

Bin(x− r, y)(t − d)
(x)r
(n)r

ys
)

Pn(dx, dy),

so the claim follows by dividing both sides by P(Gk∗ ⊃ Frs) = (n)−1
r (Pn)rs. �

6.2. Triangle densities. The following quantitative bound is valid for every fixed n.

Theorem 6.2. Let K3 be a triangle with i ∈ V (K3) ⊂ [n]. Then:

(i) |P(G ⊃ K3)− µ33| ≤ 4µ21µ32 + µ321.

(ii) P(degG(i) = t, G ⊃ K3) = µ33 f
(n)∗g

(n)
33 (t−2)+ε(t), where f (n) is the model degree dis-

tribution defined by (3.1), g
(n)
33 = Bin33(Pn) is defined by (2.5), and the approximation

error is bounded by

|ε(t)| ≤ (4 + t)µ21µ32 + µ321 + 2µ10,33.

Proof. Denote K3 = {G ⊃ K3}. Denote by Ak = {Gk ⊃ K3} the event that all node pairs
of the triangle are linked by layer k. We also denote D = degG(i), Dk = degGk

(i), and
D−k = degG−k

(i) with G−k = ∪k′ 6=kGk.

(i) Denote

ε1(t) = P(D = t,K3)− P(D = t,∪kAk),
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and observe that 0 ≤ ε1(t) ≤ P(D = t, E12) + P(D = t, E111), where E12 is the event
that there exists one layer covering one link and a different layer covering two links of
K3, and E111 is the event that three distinct layers cover the links of K3. We write
p(abc) = P(Ga12,G

b
13,G

c
23), where G

a
ij the event that node pair ij is linked in layer a. We

note that p(abc) = p21(a)p21(b)p21(c), p(aab) = p32(a)p21(b), and p(aaa) = p33(a) for dis-
tinct layers a, b, c. Hence

P(E12) ≤
∑′

a,b

(

p(aab) + p(aba) + p(baa)
)

≤ 3µ21µ32,

and P(E111) ≤
∑′

a,b,c p(abc) ≤ µ
3
21. Thus,

∑

t≥0 |ε1(t)| ≤ 3µ21µ32 + µ321.
Then denote

ε2(t) = P(D = t,∪kAk)−
∑

k

P(D = t,Ak).

Bonferroni’s inequalities imply that 0 ≤ −ε2(t) ≤
∑′

k,k′ P(D = t,Ak,Ak′), and hence, noting
that µ33 ≤ µ32 ≤ µ21,

∑

t≥0

|ε2(t)| ≤
∑′

k,k′

P(Ak,Ak′) =
∑′

k,k′

p33(k)p33(k
′) ≤ µ233 ≤ µ21µ32.

By combining this with the bound for ε1(t), we conclude that

P(D = t,K3) =
∑

k

P(D = t,Ak) + ε1(t) + ε2(t),

where
∑

t≥0(|ε1(t)|+ |ε2(t)|) ≤ 4µ21µ32+µ
3
21. Hence claim (i) follows by summing the above

equality over t, and noting that
∑

k P(Ak) = µ33.
(ii) We will next approximate

∑

k

P(D = t,Ak) ≈
∑

k

P(D−k +Dk = t,Ak)(6.3)

=
∑

k

∑

r+s=t

P(D−k = r)P(Dk = s,Ak)

≈
∑

k

∑

r+s=t

P(D = r)P(Dk = s,Ak).(6.4)

Lemma 6.1 shows that
∑

k P(Dk = s,Ak) = µ33Bin33(Pn)(s−2). Hence the last term above

equals µ33 f
(n)∗g

(n)
33 (t − 2), and to prove the claim it suffices to analyse the approximation

errors in (6.3)–(6.4).
The approximation error in (6.3) equals ε3(t) =

∑

k ε3k(t), where

ε3k(t) = P(D = t,Ak)− P(D−k +Dk = t,Ak).

By applying Lemma A.14 with A = {k}, B = [n] \ {k}, EA = {Gk ∋ e1, e2, e3}, and
EB = {} being the sure event, we see that |ε3k(t)| ≤ cBtP(Dk ≤ t,Ak) ≤ cBtP(Ak), where
cB = P(G−k ∋ 12) ≤

∑

ℓ 6=k p21(ℓ) ≤ µ21. Hence

|ε3(t)| ≤ tµ21
∑

k

p33(k) = tµ21µ33 ≤ tµ21µ32.

The approximation error in (6.4) equals ε4(t) =
∑

k ε4k(t) where

ε4k(t) =
∑

r+s=t

(

P(D = r)− P(D−k = r)
)

P(Dk = s,Ak).

By Lemma A.13,
∑

t≥0 |ε4k(t)| ≤ 2P(Dk > 0)P(Ak). Because P(Dk > 0) ≤ p10(k) and

P(Ak) = p33(k), it follows that
∑

t≥0 |ε4(t)| ≤ 2µ10,33. Claim (ii) follows by combining the

above estimates for the total approximation error ε(t) = ε1(t) + ε2(t) + ε3(t) + ε4(t). �
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6.3. Two-star densities. The following quantitative bound is valid for every fixed n.

Theorem 6.3. Consider a two-star K12 with node set V (K12) ⊂ [n] and hub node i. Then:

(i) |P(G ⊃ K12)− (µ32 + µ221)| ≤ 6µ21µ32 + 6µ321 + µ421 + µ21,21.

(ii) P(degG(i) = t,G ⊃ K12) = µ32 f
(n)∗g

(n)
32 (t− 2) + µ221f

(n)∗g
(n)
21 ∗g

(n)
21 (t− 2) + ε(t), where

f (n) is the degree distribution of G, and the approximation error is bounded by

|ε(t)| ≤ (6 + 2t)(µ21µ32 + µ321) + µ421 + 4µ10,32 + 4µ21µ10,21 + µ21,21.

Proof. We assume that K12 is the two-star with node set {1, 2, 3} and link set {12, 13},
and denote the event under study by K12 = {G ⊃ K12}. We denote by Gkij the event that

ij ∈ E(Gk) and we set Akℓ = G
k
12 ∩ G

ℓ
13. We denote Gkℓ = Gk ∪ Gℓ and G−kℓ = ∪q /∈{k,ℓ}G

q,
and we set D = degG(1), Dkℓ = degGkℓ(1) and D−kℓ = degG−kℓ(1). We also denote hkℓ(s) =
P(Dkℓ = s,Akℓ).

First we approximate

P(D = t,K12) ≈
∑

k,ℓ

P(D = t,Akℓ)(6.5)

≈
∑

k,ℓ

P(Dkℓ +D−kℓ = t,Akℓ)(6.6)

=
∑

k,ℓ

∑

r+s=t

P(D−kℓ = r)hkℓ(s)

≈
∑

k,ℓ

∑

r+s=t

P(D = r)hkℓ(s),(6.7)

so that

(6.8) P(D = t,K12) ≈
∑

r+s=t

f (n)(r)
∑

k

hkk(s) +
∑

r+s=t

f (n)(r)
∑′

k,ℓ

hkℓ(s).

Then we note with the help of Lemma 6.1 that
∑

k hkk(s) = µ32 g
(n)
32 (s − 2). Hence the

first term on the right side of (6.8) equals

(6.9)
∑

r+s=t

f (n)(r)
∑

k

hkk(s) = µ32f
(n)∗g

(n)
32 (t− 2).

Next we approximate, denoting hk(s) = P(Dk = s,Gk12),

∑′

k,ℓ

hkℓ(s) =
∑′

k,ℓ

P(Dkℓ = s,Gk12,G
ℓ
13)

≈
∑′

k,ℓ

P(Dk +Dℓ = s,Gk12,G
ℓ
13)(6.10)

=
∑′

k,ℓ

∑

s1+s2=s

hk(s1)hℓ(s2)

≈
∑

k,ℓ

∑

s1+s2=s

hk(s1)hℓ(s2).(6.11)

After noting (see Lemma 6.1) that
∑

k hk(s) = µ21g
(n)
21 (s− 1), we conclude that

∑

k,ℓ

∑

s1+s2=s

hk(s1)hℓ(s2) = µ221g
(n)
21 ∗g

(n)
21 (s− 2),
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and hence the second term on the right side of (6.8) is approximately

(6.12)
∑

r+s=t

f(r)
∑′

k,ℓ

hkℓ(s) ≈ µ221f ∗g
(n)
21 ∗g

(n)
21 (t− 2).

By combining (6.8), (6.9) and (6.12), we conclude that

(6.13) P(D = t,K12) ≈ µ32f
(n)∗g

(n)
32 (t− 2) + µ221f

(n)∗g
(n)
21 ∗g

(n)
21 (t− 2).

The total approximation error in (6.13) can be written as ε(t) = ε1(t)+ε2(t)+ε3(t)+ε4(t),
where ε1(t), ε2(t), ε3(t) are the approximation errors in (6.5), (6.6), (6.7), respectively, and
the approximation error in (6.12) equals

ε4(t) =
∑

r+s=t

f (n)(r)
(
ε41(s) + ε42(s)

)
,

where ε41(s), ε42(s) denote the errors made in (6.10), (6.11), respectively. We will next
analyse the individual approximation errors one by one.

(i) The union bound shows that the approximation error ε1(t) in (6.5) is nonpositive for
all t, and hence

∑

t≥0 |ε1(t)| =
∑

k,ℓ P(Akℓ) − P(
⋃

k,ℓAkℓ). Bonferroni’s inequalities imply
that

∑

t≥0

|ε1(t)| ≤
∑′

(k1,k2),(ℓ1,ℓ2)

P(Ak1k2 ,Aℓ1ℓ2) =: ∆.

We split the right side above by ∆ = ∆2 +∆3 +∆4, where ∆i, i = 2, 3, 4, is the sum on the
right side above over layer pairs (k1, k2) 6= (ℓ1, ℓ2) such that the list (k1, k2, ℓ1, ℓ2) contains
precisely i distinct elements. Denote

p(k1k2ℓ1ℓ2) = P(Gk1 ∋ e1, Gk2 ∋ e2, Gℓ1 ∋ e1, Gℓ2 ∋ e2).

Then

∆2 =
∑′

a,b

(

p(aabb) + p(abba) + p(aaab) + p(aaba) + p(abaa) + p(baaa)
)

,

∆3 =
∑′

a,b,c

(

p(aabc) + p(abac) + p(abca) + p(baac) + p(baca) + p(bcaa)
)

.

In the sum of ∆2, the terms p(aabb) and p(abba) equal p32(a)p32(b) and the other terms equal

p32(a)p21(b). Because p32(b) ≤ p21(b), it follows that ∆2 ≤ 6
∑′

a,b
p21(a)p32(b) ≤ 6µ21µ32.

In the sum of ∆3, the terms p(abac) and p(baca) equal p21(a)p21(b)p21(c) and the other terms
equal p32(a)p21(b)p21(c). Because p32(a) ≤ p21(a), it follows that ∆3 ≤ 6µ321. Furthermore,
∆4 =

∑′
a,b,c,d p(abcd) ≤ µ

4
21. As a conclusion, it follows that
∑

t≥0

|ε1(t)| ≤ 6µ21µ32 + 6µ321 + µ421.

Claim (i) now follows by combining the above bound with the equality
∑

k,ℓ

P(Akℓ) =
∑

k

p32(k) +
∑′

k,ℓ

p21(k)p21(ℓ) = µ32 + µ221 − µ21,21.

(ii) The approximation error in (6.6) equals ε2(t) =
∑

k,ℓ ε2kℓ(t) where

ε2kℓ(t) = P(D = t,Akℓ)− P(Dkℓ +D−kℓ = t,Akℓ).

By applying Lemma A.14 with A = {k, ℓ}, B = [m] \ {k, ℓ}, EA = {Gk ∋ e1, Gℓ ∋ e2}, and
EB = {} being the sure event, we see that

|ε2kℓ(t)| ≤ tcBP(Dkℓ ≤ t,Akℓ) ≤ tcBP(Akℓ),
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where cB ≤ P(G−kℓ ∋ 12) ≤ P(G ∋ 12) ≤ µ21. Hence

|ε2(t)| ≤ tµ21
∑

k,ℓ

P(Akℓ) ≤ t(µ21µ32 + µ321).

(iii) The approximation error in (6.7) equals ε3(t) =
∑

k,ℓ ε3kℓ(t) where

ε3kℓ(t) =
∑

r+s=t

(

P(D = r)− P(D−kℓ = r)
)

hkℓ(s).

By applying Lemma A.13 with g(s) = hkℓ(s)
P(Akℓ)

, it follows that
∑

t≥0 |ε3kℓ(t)| ≤ 2P(Akℓ)P(Dkℓ >

0). Observe now that P(Dkℓ > 0) ≤ p10(k) + p10(ℓ), Hence,
∑

t≥0

|ε3(t)| ≤ 2
∑

k,ℓ

(p10(k) + p10(ℓ))P(Akℓ)

= 4
∑

k

p10(k)p32(k) + 4
∑′

k,ℓ

p10(k)p21(k)p21(ℓ)

≤ 4µ10,32 + 4µ21µ10,21.

(iv) The approximation error in (6.10) equals ε41(s) =
∑′

k,ℓ ε4kℓ(s) where

ε4kℓ(s) = P(Dkℓ = s,Akℓ)− P(Dk +Dℓ = s,Akℓ).

By applying Lemma A.14 with A = {k} and B = {ℓ}, together with EA = {12 ∈ Gk} and
EB = {13 ∈ Gℓ}, it follows that |ε4kℓ(s)| ≤ sp21(k)p32(ℓ). By summing the above inequality
with respect to k, ℓ, it follows that |ε41(s)| ≤ sµ21µ32. The approximation error in (6.11)
equals

|ε42(s)| =
∑

k

∑

s1+s2=s

P(Dk = s1,G
k
12)P(Dk = s2,G

k
12).

Hence
∑

s≥0 |ε42(s)| =
∑

k p21(k)
2 = µ21,21. Hence,

|ε4(t)| ≤
∑

r+s=t

f (n)(r)
(
|ε41(s)|+ |ε42(s)|

)
≤ max

s≤t
|ε41(s)|+max

s≤t
|ε42(s)|

shows that |ε4(t)| ≤ tµ21µ32 + µ21,21.
Claim (ii) follows by collecting all the bounds in (i)–(iv) together. �

6.4. Lemma about cross moments.

Lemma 6.4. Let (X1, Y1), . . . , (Xm, Ym) be random variables with values in {0, . . . , n}×[0, 1]

and averaged empirical distribution Pn defined by (2.2). If Pn
w
−→ P and (Pn)rs → (P )rs <

∞, then the cross moments defined in (6.1)–(6.2) satisfy µ
(n)
10,rs ≪ m(n)−1

r and (Pn)10,rs ≪ n.

Proof. Denote Ak = Xk and Bk = (Xk)rY
s
k . Observe that Ak ≤ a + Ak1(Ak > a) and

Bk ≤ b+Bk1(Bk > b) for any a, b > 0. Because Ak ≤ n, we find that

(6.14)
Ak EBk ≤ (a+Ak1(Ak > a))EBk

≤ aEBk + bn1(Ak > a) + nEBk1(Bk > b).

By taking expectations and averaging with respect to k, we find that

(6.15)
1

m

m∑

k=1

EAk EBk ≤ aEB∗ + bnP(A∗ > a) + nEB∗1(B∗ > b),

where A∗ = X∗, B∗ = (X∗)rY
s
∗ , and (X∗, Y∗) is a generic Pn-distributed random variable.

Because the left side above equals m−1n(n)rµ
(n)
10,rs, we conclude

m−1(n)rµ
(n)
10,rs ≤

a

n
c+ bφ(a) + ψ(b),
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where c = supn(Pn)rs, φ(t) = supn
∫
1(x > t)dPn, and ψ(t) = supn

∫
(x)ry

s1((x)ry
s > t)dPn.

Then the tightness of Pn implies that φ(an) → 0 for an = n1/2. Hence also bnφ(an) → 0
where bn = φ(an)

−1/2 → ∞. The uniform (x)ry
s-integrability of Pn further implies that

ψ(bn)→ 0. Hence the right side above vanishes and first claim follows.
For the second claim, we may repeat the above reasoning to verify that (6.14) holds also

with the E-symbol removed. Therefore, (6.15) also holds when the left side is replaced by
(Pn)10,rs =

1
m

∑m
k=1 EAkBk. Hence the second claim follows by the same argument. �

6.5. Proof of Theorem 3.2. By Theorem 6.2 and Theorem 6.3,

P(K3) = µ33 +O
(
µ21µ32 + µ321

)
,

P(K12) = µ32 + µ221 +O
(
µ21µ32 + µ321 + µ421 + µ21,21

)
,

where µrs = m(n)−1
r (Pn)rs, and the associated cross moments are defined by (6.1)–(6.2).

Because (Pn)21 . 1 and (Pn)32 . 1, it follows that µ21µ32 . m2n−5, µ321 . m3n−6, and

µ421 . m4n−8. Next, we note that µ21,21 ≤ m(n)−2
2 (Pn)21,21 by Jensen’s inequality. Note

also that ((x)2y)
2 ≤ 2x(x)3y

2 for x ≥ 3. Hence ((x)2y)
2 ≤ 4 + 2x(x)3y

2, and (Pn)21,21 ≤
4 + 2(Pn)10,32. Furthermore, Lemma 6.4 implies that (Pn)10,32 ≪ n. Hence µ21,21 ≪ mn−3.

(i) Consider the case m
n → µ ∈ [0,∞). Then µ32 =

(
(P )32 + o(1)

)
mn−3 and µ221 =

(
µ(P )221 + o(1)

)
mn−3 imply that

P(K12) = (P )32mn
−3 + µ(P )221mn

−3 + o
(
mn−3

)
.

Similarly, µ33 =
(
(P )33 + o(1)

)
n−3m implies

P(K3) = (P )33mn
−3 + o(mn−3),

and hence the first two claims of Theorem 3.2 follow.
(ii) Assume now that n ≪ m ≪ n2. Then mn−3,m2n−5,m3n−6 ≪ m3n−4. Hence

P(K3)≪ m2n−4. Furthermore,m4n−8 ≪ m2n−4, and we conclude that P(K12) = (P )221m
2n−4+

o(m2n−4). Hence P(K3)
P(K12)

→ 0 implies the third claim of Theorem 3.2. �

6.6. Proof of Theorem 3.3. Let K12 be the two-star on {1, 2, 3} with links {12, 13}. Let

K3 be the triangle on {1, 2, 3}. Denote K
(n)
3 = {G(n) ⊃ K3} and K

(n)
12 = {G(n) ⊃ K12}. Let

D(n) = degG(n)(1). By Theorem 6.2 and Theorem 6.3,

P(D(n) = t, K
(n)
3 ) = µ33 f

(n)∗g
(n)
33 (t− 2) + ε

(n)
1 (t),

P(D(n) = t, K
(n)
12 ) = µ32 f

(n)∗g
(n)
32 (t− 2) + (µ21)

2f (n)∗g
(n)
21 ∗g

(n)
21 (t− 2) + ε

(n)
2 (t).

where the associated cross moments are defined by (6.1)–(6.2), the distributions g
(n)
rs =

Binrs(Pn) are defined by (2.5), and

|ε
(n)
1 (t)| ≤ (4 + t)µ21µ32 + (µ21)

3 + 2µ10,33,

|ε
(n)
2 (t)| ≤ (6 + 2t)(µ21µ32 + (µ21)

3) + (µ21)
4 + 4µ10,32 + 4µ21µ10,21 + µ21,21.

Now Lemma 6.4 implies that µ10,21 ≪ n−1 and µ10,33 ≤ µ10,32 ≪ n−2. Also, the argu-
ment in the proof of Theorem 3.2 (Section 6.5) implies that µ21,21 ≪ n−2. Because µrs =
m(n)−1

r (Pn)rs and (Pn)21, (Pn)32 . 1, it follows that µ21 ≪ n−1 and µ21µ32 + µ321 + µ421 ≪

n−2. Hence, |ε
(n)
1 (t)| + |ε

(n)
2 (t)| ≪ (1 + t)n−2. Note also that µ32 = (µ + o(1))(P )32n

−2,
µ33 = (µ + o(1))(P )33n

−2, together with µ221 = (1 + o(1))µ(P )221n
−2. Moreover, by Theo-

rem 3.1, f (n)
w
−→ f = CPoi(µ(P )10, g10). By Lemma A.10, g

(n)
rs

w
−→ grs for rs = 21, 32, 33. As
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a consequence,

µ33 f
(n)∗g

(n)
33 (t− 2) = (P )33µn

−2f ∗g33(t− 2) + o(n−2),

µ32 f
(n)∗g

(n)
32 (t− 2) = (P )32µn

−2f ∗g32(t− 2) + o(n−2),

µ221f
(n)∗g

(n)
21 ∗g

(n)
21 (t− 2) = (P )221µ

2n−2f ∗g21∗g21(t− 2) + o(n−2),

and hence the claim follows. �

7. Analysis of connectivity

The proof of Theorem 3.4 builds upon the approach developed in [14] and extended to
random intersection graphs in [8]. We denote by CG(i) the component of node i, by N1(G) ≥
N2(G) the largest two component sizes, and by Bt(G) = {i : |CG(i)| > t} be the set of
nodes with component larger than t in G. Here ρt(f) denotes the probability that the
total progeny of a Galton–Watson process with offspring distribution f is larger than t, and
ρ(f) = limt→∞ ρt(f) is the long-term survival probability (see Appendix A.8). We start by
the case with deterministic layer types.

7.1. Quantitative upper bound for deterministic layer types. In this section we prove
the following quantitative upper bound which is valid for any model instance with determin-
istic layer types, without taking limits. The upper bound is characterised by a distribution

(7.1) fτ,n = L
( m∑

k=1

BkTk

)

,

where the random variables on the right are mutually independent and such that L(Bk) =
Ber( Xk

n−τ ) and L(Tk) = Bin+(Xk − 1, Yk).

Proposition 7.1. If the layer types are nonrandom with sizes bounded by M , then for any
n ≥ 3 and 1 ≤ τ ≤ n/2, the probability of a node i having a component larger than τ is

bounded by P(|CG(i)| > τ) ≤ ρτ (fτ,n) + cτ2n−1 log n, where c = e5M(1+m/n).

7.1.1. Restricted exploration process. The proof of Proposition 7.1 is based on a restricted
component exploration process described in Algorithm 1. The algorithm explores each layer
at most once, and always discovers a subset of CG(i). This subset may be strict (see Figure 3).

Algorithm 1: Restricted exploration.

Input: Graph layers G1, . . . , Gm, root node i
Output: A subset of the G-connected component of i

Initialise: Q ← {i},M← ∅, t← 0
while Q 6= ∅ do

t← t+ 1
Node selection: vt ← minQ, Q ← Q \ {vt}
for k = 1, . . . ,m do

if V (Gk) ∋ vt and k /∈ M then

Layer exploration: Z ← Nvt(Ḡk)
Queue update: Q ← Q∪ Z
Update the set of explored layers: M←M∪ {k}

Output node set {v1, . . . , vt}

7.1.2. Properties of Algorithm 1. We denote by Ti the number of steps completed by Al-
gorithm 1 started at root node i. For t = 1, . . . , Ti, we denote by Wt the set of layers
which are explored during step t. We denote by Me

t = ∪t∧Tis=1Ws the set of layers and
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1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

G1 G2 G3

G4 G5 G6

Figure 3. The component of node 1 equals C1 = {1, . . . , 16}, but Algo-
rithm 1 outputs C1 \{5, 9, 13}. Algorithm 1 discovers nothing while exploring
node 10, because layer G1 is already explored. A multi-overlap occurs while
exploring node 11 when layer G5 intersects the already explored layer G1.

by N e
t = {v1, . . . , vt∧Ti} the set of nodes explored up to time t. We denote by N d

t =
{i} ∪ (∪k∈Me

t
V (Gk)) the set of nodes discovered up to time t.

Lemma 7.2. The number of layers explored up to time t is bounded by P(|Me
t | > at) ≤

te2M(n−t)−1m−a for all a ≥ 0.

Proof. Consider an event E+t−1 = E+t−1(A,B,C, v) that the exploration proceeds to step t, in
the beginning of which the set of explored nodes equals N e

t−1 = A, the set of explored layers

equalsMe
t−1 = B, the set of discovered nodes equals N d

t−1 = C, and the currently explored
node equals vt = v, for some node sets A ⊂ C with v ∈ C \ A and some layer set B such
that the event E+t−1 has nonzero probability. The event E+t−1 is determined by the random
graphs {Gk : k ∈ B} and the indicator variables {1(V (Gk) ∋ v) : v ∈ A, k ∈ [m]}. About
the unexplored layers Gk, k ∈ B

c, the event E+t−1 reveals that V (Gk) ⊂ A
c, but nothing else.

Therefore, given E+t−1, the random graphs {Gk : k ∈ Bc} are mutually independent and

(7.2) L(V (Gk) | E
+
t−1) is uniform among the Xk-sets of A

c.

Given E+t−1, each unexplored layer V (Gk) hence covers v with probability Xk
n−(t−1) ≤

M
n−t , inde-

pendently. Therefore, the number of layers explored during step t satisfies L(|Wt| | E
+
t−1) ≤st

Bin(m, M
n−t), and a Chernoff inequality (Lemma A.7) implies that P(|Wt| > a | E+t−1) ≤

e2M(n−t)−1m−a. Because the right side of the latter inequality does not depend on the choice

of A,B,C, v, we conclude that P(|Wt| > a |Ti ≥ t) ≤ e
2M(n−t)−1m−a. This implies the claim,

because the inequality |Me
t | ≤ tmax1≤s≤t∧Ti |Ws| implies that

P(|Me
t | > at) ≤ P( max

1≤s≤t∧Ti
|Ws| > a) ≤

t∑

s=1

P(|Ws| > a, Ti ≥ s).

�

During an exploration step t ≤ Ti, a multi-overlap of type 1 occurs if one of the layers
covering vt overlaps with previously explored layers in some other node besides vt, and a
multi-overlap of type 2 occurs if some of the layers covering vt overlap each other in more
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than one node. These events can be written as

O1t = {Ti ≥ t} ∩ {V
′
k ∩ N

d
t−1 6= ∅ for some k ∈ W+

t },

O2t = {Ti ≥ t} ∩ {V
′
k ∩ V

′
ℓ 6= ∅ for some distinct k, ℓ ∈ W+

t },

where V ′
k = V (Gk) \ {vt} and W+

t = {k : V (Gk) ∋ vt}. We denote the occurrence of a
multi-overlap by Ot = O1t ∪ O2t, and we define O≤t = O1 ∪ · · · ∪ Ot.

Lemma 7.3. For any n ≥ 3 and 1 ≤ τ ≤ n/2, the probability that a multi-overlap occurs dur-

ing the first τ exploration steps is bounded by P(O≤τ ) ≤ cτ
2n−1 log n, where c = e5M(1+m/n).

Proof. Consider an event E+t−1 = E+t−1(A,B,C, v) as in the proof of Lemma 7.2. By (7.2),

we know that given E+t−1, each layer k ∈ Bc covers v with probability Xk
n−(t−1) , and given

E+t−1∩{V (Gk) ∋ v}, the law of V ′
k = V (Gk)\{v} with k ∈ B

c is uniform among the (Xk−1)-

sets of (A∪{vt})
c, and hence V ′

k overlaps C with probability at most (Xk−1)(|C|−1)
n−t . Because

|Bc| ≤ n and |C| ≤M |B|, the probability of a multi-overlap of type 1 is bounded by

P(O1t | E
+
t−1) ≤

∑

k∈Bc

Xk

n− (t− 1)

(Xk − 1)(|C| − 1)

n− t
≤ n

M3|B|

(n− t)2
.

Similarly, the E+t−1-conditional probability that two distinct layers k, ℓ ∈ Bc cover v and

overlap each other in some other node is bounded by Xk
n−(t−1)

Xℓ
n−(t−1)

(Xk−1)(Xℓ−1)
n−t ≤ M4

(n−t)3
.

Hence a multi-overlap of type 2 occurs with probability at most P(O2t | E
+
t−1) ≤

(n
2

)
M4

(n−t)3
.

Hence for t ≤ n/2 and |B| ≤ at with a, t ≥ 1,

P(Ot | E
+
t−1) ≤ 4M3(n−1m+Mn−2m2)atn−1.

Because the right side above is valid whenever |B| ≤ at, the above inequality also holds for
E+t−1 replaced by the event that |Me

t−1| ≤ at and Ti ≥ t. Lemma 7.2 now implies that

P(Ot) = P(Ot, |M
e
t−1| ≤ at, Ti ≥ t) + P(Ot, |M

e
t−1| > at, Ti ≥ t)

≤ P(Ot, |M
e
t−1| ≤ at, Ti ≥ t) + P(|Me

t−1| > at)

≤ 4(M3m/n+M4m2/n2)atn−1 + e4Mm/nte−a.

Using x ≤ 1 + x ≤ ex we find that 4(M3m/n+M4m2/n2) = (2M)2(Mm/n)(1 +Mm/n) ≤
e4M+2Mm/n. By plugging in a = log n, it follows that

P(Ot) ≤
(

e4M(1+m/n) + e4M(1+m/n)
)

tn−1 log n ≤ e5M(1+m/n)tn−1 log n.

Hence the claim follows by the union bound. �

Lemma 7.4. The probability that the restricted exploration discovers more than τ nodes is
bounded by P(Qτ > 0) ≤ ρτ (fτ,n), where the distribution fτ,n is defined by (7.1).

Proof. The queue length process satisfies Q0 = 1 and

(7.3) Qt = (Qt−1 − 1 + Zt)1(Qt−1 > 0), t = 1, 2, . . . ,

where Zt = |Zt| is the number of nodes added to the queue in step t. Fix 1 ≤ t ≤ τ and
consider an event E+t−1 = E

+
t−1(A,B,C, v) as in the proof of Lemma 7.2. On this event,

(7.4) Zt ≤
∑

k∈Bc

1(V (Gk) ∋ v) degḠk
(v).

By recalling (7.2), we know that conditionally on E+t−1, the random variables on the right

side of (7.4) are mutually independent, and such that L(1(V (Gk) ∋ v) | E
+
t−1) = Ber( Xk

n−(t−1))
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and L(degḠk
(v) | E+t−1) = Bin+(Xk − 1, Yk) for all k ∈ B

c. We conclude that

L(Zt | E
+
t−1) ≤st ft,n ≤st fτ,n for all t = 1, . . . , τ .

Because the above inequalities hold for all events E+t−1 = E
+
t−1(A,B,C, v) of the above form,

it also holds for the event {Qt−1 > 0} that there is a node to explore at step t. Hence it
follows that (Q0, . . . , Qτ ) ≤st (Q

′
0, . . . , Q

′
τ ) where the right side is defined as in (7.3) but with

Z1, Z2, . . . replaced by independent fτ,n-distributed random integers Z ′
1, Z

′
2, . . . The claim

follows by noting that P(Q′
τ > 0) = ρτ (fτ,n) (see Appendix A.8). �

7.1.3. Proof of Proposition 7.1. Let Qt = |Qt| be the exploration queue length in Algorithm 1
started at node i. We note that Qτ > 0 means that the restricted exploration discovers more
than t nodes of the component of i. Therefore Qτ > 0 implies |CG(i)| > τ . The converse may
not be true (see Figure 3) because the restricted exploration may stop before discovering all
nodes in the component of i. On the event Oc≤τ that multi-overlaps do not occur up to time
τ , this cannot happen, and hence {Qτ > 0} ∩ Oc≤τ = {|CG(i)| > τ} ∩ Oc≤τ . Therefore,

P(|CG(i)| > τ) = P(Qτ > 0,Oc≤τ ) + P(|CG(i)| > τ,O≤τ )

≤ P(Qτ > 0) + P(O≤τ ).

The claim follows by combining Lemma 7.3 and Lemma 7.4. �

7.2. Double upper bound for deterministic layer types. To obtain an upper bound on
the variance of the number of nodes contained in large components, we extend the analysis
in Proposition 7.1 to two restricted exploration processes run on the same graph instance.

Proposition 7.5. For any 1 ≤ τ ≤ n/4, the components sizes of nodes i 6= j are bounded

by P(|CG(i)| > τ, |CG(j)| > τ) ≤ ρτ (f2τ,n)
2 + cτ2n−1 log n, where c = e9M(1+m/n).

The proof of Proposition 7.5 requires Lemma 7.6 and 7.7, outlined next.

Lemma 7.6. The probability that Algorithm 1 started at i discovers node j 6= i during τ
steps is bounded by P(N d

i,τ ∋ j) ≤ 4M2n−2mτ.

Proof. Fix 1 ≤ t ≤ τ and consider an event E+t−1 = E+t−1(A,B,C, v) as in the proof of
Lemma 7.2, for some node sets A ⊂ C with i ∈ C \ A and C 6∋ j, and some layer set B. By
recalling (7.2), we know that for any k ∈ Bc, the E+t−1-conditional probability that Gk covers

v and j is bounded by Xk
n−(t−1)

Xk−1
n−t ≤

M2

(n−τ)2 . Because |B
c| ≤ n, the union bound implies

P(N d
i,t ∋ j | E

+
t−1) ≤ m

M2

(n− t)2
≤ 4M2n−2m.

Because the above inequality is valid whenever C 6∋ j, the above inequality also holds with
E+t−1 replaced by the event E++

t−1 = {N d
i,t−1 6∋ j}∩{Ti ≥ t}. Hence the claim follows by noting

that P(N d
i,τ ∋ j) =

∑τ
t=1 P(N

d
i,t ∋ j, E

++
t−1) ≤

∑τ
t=1 P(N

d
i,t ∋ j | E

++
t−1). �

Lemma 7.7. For any i 6= j and 1 ≤ τ ≤ n/4, the probability that explorations started at
i and j overlap is bounded by P(N d

i,τ ∩ N
d
j,τ 6= ∅) ≤ cτ

2n−1 log n, where c = e7M(1+m/n).

Proof. Consider an event Ei,τ = Ei,τ (Ai, Bi, Ci) that after τ steps of exploration started from
i, the set of explored nodes equals N e

i,τ = Ai, the set of explored layers equals Me
i,τ = Bi,

and the set of discovered nodes equals N d
i,τ = Ci for some node sets Ai ⊂ Ci such that

Ci 6∋ j and Ci ≤ Maτ , and some layer set Bi. Fix 1 ≤ t ≤ τ and consider an event
E+j,t−1 = E

+
j,t−1(Aj , Bj , Cj , v) as in the proof of Lemma 7.2, for some node sets Aj ⊂ Cj with

v ∈ Cj \Aj and Ci∩Cj = ∅, and some layer set Bj . Then N
d
j,t−1 does not overlap N

d
i,τ on the

event F+
t−1 = Ei,τ ∩ E

+
j,t−1. We will next analyse the conditional probability that the same is

true for N d
j,t. We note that on the event F+

t−1, the j-exploration at step t only explores layers
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k ∈ (Bi ∪ Bj)
c because the layers in Bi do not cover vj , and the layers in Bj have already

been explored. We also observe that the event F+
t−1 is determined by the random graphs

Gk, k ∈ Bi ∪ Bj, and the indicators 1(V (Gk) ∋ a) for k = 1, . . . , n and a ∈ Ai ∪ Aj . Hence

given F+
t−1, the layers Gk, k ∈ (Bi ∪Bj)

c are mutually independent, and such that V (Gk) is
a uniformly random Xk-set in (Ai ∪Aj)

c. The probability that a layer k ∈ (Bi ∪Bj)
c covers

v and overlaps with Ci, is at most

Xk

n− |Ai| − |Aj |

(Xk − 1)Ci
n− |Ai| − |Aj | − 1

≤
M2Ci

(n− 2τ)2
.

Hence, due to |(Bi ∪Bj)
c| ≤ n, and Ci ≤Maτ , it follows that

P(N d
i,τ ∩ N

d
j,t 6= ∅ |F

+
t−1) ≤ 4M3aτn−2m.

Because the right side above does not depend on Ai, Bi, Ci, Aj , Bj, Cj , v, the above inequality

remains valid also for F+
t−1 replaced by G+t−1 = {N

d
i,τ ∩N

d
j,t−1 = ∅} ∩ {|N

d
i,τ | ≤Maτ}. Thus,

P(N d
i,τ ∩ N

d
j,τ 6= ∅ | N

d
i,τ ∩ N

d
j,0 = ∅, |N

d
i,τ | ≤Maτ) =

τ∑

t=1

P(N d
i,τ ∩ N

d
j,t 6= ∅ | G

+
t−1)

≤ 4M3aτ2n−2m.

Hence noting that N d
i,τ ∩N

d
j,0 6= ∅ if and only if N d

i,τ 6∋ j, together with |N
d
i,τ | ≤M |M

e
i,τ |,

applying Lemma 7.2 and Lemma 7.6, for a, τ ≥ 1,

P(N d
i,τ ∩ N

d
j,τ 6= ∅) ≤ 4M3aτ2n−2m+ P(N d

i,τ ∋ j) + P(|N d
i,τ | > Maτ)

≤ 4M3aτ2n−2m+ 4M2n−2mτ + τe4Mm/n−a.

Plugging in a = log n
τ and noting that a ≤ log n and τe−a = τ2n−1 ≤ τ2n−1 log n, implies

P(N d
i,τ ∩ N

d
j,τ 6= ∅) ≤

(

4M3m

n
+ 4M2m

n
+ e4Mm/n

)

τ2n−1 log n.

The claim follows after noting that 4M3m
n + 4M2m

n ≤ 8M3m
n = (2M)3mn ≤ e6M(1+m/n)

implies the term on the right in parentheses is at most e7M(1+m/n). �

Proof of Proposition 7.5. Let Qit and Qjt be the exploration queue lengths of Algorithm 1
started at distinct nodes i and j. We use the notations of Section 7.1.2.

Consider an event E+iτ = {N e
iτ = A,Me

iτ = B,Qiτ > 0} for some node set A 6∋ j of size τ ,
and some layer set B. Let Q′

jt be the exploration queue of a modified exploration obtained

by running Algorithm 1 started from j with a reduced set of input layers {Gk : k ∈ Bc}.
Then (Q′

j0, . . . , Q
′
jτ ) = (Q0τ , . . . , Qjτ ) on the eventMe

jτ ∩B = ∅. Hence

(7.5)
P(Qj,τ > 0,Me

iτ ∩M
e
j,τ = ∅ | E

+
iτ ) = P(Q′

jτ > 0,Me
jτ ∩B = ∅ | E+iτ )

≤ P(Q′
jτ > 0 | E+iτ ).

The event E+iτ is determined by the random graphs {Gk : k ∈ B} and the indicators

{1(V (Gk) ∋ a) : k ∈ [m], a ∈ A}. Hence the E+iτ -conditional distribution of Gk, k ∈ B
c, is

such that these layers are mutually independent and V (Gk) is a uniformly random Xk-set
in Ac. Hence the E+iτ -conditional law of the Q′

jt-exploration process is the same as the law

of the exploration process Q′′
jt obtained by running Algorithm 1 started at j for a model

instance with node set Ac and layer set {Gk : k ∈ Bc}. Hence

(7.6) P(Q′
jτ > 0 | E+iτ ) = P(Q′′

jτ > 0).

Let Q′′′
jt be an exploration queue of Algorithm 1 started at j for a model instance with a

full layer set {Gk : k ∈ [m]} and node set Ac ∋ j of size n− τ . Then Q′′
jt > 0 implies Q′′′

jt > 0
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under a natural coupling, and we conclude with the help of (7.5) and (7.6) that

P(Qj,τ > 0,Me
i,τ ∩M

e
jτ = ∅, E

+
iτ ) ≤ P(E+iτ )P(Q

′′′
jτ > 0).

Because the probability on the right does not depend on the choice of A,B,

P(Qiτ > 0, Qjτ > 0,Me
iτ ∩M

e
jτ = ∅) ≤ P(Qiτ > 0)P(Q′′′

jτ > 0).

By Lemma 7.4, we see that P(Qiτ > 0) ≤ ρτ (fτ,n). By applying the same lemma again for
a model instance with the full layer set {Gk : k ∈ [m]} and a node set of size n− τ , we find
that P(Q′′′

jτ > 0) ≤ ρτ (f
′′′
τ,n) where f ′′′τ,n is defined as in (7.1) but with n replaced by n − τ .

Now we note that f ′′′τ,n = f2τ,n, and that fτ,n ≤st f2τ,n implies ρτ (fτ,n) ≤ ρτ (f2τ,n). Hence

P(Qiτ > 0, Qjτ > 0) ≤ ρτ (f2τ,n)
2 + P(Me

iτ ∩M
e
jτ 6= ∅).

Because the indicators of {|CG(i)| > τ} and {Qiτ > 0} coincide on the event Oci,≤τ , and the
same is true for j, we find that

P(|CG(i)| > τ, |CG(j)| > τ) ≤ P(Qiτ > 0, Qjτ > 0) + P(Oi,≤τ ) + P(Oj,≤τ )

≤ ρτ (f2τ,n)
2 + P(Me

iτ ∩M
e
jτ 6= ∅) + 2P(Oi,≤τ ).

The claim follows due to P(Me
iτ ∩M

e
jτ 6= ∅) ≤ P(N d

iτ∩N
d
jτ 6= ∅) and Lemmas 7.3 and 7.7. �

7.3. Quantitative lower bound for deterministic layer types. Proving a lower bound
is more complicated than an upper bound, because we need to verify that the types of
unexplored layers remain balanced during the exploration. We start by analysing the case
with nonrandom layer types in a finite set in Proposition 7.8. The proof is based on analysing
a balanced exploration process in Algorithm 2 which uses a randomised selection of disjoint
layers in Algorithm 3 as a subroutine.

Proposition 7.8. Fix a finite set A ⊂ Z+ × [0, 1], integers 1 ≤ M, τ, ν ≤ n, and a number
δ ∈ (0, 1). Assume that 2M2|A| ντn ≤ δ, τ ≤

1
2n, and x ≤M for all (x, y) ∈ A. Then

(7.7) P(|CG(i)| > τ) ≥ ρτ (fδ,τ,ν)− |A|τe
4Mm/n−ν ,

where

(7.8) fδ,τ,ν = L
( ∑

(x,y)∈A

mxy,τ−1∑

k=1

Bxy(k)Txy(k)
)

,

and the random variables on the right are mutually independent and such that L(Bxy(k)) =
Ber((1 − δ)xn), L(Txy(k)) = Bin+(x − 1, y), and mxy,τ = (mxy − τν)+ where mxy is the
number of layers of type (x, y).

Algorithm 3: Extracting disjoint sets.

Input: List of subsets (V1, . . . , Vm) of a ground set V , taboo set H0 ⊂ V , parameter
α ∈ (0, 1)

Output: Random index set K ⊂ {1, . . . ,m}

Initialise K ← ∅ and H ← H0

for k = 1, . . . ,m do
Uk ← uniform random number in (0, 1)

if Vk ∩H = ∅ and Uk ≤ α
(|V |−|H|

|Vk|

)−1( |V |
|Vk|

)
then

Add the index k to K
Add the elements of Vk to H

Output K
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Algorithm 2: Balanced exploration.

Input: Layers G1, . . . , Gm, root node i, parameters ν ∈ Z+, δ ∈ (0, 1)
Output: Subset of G-component of i.

State variables:
Qt = Set of nodes in the exploration queue after step t
Nt = Set of discovered nodes after step t
Mt = Set of available layers after step t

Initialise: Put node i into the queue and declare i discovered; declare all layers available;
initialise state variables as: Q0 ← {i}, N0 ← {i},M0 ← {1, . . . ,m}; and set t← 0.

while Qt 6= ∅ do
Set t← t+ 1 and select node vt ← minQt−1 for exploration

Declare the layers in W+
t ← {k ∈Mt−1 : V (Gk) ∋ vt} and the nodes in

Z+
t ← ∪k∈W+

t
(V (Gk) \ {vt}) as discovered

Extract a disjoint subcollection of discovered layers W+
t by computing Wt ← Output of

Algorithm 3 with ground set {v1, . . . , vt−1}c, input sets {V (Gk) \ {vt} : k ∈ W
+
t }, taboo

set Nt−1, parameter αt = (1− δ)(1 − t−1
n

)

Explore the selected layers and determine the node set Zt ← ∪k∈Wt
Nvt(Ḡk), where Ḡk is

the transitive closure of Gk

Update the exploration queue by Qt ← (Qt−1 \ {vt}) ∪ Zt and the set of discovered nodes
by Nt ← Nt−1 ∪ Z

+
t

Layer balancing: Mt ← ∪(x,y)∈AMxy,t whereMxy,t is a uniformly random subset of

Wu
xy,t = {k ∈Mt−1 \W

+
t : Xk = x, Yk = y} of size |Wu

xy,t| ∧ (mxy − νt)+

Output: {v1, . . . , vt}

Lemma 7.9. Let H0 ⊂ V be nonrandom sets. Let V1, . . . , Vm be independent uniformly
random subsets of V with nonrandom sizes x1, . . . , xm, and assume that |H0| + ‖x‖1 ≤ |V |

and 0 ≤ α ≤
(

1−
|H0|+‖x‖1

|V |

)||x||∞
where ‖x‖1 =

∑m
k=1 xk and ‖x‖∞ = max1≤k≤m xk. Then

the indicator variables Bk = 1(k ∈ K) characterising the output of Algorithm 3 are mutually
independent and Ber(α)-distributed, and the sets {Vk : k ∈ K} are mutually disjoint and
disjoint from H0 almost surely.

Proof. Denote by Hk the state of H after finishing round k of Algorithm 3. Then Hk

equals the union of H0 and the sets Vj admitted during rounds j ≤ k, and the if-statement
guarantees that a set Vk is admitted to K only if it is disjoint from Hk−1. Hence the family
{Vk : k ∈ K} = {Vk : Bk = 1} is surely disjoint and disjoint from H0. To investigate the

joint distribution of Bk = 1K(k), k = 1, . . . ,m, denote by denote by p(h, x) =
(|V |−h

x

)(|V |
x

)−1

the probability that a random x-set in V does not overlap a particular h-set of V . Let Fk be
the sigma-algebra generated by {(Uj , Vj) : j ≤ k}. Then Bk,Hk are Fk-measurable, Vk is
independent of Fk−1, and Uk is independent of (Fk−1, Vk). Hence,

(7.9)
P(Vk ∩Hk−1 = ∅ |Fk−1) = p(|Hk−1|, xk),

P(Uk ≤
α

p(|Hk−1|,|Vk|)
| Fk−1) = α

p(|Hk−1|,|Vk|)
∧ 1.

A basic computation shows that p(h, x) =
∏x−1
r=0

(

1− h
|V |−r

)

≥
(

1− h
|V |−x

)x
, so that

p(|Hk−1|, xk) ≥ p(h0 + ‖x‖1 − xk, xk) with h0 = |H0| implies

p(|Hk−1|, xk) ≥

(

1−
h0 + ‖x‖1 − xk
|V | − xk

)xk

≥

(

1−
h0 + ‖x‖1
|V |

)||x||∞

≥ α.
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Hence we may ignore the truncation by one in (7.9), and it follows that P(Bk = 1 | Fk−1) = α.
This implies that P(Bk = 1) = α, and that Bk is independent of Fk−1. Especially, Bk is
independent of (B1, . . . , Bk−1), so we conclude that B1, . . . , Bm are mutually independent.

�

7.3.1. Proof of Proposition 7.8. It suffices to find a lower bound for the exploration queue
length Qt = |Qt| in Algorithm 2. This is because Algorithm 2 started at node i discovers a
subset of |CG(i)|, and hence P(|CG(i)| > τ) ≥ P(Qτ > 0). Denote byMxy,t the of available
xy-layers, and recall that mxy,t = (mxy− νt)+. Denote by Ti the number of steps completed
by the algorithm. The queue length obeys the recursion Qt = (Qt−1 − 1 + Zt)1(Qt−1 > 0)
where Zt = |Zt|. Algorithm 3 guarantees that the node sets V (Gk) \ {vt} of the explored
layers k ∈ Wt are mutually disjoint and do not overlap any previously explored layers. Hence

(7.10) Zt =
∑

(x,y)∈A

∑

k∈Mxy,t−1

B1xyt(k)B2xyt(k)Txyt(k),

where B1xyt(k) = 1(k ∈ W+
xyt), B2xyt(k) = 1(k ∈ Wxyt), and Txyt(k) = |Nvt(Ḡk)| equals the

number of neighbours of node vt in the transitive closure of Gk.
We will compare the queue length process to a random walk defined recursively by Q′

0 = 1
and Q′

t = (Q′
t−1 − 1 + Z ′

t)1(Q
′
t−1 > 0), where

Z ′
t =

∑

(x,y)∈A

mxy,t−1∑

k=1

B′
1xyt(k)B

′
2xyt(k)T

′
xyt(k),

and where the random variables appearing on the right are mutually independent and such
that L(B′

1xyt(k)) = Ber( x
n−(t−1)), L(B

′
2xyt(k)) = Ber(αt) with αt = (1 − δ)(1 − t−1

n ), and

L(T ′
xyt(k)) = Bin+(x− 1, y). A key part of the proof is to show that

(7.11) P(Qt = r,A≤t) = P(Q′
t = r,A′

≤t)

for all r > 0 and t ≤ τ , where A≤t = A1 ∩ · · · ∩ At and A
′
≤t = A

′
1 ∩ · · · ∩ A

′
t are defined by

At =

{

Ti ≥ t, max
(x,y)∈A

|W+
xyt| ≤ ν

}

and A′
t =

{

max
(x,y)∈A

mxy,t∑

k=1

B′
1xyt(k) ≤ ν

}

.

To verify (7.11), consider an event Et−1 that Qt−1 = q, A≤t−1 is valid, the set of previously

explored nodes equals N̂ e
≤t−1, the set of previously explored layers equals M̂e

≤t−1, the set

of available xy-layers after t − 1 steps is M̂xy,t−1, and node vt is explored on step t. This

event is determined by the graphs Gk, k ∈ M̂
e
≤t−1, the indicator variables 1(V (Gk) ∋ v) for

k = [m] and v ∈ N̂ e
≤t−1, and the random variables used in the randomised algorithm during

steps s ≤ t−1. On the event Et−1, the number of available xy-layers in the beginning of step
t equals mxy,t−1, and the only thing known about the available layers is that they do not

contain any of the explored nodes N̂ e
≤t−1. Conditionally on Et−1, the graphs Gk, k ∈ M̂t−1,

are hence mutually independent and such that V (Gk) is a uniform Xk-set in [n] \ N̂ e
≤t−1.

Conditionally on the event Et−1, each available layer k ∈ M̂xy,t−1 is discovered with
probability x

n−(t−1) , independently of other available layers. Hence the indicators B1xyt(k) in

(7.10) are independent and Ber( x
n−(t−1))-distributed given Et−1. Let E

+
t−1 = Et−1 ∩ {W

+
xyt =

Ŵ+
xyt, (x, y) ∈ A} for some layer sets |Ŵ+

xyt| ≤ ν such that E+t−1 has nonzero probability.

On the event E+t−1, the number of nodes discovered before step t is bounded by |Nt−1| ≤
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M |A|ν(t− 1), and
∑

k∈W+
t
|V (Gk) \ {vt}| ≤M |W

+
t | ≤M |A|ν, and it follows that

(

1−
|Nt−1|+

∑

k∈W+
t
|V (Gk) \ {vt}|

n− (t− 1)

)M

≥

(

1−
M |A|νt

n− (t− 1)

)M

,

where the right side is at least
(
1− 2M |A| νtn

)M
≥ 1− 2M2|A| νtn ≥ αt due to 2M2|A| νtn ≤ δ

and αt ≤ 1− δ. By Lemma 7.9, we find that the indicators B2xyt(k) in (7.10) are mutually
independent and Ber(αt)-distributed given E+t−1. Furthermore, also the random integers
Txyt(k) in (7.10) are mutually independent, independent of the indicators B2xyt(k), and
such that L(Txyt(k) | E

+
t−1) = Bin+(x − 1, y). These observations allow us to conclude that

L(Zt | Et−1,At) = L(Z
′
t | A

′
t) and P(At | Et−1) = P(A′

t). Hence for any r > 0,

P(Qt = r,At | Et−1) = P(At | Et−1)P(q − 1 + Zt = r | Et−1,At)

= P(A′
t)P(q − 1 + Z ′

t = r | A′
t)

= P(q − 1 + Z ′
t = r,A′

t)

= P(Q′
t = r,A′

t |Q
′
t−1 = q,A′

≤t−1).

By multiplying both sides above by P(Et−1) and summing over all Et−1 which are subsets of
the event {Qt−1 = q} ∩ A≤t−1, it follows that

P(Qt = r,At |Qt−1 = q,A≤t−1) = P(Q′
t = r,A′

t |Q
′
t−1 = q,A′

≤t−1).

Because the above equality holds for all q, r > 0, a simple induction argument, based on

P(Qt = r,A≤t) =
∑

q>0

P(Qt−1 = q,A≤t−1)P(Qt = r,At |Qt−1 = q,A≤t−1),

confirms (7.11). With the help of (7.11), we now find that

P(Qτ > 0) ≥ P(Qτ > 0,A≤τ ) = P(Q′
τ > 0,A′

≤τ ) ≥ P(Q′
τ > 0)− P((A′

≤τ )
c).

Denote M ′
1xyt =

∑mxy,t−1

k=1 B′
1xyt(k) and observe that mxy,t−1 ≤ m and L(B′

1xyt(k)) ≤st

Ber(2Mn ) imply that L(M ′
1xyt) ≤st Bin(m,

2M
n ) for t ≤ n/2. The moment generating function

of the latter distribution, evaluated at one, is bounded by (1+ 2M
n (e− 1))n ≤ e2M(e−1)m/n ≤

e4Mm/n. Therefore, Markov’s inequality for eM
′
1xyt implies P(M ′

1xyt > ν) ≤ e4Mm/n−ν , and

P((A′
≤τ )

c) ≤
τ∑

t=1

P((A′
t)
c) ≤ |A|τe4Mm/n−ν .

Finally, observe that the distribution of Z ′
t coincides with fδ,t,ν defined by (7.8). Moreover,

fδ,t,ν ≥st fδ,τ,ν for all t = 1, . . . , τ . Therefore, P(Q′
τ > 0) ≥ P(Q′′

τ > 0) where (Q′′
0 , . . . , Q

′′
τ )

is defined as before, but with Z ′
1, . . . , Z

′
τ replaced by mutually independent fδ,τ,ν-distributed

random integers Z ′′
1 , . . . , Z

′′
τ . The claim follows by noting that P(Q′′

τ > 0) = ρτ (fδ,τ,ν).
�

7.4. Component analysis for a finite layer type space.

Lemma 7.10. Under the assumptions and notations of Theorem 3.4, together with the
extra assumption that the supports of P and (Pn)n≥1 are all contained in a finite set A ⊂
{0, . . . ,M} ∩ [0, 1], the component size of any particular node i satisfies

P
(
|CG(n)(i)| > τ

)
→ ρτ (f

+) for any constant τ ≥ 1,(7.12)

P
(
|CG(n)(i)| > ω

)
→ ρ(f+) for 1≪ ω ≪ n log−1 n,(7.13)
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the relative frequencies of nodes with large components satisfy

n−1|Bτ (G
(n))|

P
−→ ρτ (f

+) for any constant τ ≥ 1,(7.14)

n−1|Bω(G
(n))|

P
−→ ρ(f+) for 1≪ ω ≪ n log−1 n,(7.15)

and the largest component size in G(n) satisfies

(7.16) n−1N1(G
(n))

P
−→ ρ(f+).

Proof. We start by making an additional assumption that all layer types are nonrandom.
The extension to random layer types is treated in the end.

(i) Upper bound for (7.12). Fix 1 ≤ τ ≤ n/2. Then by Proposition 7.1,

(7.17) P(|CG(n)(i)| > τ) ≤ ρτ (fτ,n) + cτ2n−1 log n,

where c = e5M(1+m/n), and fτ,n is the distribution defined by (7.1). A natural coupling
implies that |ρτ (fτ,n)− ρτ (f

+)| ≤ τdtv(fτ,n, f
+). Hence by (7.17) it follows that

(7.18) P(|CG(n)(i)| > τ) ≤ ρτ (f
+) + cτ2n−1 log n+ τdtv(fτ,n, f

+).

Define f̃τ,n using the same formula (7.1), but with the Ber( Xk
n−τ )-distributed random vari-

ables Bk replaced by Poi( Xk
n−τ )-distributed random variables B̃k. Because dtv(Ber(p),Poi(p)) =

p(1− e−p) ≤ p2 for all 0 ≤ p ≤ 1, a natural coupling implies that

dtv(fτ,n, f̃τ,n) ≤
m∑

k=1

(
Xk

n− τ

)2

≤ 4
M2

n2
m.

Then we see by Lemma A.5 that f̃τ,n = CPoi( m
n−τ (Pn)10, gn) where gn = Bin+10(Pn). Lemma A.6

implies that dtv(f̃τ,n, f
+) ≤

∣
∣
∣
m
n−τ (Pn)10 − µ(P )10

∣
∣
∣+ µ(P )10dtv(gn, g), and we conclude that

dtv(fτ,n, f
+) ≤

∣
∣
∣
∣

m

n− τ
(Pn)10 − µ(P )10

∣
∣
∣
∣
+ µ(P )10dtv(gn, g) + 4

M2

n2
m.

Because gn
w
−→ g by Lemma A.10, it follows that dtv(fτ,n, f

+) → 0 as n → ∞. Hence by
(7.18) it follows that lim supn→∞ P(|CG(n)(i)| > τ) ≤ ρτ (f

+).
(ii) Upper bound for (7.13). Fix ε > 0 and select a large enough t such that ρt(f

+) ≤
ρ(f+) + ε. Define τn =

⌊
ωn ∧ n

1/3
⌋
. Then τn ≥ t for large values of n, and by (7.17),

P(|CG(n)(i)| > τn) ≤ ρτn(fτn,n) + cτ2nn
−1 log n ≤ ρt(fτn,n) + cn−1/3 log n.

A natural coupling implies that |ρt(fτn,n)− ρt(f
+)| ≤ tdtv(fτn,n, f

+). Hence it follows that

P(|CG(n)(i)| > ωn) ≤ P(|CG(n)(i)| > τn) ≤ ρ(f+) + cn−1/3 log n+ tdtv(fτn,n, f
+) + ε.

The upper bound analysis of (7.12) shows that dtv(fτ,n, f
+)→ 0 also for τ = τn ≫ 1. Hence

we conclude that lim supn→∞ P(|CG(n)(i)| > ωn) ≤ ρ(f
+).

(iii) Lower bound for (7.12). Fix ε > 0. To avoid trivialities we assume that (P )10 > 0, in
which case (Pn)10 > 0 for all large values of n. Define fδ = CPoi((1−δ)λ, g) with λ = µ(P )10.

Lemma A.6 then implies that fδ
w
−→ f+ as δ → 0. Hence by Lemma A.15 we may choose a

small δ ∈ (0, 1) such that ρτ (fδ) ≥ ρτ (f
+)−ε. Define νn = ⌈2 log n⌉. Then 2M2|A| τνnn ≤ δ for

large values of n, and Lemma 7.8 implies, recalling that |ρτ (f
(n)
δ,τ,νn

)− ρτ (fδ)| ≤ τdtv(f
(n)
δ,τ,νn

, fδ),

(7.19)

P(|CG(n)(i)| > τ) ≥ ρτ (f
(n)
δ,τ,νn

)− |A|e4Mm/nτn−2

≥ ρτ (fδ)− τdtv(f
(n)
δ,τ,νn

, fδ)− |A|e
4Mm/nτn−2

≥ ρτ (f
+)− ε− τdtv(f

(n)
δ,τ,νn

, fδ)− |A|e
4Mm/nτn−2
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where f
(n)
δ,τ,νn

is the distribution defined in (7.8). Hence it suffices to verify that dtv(f
(n)
δ,τ,νn

, fδ)→

0. To do this, define modifications of f
(n)
δ,τ,νn

by

f
(n)
δ = L

( ∑

(x,y)∈A

mxy∑

k=1

Bxy(k)Txy(k)
)

, f̃
(n)
δ = L

( ∑

(x,y)∈A

mxy∑

k=1

B̃xy(k)Txy(k)
)

,

where the random variables are mutually independent and such that L(Bxy(k)) = Ber((1 −

δ)xn ), L(B̃xy(k)) = Poi((1−δ)xn ), and L(Txy(k)) = Bin+(x−1, y). A natural coupling implies

(7.20) dtv(f
(n)
δ,τ,νn

, f
(n)
δ ) ≤

∑

(x,y)∈A

(mxy −mxy,τ−1)(1 − δ)
x

n
≤ M |A|

τνn
n
.

Because dtv(Ber(p),Poi(p)) = p(1− e−p) ≤ p2 for all 0 ≤ p ≤ 1, and
∑

(x,y)∈A

∑mxy

k=1 ≤ m, a

natural coupling implies that

(7.21) dtv(f
(n)
δ , f̃

(n)
δ ) ≤

∑

(x,y)∈A

mxy∑

k=1

(

(1− δ)
x

n

)2
≤

M2

n2
m.

Now let us observe that L(
∑mxy

k=1 B̃xy(k)Txy(k)) = CPoi((1− δ)mxy
x
n ,Bin

+(x− 1, y)), so by

Lemma A.5 we see that f̃
(n)
δ = CPoi((1−δ)λn, gn), where λn = m

n (Pn)10, and gn = Bin+10(Pn).

Then Lemma A.6 implies dtv(f̃
(n)
δ , fδ) ≤ |λn − λ| + λdtv(gn, g), and combining this with

(7.20)–(7.21) shows that

dtv(f
(n)
δ,τ,ν, fδ) ≤ M |A|

τνn
n

+
M2

n2
m+ |λn − λ|+ λdtv(gn, g).

Because λn → λ and gn
w
−→ g (Lemma A.10), we see that dtv(f

(n)
δ,τ,ν, fδ) → 0, and in light of

(7.19), it follows that lim infn→∞ P(|CG(n)(i)| > τ) ≥ ρ(f+).
(iv) Lower bound for (7.13). Fix ε > 0, define ν = ⌈2 log n⌉, and let τn = ωn. Again let

us choose a small δ ∈ (0, 1) such that ρ(fδ) ≥ ρ(f)− ε. Recall that Lemma 7.8 implies

P(|CG(n)(i)| > τ) ≥ ρτ (f
(n)
δ,τ,νn

)− |A|e4Mm/nτn−2 ≥ ρ(f
(n)
δ,τ,νn

)− |A|e4Mm/nτn−2.

Inspection of the previous part of the proof shows that dtv(f
(n)
δ,τ,ν, fδ)→ 0 also for τ = τn with

1≪ τn ≪ n log−1 n. Hence also ρ(f
(n)
δ,τ,ν)→ ρ(fδ) and lim infn→∞ P(|CG(n)(i)| > ω) ≥ ρ(f+).

(iv) Proof of (7.14). Denote pi = P(|CG(n)(i)| > τ) and pij = P(|CG(n)(i)| > τ,Cj(G
(n)) >

τ). Symmetry implies that E|Bτ (G
(n))| = np1 and Var |Bτ (G

(n))| = np1(1−p1)+ (n)2(p12−
p21). Then (7.12) implies that n−1

E|Bτ (G
(n))| → ρτ . If ρτ = 0, the claim follows by

Markov’s inequality. Assume next that ρτ > 0. Proposition 7.5 shows that p12 ≤ ρτ (f2τ,n)
2+

cτ2n−1 log n where c = e9M(1+m/n) and f2τ,n is defined by (7.1). The analysis of the up-
per bound for (7.12) shows that ρτ (f2τ,n) → ρτ (f

+). Hence for any ε > 0, we see that
p12 ≤ ρτ (f)

2 + ε for all sufficiently large n. Because p1 → ρτ (f
+) by (7.12), we conclude

that p12 − p
2
1 ≤ 2ε for large n. Hence Var |Bω(G

(n))| ≤ np1 + 2n2ε for large n, and

Var |Bτ (G
(n))|

(E|Bτ (G(n))|)2
≤

np1
(np1)2

+
2n2ε

(np1)2
.

Because p1 ≍ 1, the ratio on the left vanishes and (7.14) follows by Chebyshev’s inequality.

(v) Proof of (7.15) for ω ≍ log n. Now (7.13) implies that p1 = n−1
E|Bω(G

(n))| → ρ. If
ρ = 0, the claim follows by Markov’s inequality. For ρ > 0, Proposition 7.5 shows that p12 ≤

ρω(f2ω,n)
2 + cω2n−1 log n. By a similar argument as in (ii), we conclude Var |Bω(G(n))|

(EBω(G(n)))2
≪ 1,

so that Chebyshev’s inequality now yields (7.15) for ω ≍ log n.
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(iv) Proof of (7.15) for 1≪ ω ≪ n log−1 n. Let ω′ ≍ log n. Then |1(Ci > ω)− 1(Ci > ω′)| =
1(Ci > ω∧ω′)−1(Ci > ω∨ω′) together with the triangle inequality shows that | |Bω| − |Bω′ | | ≤
|Bω∧ω′ |−|Bω∨ω′ |. Taking expectations and Markov’s inequality imply that P(| |Bω| − |Bω′ | | >
εn) ≤ ε−1n−1

E|Bω∧ω′ | = ε−1
P(Ci > ω ∧ ω′) ≪ 1 by (7.13). Hence |Bω| − |Bω′ | = oP(n). In

the previous step we saw that |Bω′ | = ρn + oP(m). Hence |Bω| = ρn + oP(n), and (7.15)
holds also for general 1≪ ω ≪ n log−1 n.

(v) Proof of an upper bound for (7.16). Fix ε > 0, and let ω ≍ logm. Then (ρ+ ε)n ≥ ω
for large values of n. If N1(G

(n)) > (ρ+ ε)n, then every node in a largest component has its

component bigger than ω, and hence |Bω| ≥ N1(G
(n)) ≥ (ρ+ ε)n. Hence by (7.13),

P(n−1N1(G
(n)) > ρ+ ε) ≤ P(n−1|Bω| > ρ+ ε) → 0.

(vi) Proof of a lower bound for (7.16). We assume that (P )21 > 0 because otherwise g and
f+ = CPoi(λ, g) both degenerate to the Dirac measure at zero, and the lower bound is trivial.
Fix ε > 0. Fix δ ∈ (0, 1) so small that ρδ(CPoi((1 − δ)λ, g)) satisfies ρδ ≥ ρ− ε/2. Denote
by mxy = mPn(x, y) the number of xy-layers. Let us partition the set of layers into two

categories called red and blue, so that the number of red xy-layers equalsm
(r)
xy = ⌊(1− δ)mxy⌋

for each layer type (x, y) ∈ A, and denote by G(n,r) the overlay graph on [n] generated by

the red layers. Then
m

(r)
xy

m → (1− δ)P (x, y) implies that the total number of red layers equals

m(r) ∼ (1−δ)m and the empirical layer type distribution of the red layers satisfies P
(r)
n

w
−→ P

with (P
(r)
n )10 → (P )10. By applying (7.15) to the overlay graph G(n,r), it follows that the

relative proportion of nodes with a large red component is approximated by

(7.22) n−1|Bω(G
(n,r))|

P
−→ ρδ

for any 1≪ ω ≪ n log−1 n. Furthermore, denoting En =
{
Bω(G

(n,r)) is G(n)-connected
}
,

P(n−1N1(G
(n)) < ρ− ε) ≤ P(n−1N1(G

(n)) < ρ− ε, En) + P(Ecn)

≤ P(n−1|Bω(G
(n,r))| < ρ− ε) + P(Ecn)

≤ P(n−1|Bω(G
(n,r))| < ρδ − ε/2) + P(Ecn).

In light of (7.22), it suffices to show that En occurs with high probability.

On the complement of En, there exists a pair of distinct G(n,r)-components C ′, C ′′ ⊂
Bω(G

(n,r)) such that there are no G(n)-links between C ′, C ′′. Especially, there are no links
between C ′, C ′′ generated by the blue layers. Denote by pxy the conditional probability that
a particular blue layer of type (x, y) connects C ′ and C ′′ by a link, given the red layers and

the event that C ′, C ′′ are distinct G(n,r)-components both larger than ω. Then by applying
Lemma 7.11 and noting that (x)2 ≤M

21(x ≥ 2), it follows that

(7.23) pxy ≥
2|C ′||C ′′|

(n)2
1(x ≥ 2)y ≥ M−2

(ω

n

)2
(x)2y.

Denote by Mb the number of blue layers generating at least one link between C ′ and C ′′.
Then using 1− x ≤ e−x,

Ee−sMb =
∏

(x,y)∈A

(
(1− pxy + pxye

−s
)m

(b)
xy ≤ e−(1−e−s)

∑
(x,y)∈Am

(b)
xy pxy .

By noting thatm
(b)
xy ≥ δmPn(x, y) and applying (7.23), we see that for ω = n2/3,

∑

(x,y)∈Am
(b)
xy pxy ≥

δM−2mn−2/3(Pn)21 ≥ c1n
1/3 for large value of n, where c1 = 1

2δµM
−2(P )21. Markov’s in-

equality implies that for any a, s > 0,

(7.24) P(Mb < a) ≤ esaEe−sMb ≤ esa−(1−e−s)c1n1/3
.



CLUSTERING AND PERCOLATION ON SUPERPOSITIONS OF BERNOULLI RANDOM GRAPHS 31

By noting that 1 − pxy ≤ e−pxy it follows that the conditional probability that there are
no blue links between C ′ and C ′′ is bounded by

∏

(x,y)∈A

(1− pxy)
m

(b)
xy ≤ e−

∑
(x,y)∈AM

−2(ω
n
)2(x)2ym

(b)
xy = e−M

−2(ω
n
)2m(b)(P

(b)
n )21 .

Note that there are at most n
ω = n1/3 distinct G(n,r)-components inside Bω(G

(n,r)). The

number of such component pairs is hence at most 1
2n

2/3, and the union bound together with
(7.24) with a = s = 1 then confirms that

(7.25) P(Ecn) ≤
1

2
n2/3e1−(1−e−1)c1n1/3

→ 0.

This fact together with (7.22) implies that n−1N1(G
(n)) ≥ ρ− ε with high probability.

(vii) Finally, let us extend the proofs to random layer types. Denote by Pθn the regular con-
ditional distribution of the n-th model given layer types θn = ((Xn,1, Yn,1), . . . , (Xn,m, Yn,m)),
see Section A.1 for formal details. In this case the earlier analysis of (7.16) confirms

that Pθn(|n
−1N1(G

(n))− ρ(f+)| > ε) → 0 for any realisation of (θ1, θ2, . . . ) for which
the empirical layer type distributions converge according to dtv(Pθn , P ) → 0. Because

Pn
w
−→ P it follows by Lemma A.2 that dtv(Pθn , P )

P
−→ 0. Now by applying Lemma A.1

with Φn(θn, ξn) = n−1N1(Gn) and Gn = Gn(ξn), we find that Φn
P
−→ ρ(f+), and hence

(7.16) also holds for random layer types. The same argument also confirms (7.12)–(7.15) for
random layer types. �

Lemma 7.11. Let C1, C2 be disjoint subsets of [n] of sizes c1, c2. Let V be a uniformly
random x-set in [n] with x ≥ 2. Then the probability that V intersects both C1 and C2 is at
least 2c1c2

n(n−1) .

Proof. Denote px = P(V ∩ C1 6= ∅, V ∩ C2 6= ∅) for V being a uniformly random x-set in
[n]. Define a random set V ′ so that the conditional distribution of V ′ given V is uniformly
random among the 2-subsets of V . Then V ′ ⊂ V with probability one, and the unconditional
distribution of V ′ is uniform among the 2-subsets of [n]. Hence it follows that

px ≥ P(V ′ ∩ C1 6= ∅, V
′ ∩ C2 6= ∅) = p2 =

c1c2
(
n
2

) .

�

7.5. Discretising layer types. Layer sizes are compactified using the function σM : (x, y) 7→
(x1(x ≤M), y) which simply sets the layer size to zero. In the proofs we also need to discre-
tise layer strengths. Some care is needed to avoid possible atoms of the limiting layer type
distribution. Given a probability measure P on Z+× [0, 1], for every integer L ≥ 1 we define
functions σL−, σL+ : Z+ × [0, 1] → Z+ × [0, 1] as follows. First, let BP be the set of points
y ∈ (0, 1) for which P (Z+ × {y}) > 0. Because BP is countable, for every integer L ≥ 1 we
may select a set of points 0 = s0 < s1 < · · · < sL = 1 such that {s1, . . . , sL−1}∩BP = ∅ and
|si − si−1| ≤ 2L−1 for all i = 1, . . . , L. Then we define

(7.26)

⌊y⌋L =

L∑

i=1

si−11(si−1 ≤ y < si) + sL−11(y = L),

⌈y⌉L = s11(y = 0) +
L∑

i=1

si1(si−1 < y ≤ si),

and set σL−(x, y) = (x, ⌊y⌋L) and σL+(x, y) = (x, ⌈y⌉L).
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Lemma 7.12. Consider probability measures on Z+× [0, 1] such that Pn
w
−→ P and (Pn)10 →

(P )10 ∈ [0,∞). Then (i) P ◦σ−1
M

w
−→ P and (P ◦σ−1

M )10 → (P )10 as M →∞; (ii) Pn ◦σ
−1
M

w
−→

P ◦σ−1
M and (Pn◦σ

−1
M )10 → (P ◦σ−1

M )10 as n→∞; (iii) P ◦σ−1
L±

w
−→ P and (P ◦σ−1

L±)10 → (P )10

as L → ∞; (iv) Pn ◦ σ
−1
L±

w
−→ P ◦ σ−1

L± and (Pn ◦ σ
−1
L±)10 → (P ◦ σ−1

L±)10 as n → ∞; and (v)

h(M) = supn≥1

∫
x1(x > M)Pn(dx, dy)→ 0.

Proof. (i) Let f be bounded and continuous. Then f ◦ σM → f pointwise as M → ∞
and |f ◦ σM | ≤ |f | pointwise, so that by Lebesgue’s dominated convergence, P ◦ σ−1

M (f) =

P (f ◦ σM ) → P (f). The same argument applied to f(x, y) = x shows that (P ◦ σ−1
M )10 =

P (f ◦ σM )→ P (f) = (P )10.
(ii) Because f ◦σM is bounded and continuous whenever f is, it follows that Pn ◦σ

−1
M (f) =

Pn(f ◦ σM ) → P (f ◦ σM ) = P ◦ σ−1
M (f). For f(x, y) = x, we find that (Pn ◦ σ

−1
M )10 =

Pn(f ◦ σM )→ P (f ◦ σM ) = (P ◦ σ−1
M )10.

(iii) The construction in (7.26) guarantees that ⌊y⌋L → y and ⌈y⌉L → y as L → ∞
for every y ∈ [0, 1]. Therefore the functions σL−, σL+ converge pointwise to the identity
map on Z+ × [0, 1] as L → ∞. Hence by Lebesgue’s dominated convergence, P ◦ σ−1

L±(f) =
P (f ◦σL±)→ P (f) for any bounded continuous f . The same argument applied to f(x, y) = x
implies that (P ◦ σ−1

L±)10 = P (f ◦ σL±)→ P (f) = (P )10.
(iv) By Skorohod’s coupling [30, Proposition 4.30], there exist random variables (Xn, Yn)

and (X,Y ) such that L(Xn, Yn) = Pn, L(X,Y ) = P , and (Xn, Yn) → (X,Y ) almost surely.
Hence σL−(Xn, Yn) = (Xn, ⌊Yn⌋L) → (X, ⌊Y ⌋L) whenever Y ∈ [0, 1] \ {s1, . . . , sL−1}. Now
P(Y = si) = P (Z+ × {si}) = 0 by construction, so we conclude that σL−(Xn, Yn) →

σL−(X,Y ) almost surely. Hence Pn ◦ σ
−1
L−

w
−→ P ◦ σ−1

L−. The same argument also works for

Pn ◦ σ
−1
L+, and (Pn ◦ σ

−1
L±)10 → (P ◦ σ−1

L±)10 then follows by dominated convergence.
(v) Let (Xn, Yn) and (X,Y ) be random variables distributed according to Pn and P ,

respectively. Then Xn → X in distribution and EXn = (Pn)10 → (P )10 = EX < ∞. Hence
(Xn)n≥1 is uniformly integrable, and h(M) = supn≥1 EXn1(Xn > M)→ 0. �

7.6. Proof of Theorem 3.4. Denote PM = P ◦ σ−1
M where σM : (x, y) 7→ (x1(x ≤ M), y).

Let f+ = CPoi(µ(P )10, g) and fM = CPoi(µ(PM )10, g
M ), where g = Bin+10(P ) and gM =

Bin+10(P
M ) are defined by (2.6). Then by Lemma 7.12, PM

w
−→ P together with (PM )10 →

(P )10. Lemma A.10 implies that gM
w
−→ g. Hence fM

w
−→ f+ (Lemma A.6), implying that

ρt(f
M )→ ρt(f

+) for all t and ρ(fM)→ ρ(f+) (Lemma A.15).
(i) Lower bound. Fix ε > 0. Fix a large enough M such that ρ(fM ) ≥ ρ(f+) − ε. Then

apply the layer strength discretisation procedure (7.26) to PM , and define σL− accordingly.

Define PML− = PM ◦ σ−1
L−. Lemma 7.12 then implies that PML− w

−→ PM and (PML−)10 →

(PM )10 as L → ∞. The same argument as above then implies that fML− w
−→ fM and

ρ(fML−) → ρ(fM ) as L → ∞, where fML− = CPoi(µ(PML−)10, g
ML−) and gML− =

Bin+10(P
ML−). Hence we may fix a large L so that ρ(fML−) ≥ ρ(fM )− ε.

Now for each n, consider a modification G(nML−) of G(n) where each layer of type (x, y) is
replaced by a layer of type (x1(x ≤ M), ⌊y⌋L). Under a natural coupling, N1(G

nML−) ≤
N1(G

n) almost surely for every n, and

N1(G
(n))

n
≥

N1(G
nML−)

n
≥ ρ(f+)− 2ε+

(
N1(G

nML−)

n
− ρ(fML−)

)

.

The averaged layer type distribution of G(nML−) equals PML−
n = Pn ◦ σ

−1
M ◦ σ

−1
L−. In light

of Lemma 7.12, we see that PML−
n

w
−→ PML− and (PML−

n )10 → (PML−)10 as n → ∞. A



CLUSTERING AND PERCOLATION ON SUPERPOSITIONS OF BERNOULLI RANDOM GRAPHS 33

suitable lower bound follows from the above inequality, because N1(GnML−)
m

P
−→ ρ(fML−) due

to Lemma 7.10.
(ii) Upper bound. Given δ, ε > 0, choose a large enough t so that ρt(f

+) ≤ ρ(f+) + ε/5.
Then choose a large enough M so that ρt(f

M ) ≤ ρt(f
+) + ε/5 and h(M) ≤ δε

40µt where

h(M) = supn
∫
x1(x > M)dPn (see Lemma 7.12). By similar arguments as in the proof of the

lower bound, we find that PML+ w
−→ PM , gML+ w

−→ gM , and fML+ w
−→ fM as L→∞, where

fML+ = CPoi(µ(PML+)10, g
ML+) with PML+ = PM ◦ σ−1

L+ and gML+ = Bin+10(P
ML+).

Hence we may choose (Lemma A.15) a large enough L so that ρt(f
ML+) ≤ ρt(f

M) + ε/5.
Hence ρt(f

ML+) ≤ ρ(f+) + 3
5ε.

Let G(n,M) and G(n,ML+) be modified overlay graphs in which each layer of type (x, y) is
replaced by a layer of type (x1(x ≤ M), y) and (x1(x ≤ M), ⌈y⌉L), respectively. We fix a

natural coupling under which G(n,M) ⊂ G(n,ML+) almost surely. Then by Lemma A.12,

N1(G
(n))

n
≤
|Bt(G

(n,ML+))|

n
+
t

n
(Zn,M + 1),

where Zn,M is the number of nodes covered by layers larger than M in the nontruncated

model G(n). By Lemma 7.10, we may choose an integer n0 such that 1
m ≤ h(M), mn ≤ 2µ, and

(7.27) P

(

|Bt(G
(n,ML+))|

n
> ρt(f

(ML+)) +
ε

5

)

≤
δ

2

for all n ≥ n0. Then we note that

EZn,M ≤ E

m∑

k=1

X
(n)
k 1(X

(n)
k > M) ≤ mh(M),

so that E
t
n(Zn,M + 1) ≤ t

n(mh(M) + 1) ≤ 4µth(M) ≤ δε
10 , and by Markov’s inequality,

P( tn(Zn,M + 1) > ε
5) ≤

δ
2 . Hence for all n ≥ n0,

N1(G
(n))

n
≤ ρt(f

(ML+)) +
2

5
ε ≤ ρ(f+) + ε

with probability at least 1− δ.
(iii) Upper bound on the second largest component. Fix δ, ε, t,M,L as in part (ii) and

define G(n,M) and G(n,ML+) in the same way. By Lemma A.11 and Lemma A.12,

N1(G
(n)) +N2(G

(n)) ≤ |Bt(G
(n))|+ 2t ≤ |Bt(G

(n,M))|+ 2t+ tZn,M .

Under a natural coupling, |Bt(G
(n,M))| ≤ |Bt(G

(n,ML+))|, so that

N2(G
(n))

n
≤
|Bt(G

(n,ML+))|

n
−
N1(G

(n))

n
+
t

n
(Zn,M + 2).

By part (i), N1(G(n))
n ≥ ρ(f+) − ε/5 with probability at least 1 − δ/2, whereas part (ii)

implies that P( tn(Zn,M + 1) > ε
5 ) ≤

δ
2 . Together with (7.27) it follows that N2(G(n))

n ≤ 6
5ε

with probability at least 1− 3
2δ, whenever n is large enough. Hence N2(G(n))

n
P
−→ 0.

�

7.7. Proofs for percolation models.
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7.7.1. Site percolation. Proof of Theorem 3.5. The site-percolated graph Ǧ(n) is an instance
of the overlay graph model (2.1) with ň = |Sn| nodes and m layers Ǧ1, . . . , Ǧm where Ǧk
is the subgraph of Gk induced by Sn, and G1, . . . , Gm are the original layers generating the
graph G. The layer types (X̌k, Y̌k) in the site-percolated model are mutually independent,
and L(X̌k |Xk = xk) is hypergeometric with probability mass function

Hyp(n, ň, xk)(t) =

(ň
t

)(n−ň
xk−t

)

( n
xk

) .

The site-percolated graph is hence an instance of the overlay model with ň nodes, m layers,
and averaged layer type distribution

P̌n(A) =

∫

(Hyp(n, ň, x)× δy)(A)Pn(dx, dy).

Define probability kernels Kn,K on Z+×[0, 1] by formulas Kn((x, y), A) = (Hyp(n, ň, x)×
δy)(A) andK((x, y), A) = (Bin(x, θ)×δy)(A). By [19, Theorem 4], dtv(Hyp(n, ň, x),Bin(x,

ň
n)) ≤

2xn . A basic coupling of coin flips implies that dtv(Bin(x,
ň
n),Bin(x, θ)) ≤ |

ň
n − θ|x. Then for

any bounded continuous function φ on Z+ × [0, 1],

|Knφ(x, y) −Kφ(x, y)| ≤ 2||φ||∞dtv(Hyp(n, ň, x),Bin(x, θ)) ≤ 2||φ||∞

(
2

n
+ |

ň

n
− θ|

)

x

for all x, y. Hence Knφ → Kφ uniformly on the compact subsets of Z+ × [0, 1]. Because
(Pn)n≥1 is tight, it follows that P̌n(φ) = Pn(Knφ) → P (Kφ) = P̌ (φ) for any bounded

continuous φ. Hence P̌n
w
−→ P̌ . Direct computations show that (P̌n)10 = ň

n(Pn)10 → θ(P )10 =

(P̌ )10, and
m
ň → µ̌ = θ−1µ. Theorem 3.5:(i)–(ii) now follow by applying Theorems 3.1 and 3.4

to Ǧ(n) and noting that µ̌(P̌ )10 = µ(P )10.
Assume next that (Pn)rs → (P )rs ∈ (0,∞) for rs = 21, 32, 33. A direct computation

using the binomial distribution shows that (P̌ )rs = θr(P )rs. Theorem 3.5:(iii) now follows

by applying Theorem 3.2 to conclude that the clustering coefficient of Ǧ(n) converges to

τ̌ = (P̌ )33
(P̌ )32+µ̌(P̌ )221

= (P )33
(P )32+µ(P )221

= τ . Theorem 3.5:(iv) follows similarly from Theorem 3.3.

7.7.2. Layerwise bond percolation. Proof of Theorem 3.6 for the layerwise bond-percolated
graph G̃(n). The graph G̃n is an instance of the overlay model with n nodes and m layers
G̃1, . . . , G̃m where G̃k has size Xk and strength θYk. The layers (G̃k,Xk, θYk) are mutually
independent, with averaged layer type distribution

P̃n(A) =

∫

(δx × δθy)(A)Pn(dx, dy)

converging according to P̃n
w
−→ P̂ and (P̃ )10 → (P̂ )10. Furthermore, a direct computation

shows that (P̂ )rs = θs(P )rs. Statements (i)–(ii) of Theorem 3.6 now follow by Theorems 3.1

and 3.4, and noting that (P̂ )10 = (P )10. Statements (iii)–(iv) follow analogously by Theo-

rems 3.2 and 3.3, and noting that τ̂ = (P̂ )33

(P̂ )32+(̂P̂ )221
= θ (P )33

(P )32+µ(P )221
= θτ .

7.7.3. Bond percolation coupling. We will utilise the fact that the overlay bond-percolated
graph does not differ much from the layerwise bond-percolated graph G̃(n), for which the
theorem has already been proved. The conditional distribution of Ĝ(n) given the layers
(Gk,Xk, Yk) is an inhomogeneous Bernoulli graph on {1, . . . , n} where each node pair ij is
linked with probability p̂ij = θ(Mij ∧ 1) where Mij =

∑

k 1(E(Gk) ∋ ij) is the number of

layers linking a node pair ij. The corresponding conditional distribution of G̃(n) is a similar
inhomogeneous Bernoulli graph with link probabilities p̃ij = 1−(1−θ)Mij . Because p̂ij ≤ p̃ij,
this suggest the following coupling construction:

(i) Sample the layers (Gk,Xk, Yk), k = 1, . . . ,m.
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(ii) Sample independent inhomogeneous Bernoulli graphs H̃ and H∗ with link probabilities

p̃ij and p
∗
ij =

p̂ij
p̃ij

with the convention 0
0 = 0.

(iii) Define Ĝ = G ∩ Ĥ and G̃ = G ∩ H̃ with G defined by (2.1) and Ĥ = H̃ ∩H∗.

Then (Ĝ, G̃,G) constitutes a coupling of the overlay bond-percolated, layerwise bond-percolated,

and nonpercolated graphs such that Ĝ ⊂ G̃ ⊂ G almost surely.

7.7.4. Proof of Theorem 3.6:(i) for overlay bond percolation. Let us denote by D̂n = degĜ(n)(i)

and D̃n = degG̃(n)(i) the degrees of node i in the overlay bond-percolated and layerwise bond-

percolated graph, respectively. Using the coupling of Section 7.7.3, we observe that D̂n = D̃n

on the event Mi ≤ 1, where Mi = maxj 6=iMij. Hence dtv(L(D̂n),L(D̃n)) ≤ P(Mi > 1). The
union bound implies that

P(Mij > 1) ≤
∑′

k,ℓ

P(E(Gk) ∋ ij)P(E(Gℓ) ∋ ij) ≤

(
∑

k

P(E(Gk) ∋ ij)

)2

.

By noting that P(E(Gk) ∋ ij) = E
(Xk)2
(n)2

Yk, we conclude that

(7.28) P(Mij > 1) ≤
(
m(n)−1

2 (Pn)21
)2
,

Another union bound shows that P(Mi > 1) ≤
∑

j 6=i P(Mij > 1) and hence

(7.29) dtv(L(D̂n),L(D̃n)) ≤ (m/n)2(Pn)
2
21(n− 1)−1.

Because L(D̃n)
w
−→ CPoi(µ(P )10,Bin10(P̂ )), the same result for the bond-percolation graph

follows from (7.29) in case of bounded layer sizes. In the general case, we truncate layers as

in (5.6), and denote by D̂M
n (resp. D̃M

n ) the degree of node i in ĜMn (resp. G̃Mn ). Then (7.29)

implies that dtv(L(D̂
M
n ),L(D̃M

n )) ≤ cM4n−1 for all large values of n, with c = 2µ2. The

reasoning in (5.7) works also for bond-percolated models, and hence dtv(L(D̂n),L(D̂
M
n )) ≤

h(M) and dtv(L(D̃n),L(D̃
M
n )) ≤ h(M) where h(M) = supn≥1

∫
x1(x > M)Pn(dx, dy). We

conclude that

dtv(L(D̂n),L(D̃n)) ≤ cM4n−1 + 2h(M)

for all M . By choosing M ≍ n1/5, we see that dtv(L(D̂n),L(D̃n))→ 0, and Theorem 3.6:(i)

follows for Ĝ(n).

7.7.5. Proof of Theorem 3.6:(iii) for overlay bond percolation. For any distinct nodes i, j, k,

we see that P(Ĝ
(n)
ij , Ĝ

(n)
ik , Ĝ

(n)
jk ) = θ3P(G

(n)
ij , G

(n)
ik , G

(n)
jk ) and P(Ĝ

(n)
ij , Ĝ

(n)
ik ) = θ2P(G

(n)
ij , G

(n)
ik ).

Hence τ̂ (n) = θτ (n) for every n, and the claim follows by applying Theorem 3.2 to the
nonpercolated model.

7.7.6. Proof of Theorem 3.6:(iv) for overlay bond percolation. Fix any distinct nodes i, j, k,

and note that the clustering spectrum of Ĝ(n) can be written as σ̂(n)(t) = P(Ân,t)/P(B̂n,t) where

Ân,t = {degĜ(n)(i) = t, Ĝ
(n)
ij , Ĝ

(n)
ik , Ĝ

(n)
jk },

B̂n,t = {degĜ(n)(i) = t, Ĝ
(n)
ij , Ĝ

(n)
ik }.

A similar formula also holds for the clustering spectrum σ̃(n)(t) of the layerwise bond-

percolated graph, with Ãn,t, B̃n,t defined analogously. Observe that 1(Ân,t) = 1(Ãn,t) and

1(B̂n,t) = 1(B̃n,t) on the event that Mi = maxj 6=iMij ≤ 1 and Mjk ≤ 1, where Mij refers to
the number of layers linking node pair ij in the coupling construction of Section 7.7.3. By
exchangeability, the union bound, estimate (7.28), and (Pn)21 . 1, it follows that

P(Mi > 1 or Mjk > 1) ≤ nP(Mij > 1) ≤ n
(
m(n)−1

2 (Pn)21
)2

. n−1.
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Hence P(Ân,t) = P(Ãn,t) + O(n−1) and P(B̂n,t) = P(B̃n,t) + O(n−1). Hence τ̂ (n)(t) = (1 +

o(1))τ̃ (n)(t), and the claim follows from the corresponding result for the layerwise bond-
percolated model.

7.7.7. Proof of Theorem 3.6:(ii) for overlay bond percolation. The coupling construction in

Section 7.7.3 shows that all components in Ĝ(n) are stochastically smaller than their coun-
terparts in G̃(n). Hence the upper bounds concerning component sizes in Ĝ(n) follow directly
from the result of Theorem 3.6:(ii) for G̃(n). Therefore, we only need to prove that with high

probability Ĝ(n) contains a component of size (1 + oP(1))ρ(f̂
+)n.

Let us investigate how Lemma 7.10 behaves whenG(n) is replaced by Ĝ(n) = G(n)∩H where
H is a homogeneous Bernoulli graph on {1, . . . , n} with link probability θ. Define a modifi-

cation of Algorithm 2 where the layer exploration step is replaced by Zt ← ∪k∈WtNvt(Ĝ
′
k)

where Ĝ′
k is the transitive closure of Ĝk = Gk ∩H. By construction, the modified version

of Algorithm 2 discovers a subset of the Ĝ(n)-component of the root. Furthermore, the al-
gorithm avoids multi-overlaps, and therefore the output of Algorithm 2 is the same as if
it were run for the layerwise bond-percolated model G̃(n) with mutually independent layers
G̃k = Gk ∩Hk as in (3.5). Hence Lemma 7.8 is valid for the overlay bond-percolated model,
with the same lower bound as for the layerwise bond-percolated model. Hence the statements
in (7.12)–(7.15) of Lemma 7.10 are valid just the same as for the layer-percolated model.

To finish extending Lemma 7.10 to the overlay bond-percolated graph, we still need to
verify the sprinkling argument in the proof of the lower bound for (7.16). To do this, we
modify the earlier argument slightly using a modified coupling. As in the earlier proof for the
nonpercolated model, fix a small δ ∈ (0, 1), partition the set of layers into red layers and blue
layers, and denote by G(r) and G(b) the overlay graphs generated by the red and blue layers.
Let θ(b) = δ and define θ(r) = 1− 1−θ

1−δ . Let H
(r),H(b) be mutually independent homogeneous

Bernoulli graphs on [n] with link probabilities θ(b) and θ(r), respectively, sampled indepen-

dently of the layers. Then G̃ = G∩H with G = G(r)∪G(b) and H = H(r)∪H(b) is an instance
of the bond-percolated overlay graph. For a lower bound, we note that G̃ ⊃ G̃(r)∪G̃(b) where
G̃(r) = G(r) ∩H(r) and G̃(b) = G(b) ∩H(b). Note that θ − δ/2 ≤ θ(r) ≤ θ for 0 < δ ≤ 1

2 .

Let B = Bω(G̃
(r)) be the set of nodes having G̃(r)-component larger than ω = n2/3. Then

by (7.12)–(7.15) of Lemma 7.10, it follows that B ≥ (ρ(f̂+) − ε)n with high probability,
where ε > 0 becomes arbitrarily small after choosing a small enough δ > 0. We claim that
B is G̃-connected with high probability for ω = n2/3. If B is not G̃-connected, then there
exist disjoint G̃(r)-components C ′, C ′′ both of size at least ω, between which there are no
G̃-links and hence no G̃(b)-links. Let us condition on the red layers and H(r). Given these,
the blue layers and H(b) behave independently. Denote by Mb the number of blue layers
containing at least one link between C ′ and C ′′. Denote by Lb = |E(G(b), C ′, C ′′)| (resp.
L̃b = |E(G̃(b), C ′, C ′′)|) the number of G(b)-links (resp. G̃(b)-links) between C ′ and C ′′. Let
s = δ−1 log n and t = 3δ−1 log n, and observe that

P(L̃b = 0 |Lb ≥ s) ≤ (1− δ)s ≤ e−δs = n−1.

Given Mb ≥ t, we know that Lb ≥st Nt where Nt is the number of distinct coupon types
obtained after collecting t random coupons from a collection of n0 = |C

′ × C ′′| coupon types.

By Lemma A.16, for large enough n such that 1 + s ≤ 1
2 t and t ≤ n

1/4
0 ,

P(Lb < s |Mb ≥ t) ≤ P(Nt < s) ≤ n−1
0 ≤ ω−2.
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By applying (7.24) and noting that t ≤ (12 − e
−1)c1n

1/3 for large n, we see that P(Mb < t) ≤

et−(1−e−1)c1n1/3
≤ e−c2n

1/3
with c1 =

1
2δµM

−2(P )21 and c2 =
1
4δµM

−2(P )21. Now

P(L̃b = 0) ≤ P(L̃b = 0 |Lb ≥ s) + P(Lb < s)

≤ P(L̃b = 0 |Lb ≥ s) + P(Lb < s |Mb ≥ t) + P(Mb < t)

≤ n−1 + ω−2 + e−c2n
1/3

≤ 3n−1.

Now there are at most n
ω = n1/3 such components C ′, C ′′, and hence at most 1

2n
2/3 such

component pairs. Hence the probability that there exists a component pair C ′, C ′′ with no
G̃(b)-links in between, is at most 3

2n
−1/3. We conclude that B is G̃-connected with high

probability. This confirms that the lower bound for (7.16) in Lemma 7.10 extends to the
overlay bond-percolated setting.

All the rest in the proof of Theorem 3.4 extends to the overlay bond-percolated setting in
a straightforward manner. This concludes the proof of Theorem 3.6:(ii).

�

8. Analysis of power-law models

8.1. Mixed binomial power laws. When the limiting layer type distribution factorises
according to (4.1)–(4.2) and α+ sβ > r+1, we find that the mixed binomial distribution in
(2.5) can be written as

Binrs(P )(t) =

∞∑

x=1

Bin(x− r, q(x))(t) p̃rs(x),

where p̃rs(x) =
(x)rq(x)sp(x)

(P )rs
is a biased layer size distribution. Assumptions (4.2) imply that

the biased layer size distribution follows a power law p̃rs(x) ∼
abs

(P )rs
x−(α+sβ−r). If β > 0 or

b < 1, then Lemma A.4 shows that also the mixed binomial distribution follows a power law

(8.1) Binrs(P )(t) ∼ drst
−δrs

with parameters

(8.2) δrs = 1 +
α+ sβ − r − 1

1− β
and drs =

abs

(P )rs

bδrs−1

1− β
.

8.2. Proof of Theorem 4.1. The limiting degree distribution given by Theorem 3.1 equals
f = CPoi(µ(P )10, g10) with g10 = Bin10(P ).

(i) Assume first that 0 ≤ β < 1 and that either β > 0 or b < 1. By (8.1), we find that
g10(t) ∼ d10t

−δ10 . The above formula implies that g10 is subexponential [22, Theorem 4.14]
and it follows that [22, Theorem 4.30] f(t) ∼ µ(P )10g10(t) ∼ µ(P )10d10t

−δ10 .
(ii) Consider the case with β = 0 and b = 1, and assume that q(x) = 1 for all but

finitely many x. Then Bin(x − 1, q(x)) = δx−1 for large values of x, and it follows that
g10(t) = p̃10(t+ 1) for all large t. Hence g10(t) ∼ p̃10(t), and the claim follows as in (i).

(iii) If β ≥ 1, then M = supx≥1(x− 1)q(x) <∞. The generating function of the limiting

degree distribution equals
∑

t≥0 z
tf(t) = eλ(ĝ10(z)−1), where

ĝ10(z) =
∑

x≥1

(1− q(x) + q(x)z)x−1p̃10(x).

Because 1 − y + yz ≤ ey(z−1) for all real numbers z, it follows that ĝ10(z) ≤ eM(z−1) and
hence

∑

t≥0 z
tf(t) is finite for all z > 0. �
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8.3. Proof of Theorem 4.2. The limiting clustering spectrum σ(t) in Theorem 3.3 is
represented using convolutions of the limiting degree distribution f = CPoi(µ(P )10, g10) and
distributions grs = Binrs(P ) defined by (2.5). Theory of discrete subexponential densities
[22, Lemmas 4.9 and 4.14] implies that (f1∗f2)(t) ∼ f1(t)+ f2(t) for all probability densities
on the positive integers such that fi(t) ∼ ait

−αi with ai > 0 and αi > 1. By Theorem 4.1, we
know that f(t) ∼ µ(P )10d10t

−δ10 , and by (8.1), we find that grs(t) ∼ drst
−δrs with parameters

given by (8.2). Because δ32 < δ21 < δ10, it follows that

(f ∗g32)(t) ∼ f(t) + g32(t) ∼ g32(t)

and

(f ∗g21∗g21)(t) ∼ f(t) + g21(t) + g21(t) ≪ g32(t).

Hence by formula (3.2),

σ(t) ∼
(P )33
(P )32

f(t) + g33(t)

g32(t)
∼

(P )33
(P )32

µ(P )10d10t
−δ10 + d33t

−δ33

d32t−δ32
.

Because δ33 − δ10 = 3β−2
1−β , we see that σ(t) follows a power law with density exponent

δ33 − δ32 = β
1−β for β ≤ 2

3 , and density exponent δ10 − δ32 = 2 for β ≥ 2
3 . The constant term

of the power law is determined by (8.2). �

Appendix A. Supplementary results

A.1. Formal model definition. Fix integers n,m ≥ 1. Let pn,1, . . . , pn,m be probability
measures on Z+× [0, 1], and let qn be a probability kernel from Z+× [0, 1] into Gn defined by

qn((x, y), g) =
(n
x

)−1
(1 − y)(

n
2)−|E(g)| y|E(g)|. The space of possible layer type configurations

θn = ((x1, y1), . . . , (xm, ym)) is denoted by Ω1,n = (Z+ × [0, 1])m, and the space of possible
layer configurations ξn = (g1, . . . , gm) by Ω2,n = Gmn . Define a probability measure p̄n on
Ω1,n and a probability kernel q̄n from Ω1,n to Ω2,n by

p̄n(dθn) =

m∏

k=1

pn,k(dxk, dyk), q̄n(θn, ξn) =

m∏

k=1

qn((xk, yk), gk).

The joint probability distribution of layers and their types is a probability measure Pn =
p̄n ⊗ q̄n on Ωn = Ω1,n × Ω2,n. We denote by Pθn(A) = q̄n(θn, A) the regular conditional
distribution of the layers given layer types θn. The empirical layer type distribution is
defined by Pθn = 1

m

∑m
k=1 δxk ,yk . The averaged layer type distribution is denoted by Pn =

1
m

∑m
k=1 pn,k.

By defining P as the product measure on Ω = Ω1 × Ω2 × · · · we may consider all models
on all scales simultaneously on a common probability space. Then θn, ξn, and the graphs
Gn = Gn(θn, ξn) can be viewed as random variables on Ω defined using canonical coor-
dinate projections (θ, ξ) → θn, (θ, ξ) → ξn, and the deterministic map ξn 7→ Gn(ξn) =
({1, . . . , n},∪mk=1E(gk)).

Lemma A.1. Let Φn : Ωn → R measurable functions such that Pθn({ξn : |Φn(θn, ξn)− c| >
ε}) → 0 for all ε > 0 and for all (θ1, θ2, . . . ) such that dtv(Pθn , P ) → 0. Assume that

dtv(Pθn , P )
P
−→ 0. Then Φn

P
−→ c.

Proof. We will apply the result [30, Lemma 4.2] that Xn
P
−→ X if and only if for any sub-

sequence of N there exists a further subsequence along which the convergence takes place

P-almost surely. Fix a subsequence N
′ ⊂ N. Because dtv(Pθn , P )

P
−→ 0 as n → ∞ along N

′,
there exists a further subsequence N

′′ ⊂ N such that dtv(Pθn , P ) → 0 P-almost surely along
N
′′. Then for any ε > 0, the random variables Zε,n = Pθn({ξn : |Φn(θn, ξn)− c| > ε})

satisfy Zε,n → 0 P-almost surely along N
′′. Dominated convergence then implies that
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P(|Φn − c| > ε) = EZε,n → 0 along N
′′. Then there exists a further subsequence N

′′′ such
that Φn → c P-almost surely along N

′′′. �

Lemma A.2. Assume that Pn, n ≥ 1, and P are supported on a finite set A ⊂ Z+ × [0, 1],

and that Pn
w
−→ P . Then dtv(Pθn , P )

P
−→ 0.

Proof. Now EPθn(x, y) = Pn(x, y) → P (x, y) for all (x, y) ∈ A. Because the layer types
are independent, VarPθn(x, y) = 1

m2

∑m
k=1Var 1(Xn,k = x, Yn,k = y) ≤ m−1. Hence by

Chebyshev’s inequality, Pθn(x, y)
P
−→ P (x, y) for all (x, y) ∈ A, and the claim follows. �

A.2. Elementary analysis.

Lemma A.3. Fix integers a < b and let f : [a, b] → [0,∞) be unimodular in the sense that
there exists s∗ ∈ [a, b] such that f is nondecreasing on [a, s∗] and nonincreasing on [s∗, b].

Then
∣
∣
∣
∑b

k=a f(k)−
∫ b
a f(s) ds

∣
∣
∣ ≤ ||f ||∞.

Proof. Let us abbreviate
∫ b
a f =

∫ b
a f(s) ds and

∑b
a f =

∑

a≤k≤b f(k). Denote r1 = ⌊s
∗⌋ and

r2 = ⌈s
∗⌉. Then by writing

r1−1∑

k=a

f(k) =

∫ r1

a
f(⌊s⌋)ds and

b∑

k=r2+1

f(k) =

∫ b

r2

f(⌈s⌉)ds

we find that
∑r1−1

a f ≤
∫ r1
a f and

∑b
r2+1 f ≤

∫ b
r2
f . If r1 = r2 = s∗, then f(r1) = f(r2) =

||f ||∞, and we see that
∑b

a f ≤
∫ b
a f + ||f ||∞. If r1 = r2 − 1, then f(r1) ∧ f(r2) ≤ f(s) for

s ∈ [r1, r2] implies that

f(r1) + f(r2) = f(r1) ∧ f(r2) + f(r1) ∨ f(r2) ≤

∫ r2

r1

f + ||f ||∞,

and hence
∑b

a f ≤
∫ b
a f + ||f ||∞ also in this case.

To obtain a lower bound, a similar reasoning shows that
∫ r1
a f ≤

∑r1
a+1 f and

∫ b
r2
f ≤

∑b−1
r2

f . Together with the fact that
∫ r2
r1
f ≤ ||f ||∞1(r1 < r2), it follows that

∫ b
a f ≤

∑r1
a+1 f+

∑b−1
r2

f+||f ||∞1(r1 < r2). Now, because
∑r1

a+1 f+
∑b−1

r2
f =

∑b−1
a+1 f+||f ||∞1(r1 =

r2) ≤
∑b

a f + ||f ||∞1(r1 = r2), it follows that
∫ b
a f ≤

∑b
a f + ||f ||∞. �

A.3. Power laws. The following result characterises conditions under which a mixed bino-
mial distribution follows a power law.

Lemma A.4. Consider a mixed binomial distribution g(r) =
∑

k≥1 pkfk(r) where fk =

Bin(xk, yk) and (pk) is a probability distribution on {1, 2, . . . }. Assume that

xk =
(
a+O

(
k−α/2

))
kα, yk =

(
b+O

(
k−α/2

))
k−β, pk = (c+ o(1))k−γ ,

for some 0 ≤ β < α < β +2 and γ > 1, and some a, b, c > 0 such that β > 0 or b < 1. Then

g(r) = (d+ o(1))r−δ

where δ = 1 + γ−1
α−β and d = (ab)δ−1c/(α − β).

Proof. Denote the mean and variance of fk by µk = xkyk and σ2k = xkyk(1 − yk). Denote

xk = (1+ε1,k)ak
α, yk = (1+ε2,k)bk

−β, and define εk by the formula 1+εk = (1+ε1,k)(1+ε2,k).

Then εk = O(k−α/2), and we may fix constants k0,M > 0 such that |εk| ≤Mk−α/2 ≤ 1
4 for

all k ≥ k0. Then
µk = (1 + εk)abk

ρ
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where ρ = α− β. Define

Ar = {k ∈ N : |abkρ − r| ≤ ∆r}

where ∆r = r1/2 log r. Let us choose r0 large enough so that maxk<k0 xk < r0 and 4M(5a4 )
1/2r1/2 ≤

∆r ≤
1
2r for all r ≥ r0.

(i) We will first verify that for all r ≥ r0,

(A.1)
∑

k/∈Ar

fk(r)pk =
∑

k:k≥k0:xk≥r,k /∈Ar

fk(r)pk ≤ e−
∆2

r
10r .

Because fk(r) = 0 for xk < r, we observe that only indices k with k ≥ k0 and xk ≥ r appear
in the sum g(r) =

∑

k:xk≥r
pkfk(r) when r ≥ r0. This confirms the equality in (A.1). For

such k, r ≤ xk and xk ≤ (1 + 1
4)ak

α imply k ≥ ( 4
5a)

1/αr1/α, and this further shows that

|εk| ≤Mk−α/2 ≤M(5a4 )
1/2r−1/2, so that |εk|r ≤

1
4∆r. Then by writing

µk − r = (1 + εk)(abk
ρ − r) + εkr,

we find that when r ≥ r0, |µk − r| ≥ (1 − |εk|)∆r − |εk|r ≥
1
2∆r for all k such that

xk ≥ r and k /∈ Ar. For such values of k, Chernoff inequalities for the binomial distribution
(Lemma A.7) imply (using ∆r ≤

1
2r) that

fk(r) ≤ e
−

∆2
r

8(r+1
2∆r) ≤ e−

∆2
r

10r .

(ii) For r ≥ r0 and for values k ∈ Ar, we have 1
2r ≤ abk

ρ ≤ 2r due to ∆r ≤
1
2r, and hence

c0r
1/ρ ≤ k ≤ c′0r

1/ρ, where c0 = (2ab)−1/ρ and c′0 = (ab/2)−1/ρ. Then let

ε′r = max
k≥c0r1/ρ

|εk|.

Then ε′r is decreasing and nonnegative. Now |εk| ≤ Mk−α/2 ≤ c
−α/2
0 Mr−α/(2ρ) for k ≥ k0

and k ≥ c0r
1/ρ. Hence ε′r = O(r−α/(2ρ)). Now it follows that the mean of fk is approximated

by

µk = (1 +O(r−1∆r) +O(ε′r))r

uniformly for k ∈ Ar. Next, we note that yk = Θ(r−β/ρ) for β > 0, and yk = b+O(k−α/2) =

b+O(r−α/(2ρ)) for β = 0, uniformly for k ∈ Ar. It follows that, denoting β
′ = β for β > 0 and

β′ = α/2 for β = 0,

σ2k =
(

1 +O(r−1∆r) +O(r−β
′/ρ) +O(ε′r)

)

σ20r

where σ20 = 1− b for β = 0 and σ20 = 1 for β > 0. Also,

k−γ = (ab)γ/ρ(abkρ)−γ/ρ = (1 +O(r−1∆r))(ab)
γ/ρr−γ/ρ.

Hence,

(A.2) pk = (1 + o(1))c1r
−γ/ρ.

for c1 = (ab)γ/ρc, uniformly for k ∈ Ar.
(iii) We will next approximate the binomial density fk by a normal density with the same

mean and variance. By a local limit theorem [53, Lemma 5] (see also [10, 40]),
∣
∣
∣
∣
fk(r)−

1

σk
φ

(
r − µk
σk

)∣
∣
∣
∣
≤ 0.516σ−2

k ,

for all 0 ≤ r ≤ k − 1 and all k ≥ 2, where φ(s) = (2π)−1/2e−s
2/2 is the standard normal

density. Hence

(A.3) fk(r) =
1

σk
φ

(
r − µk
σk

)

+O(r−1)
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uniformly for k ∈ Ar.
(iv) We will approximate the parameters of the normal density in (A.3) by µk ≈ abkρ

and σk ≈ σ0r
1/2. To see that these approximations hold uniformly, denote sk,r =

µk−r
σk

and

tk,r =
abkρ−r
σ0r1/2

. Note that

sk,r = σ−1
k (1 +O(ε′r))(abk

ρ − r)

and

(A.4) σ−1
k =

(
1 +O(r−1∆r) +O(r−β

′/ρ) +O(ε′r)
)
σ−1
0 r−1/2.

Hence

sk,r =
(
1 +O(r−1∆r) +O(r−β

′/ρ) +O(ε′r)
)
tk,r.

Note that s2 − t2 = (2 + u)ut2 for s = (1 + u)t. By applying this formula with u being the

above approximation error, using |tk,r| = O(r−1/2∆r), we find that

s2k,r − t
2
k,r =

(
O(r−1∆r) +O(r−β

′/ρ) +O(ε′r)
)
O(t2k,r)

= O(r−2∆3
r) +O(r−1−β′/ρ∆2

r) +O(ε′rr
−1∆2

r),

uniformly for k ∈ Ar. Our choice of ∆r = r1/2 log r implies that s2k,r − t
2
k,r = o(1) uniformly

with respect to k ∈ Ar. Then |e
t − 1| ≤ e|t| for |t| ≤ 1 implies

φ(sk,r)

φ(tk,r)
= e

1
2
(t2k,r−s

2
k,r) = 1 +O(|t2k,r − s

2
k,r|) = 1 + o(1),

and

φ

(
µk − r

σk

)

= (1 + o(1))φ

(
abkρ − r

σ0r1/2

)

uniformly for k ∈ Ar. Together with (A.3) and (A.4), it follows that

(A.5) fk(r) = (1 + o(1))
1

σ0r1/2
φ

(
abkρ − r

σ0r1/2

)

+O(r−1)

uniformly for k ∈ Ar.
(v) By Lemma A.3, it follows that

∑

k∈Ar

1

σ0r1/2
φ

(
abkρ − r

σ0r1/2

)

=

∫

Ar

1

σ0r1/2
φ

(
absρ − r

σ0r1/2

)

ds+O(r−1/2).

By a change of variables s = ν(t) with ν(t) = (t/ab)1/ρ, we find that
∫

Ar

1

σ0r1/2
φ

(
absρ − r

σ0r1/2

)

ds =

∫ r+∆r

r−∆r

1

σ0r1/2
φ

(
t− r

σ0r1/2

)

ν ′(t) dt

= E

(

ν ′(r + σ0r
1/2Z) 1(σ0r

1/2|Z| ≤ ∆r)
)

,

where L(Z) is standard normal. Because ν ′(r) = c2r
1/ρ−1 with c2 = ρ−1(ab)−1/ρ, we see

that ν ′(r + σ0r
1/2z) = (1 + o(1))ν ′(r) uniformly for |z| ≤ σ−1

0 r−1/2∆r. Hence it follows by
Lebesgue’s dominated convergence that

∫

Ar

1

σ0r1/2
φ

(
absρ − r

σ0r1/2

)

ds = (1 + o(1))ν ′(r) = (c2 + o(1))r1/ρ−1.

Because r−1/2 ≪ r1/ρ−1 due to ρ < 2, it follows that

(A.6)
∑

k∈Ar

1

σ0r1/2
φ

(
abkρ − r

σ0r1/2

)

∼ c2r
1/ρ−1.
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A similar computation also shows that

(A.7) |Ar| =

∫ r+∆r

r−∆r

ν ′(t) dt ∼ 2∆rr
1/ρ−1.

(vi) By combining (A.2), (A.5), (A.6), and (A.7) we now conclude that
∑

k∈Ar

fk(r)pk ∼ c1r
−γ/ρ

∑

k∈Ar

fk(r)

∼ c1r
−γ/ρ

∑

k∈Ar

(
1

σ0r1/2
φ

(
abkγ − r

σ0r1/2

)

+O(r−1)

)

∼ c1r
−γ/ρc2r

1/ρ−1.

Together with (A.1), this now implies the claim, because e−
∆2

r
10r ≪ r−δ for δ = 1 + γ−1

α−β . �

A.4. Compound Poisson and binomial distributions. Recall that CPoi(λ, f) denotes
the compound Poisson distribution with rate parameter λ and increment distribution f . The
following three elementary results are included for ease of reference, although they are rather
immediately available in the literature (e.g. [6, 29]).

Lemma A.5. Let X =
∑

iXi be a sum of independent random variables such that L(Xi) =

CPoi(λi, gi) with 0 <
∑

i λi <∞. Then L(X) = CPoi(λ, g) with λ =
∑

i λi and g =
∑

i
λi
λ gi.

Proof. The probability generating function of a compound Poisson distribution CPoi(λi, gi)
equals exp(λi(Ggi(z)− 1). Hence the probability generating function of

∑

iXi equals

GX(z) =
∏

i

GXi(z) = exp
(∑

i

λi(Ggi(z) − 1)
)

= exp
(

λ(Gg(z)− 1)
)

,

where Gg(z) is the probability generating function of g =
∑

i
λi
λ gi. �

Lemma A.6. For any λ, λ′ ≥ 0 and any probability measures f, f ′ on R,

dtv

(

CPoi(λ, f), CPoi(λ′, f ′)

)

≤ min{λ, λ′} dtv(f, f
′) + |λ− λ′|.

Proof. By symmetry, we may assume that λ ≤ λ′. Denote g = CPoi(λ, f), g′ = CPoi(λ, f ′),
and g′′ = CPoi(λ′, f ′). By triangle inequality, it suffices to verify that dtv(g, g

′) ≤ λdtv(f, f
′) and

dtv(g
′, g′′) ≤ λ′ − λ.

(i) Let (X,X ′) a coupling of f and f ′ which is optimal in the sense that P(X 6= X ′) =
dtv(f, f

′). Define a coupling of g and g′ by

Y =

Λ∑

j=1

Xj and Y ′ =

Λ∑

j=1

X ′
j,

where Λ, (X1,X
′
1), (X2,X

′
2), . . . are mutually independent random variables such that L(Λ) =

Poi(λ) and L(Xj ,X
′
j) = L(X,X

′) for all j. Then by the union bound, we see that

P(Y 6= Y ′ |Λ = ℓ) = P





ℓ∑

j=1

Xj 6=
ℓ∑

j=1

X ′
j



 ≤ ℓP(X 6= X ′).

By summing both sides weighted by P(Λ = ℓ), it follows that P(Y 6= Y ′) ≤ E(Λ)P(X 6=
X ′) and hence dtv(g, g

′) ≤ λdtv(f, f
′).
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(ii) Let Y ′ and ∆ be independent random numbers such that L(Y ′) = CPoi(λ, f ′) and
L(∆) = CPoi(δ, f ′) with δ = λ′ − λ. Define Y ′′ = Y ′ + ∆ and note by Lemma A.5 that
L(Y ′′) = CPoi(λ′, f ′). Hence

dtv(g
′, g′′) ≤ P(Y ′ 6= Y ′′) = P(∆ 6= 0) ≤ 1− e−δ ≤ δ = λ′ − λ.

�

Lemma A.7. If X is Bin(n, p)-distributed with mean µ = np, then (i) P(X > a) ≤ e2µ−a

for all a ≥ 0, (ii) P(X ≤ a) ≤ e−µ/8 for any a ≤ 1
2µ, and (iii) P(X = r) ≤ e

− s2

2(r+s) for any
s > 0 and for all integers r such that |r − µ| ≥ s.

Proof. (i) Because EeX = (1 + p(e − 1))n ≤ e(e−1)µ ≤ e2µ, Markov’s inequality implies that
P(X > a) = P(eX > ea) ≤ e−aEeX ≤ e2µ−a.

(ii) Because (µ−a)2 ≥ 1
4µ

2, it follows by [29, Theorem 2.1] that P(X ≤ a) ≤ e−(µ−a)2/(2µ) ≤

e−µ/8.
(iii) The approximation P(X = r) ≤ min{P(X ≤ r),P(X ≥ r)} combined with suitable

Chernoff bounds [29, Theorem 2.1] will do the job, as shown below. Fix an integer r ≥ 0
and consider the following two cases:

(a) If r ≤ µ− s. Then the bound P(X ≤ µ− t) ≤ e−
t2

2µ for t = µ− r, together with the fact

that t 7→ (t−r)2

2t is increasing on (r,∞), implies that

P(X ≤ r) = P(X ≤ µ− (µ − r)) ≤ exp

(

−
(µ− r)2

2µ

)

≤ exp

(

−
s2

2(r + s)

)

.

(b) If r ≥ µ + s. Then the bound P(X ≥ µ + t) ≤ e
− t2

2(µ+t/3) for t = s, and the fact that
µ+ s/3 ≤ r ≤ r + s imply that

P(X ≥ r) = P(X ≥ µ+ s) ≤ exp

(

−
s2

2(µ+ s/3)

)

≤ exp

(

−
s2

2(r + s)

)

.

�

A.5. Biased and truncated probability measures. Below P (ψ) =
∫
ψ(x)P (dx) is used

as a shorthand for integrals. When P (ψ) ∈ (0,∞), we denote by Pψ = ψ(x)P (dx)
P (ψ) = ψdP

P (ψ)

the ψ-biased probability measure Pψ(A) =
∫
A ψ(x)P (dx)

P (ψ) . For a probability measure P and a

probability kernel K we denote by PK the probability measure PK(A) =
∫
K(x,A)P (dx).

For a function φ, we define a function Kφ by Kφ(x) =
∫
φ(y)K(x, dy). The following three

results are proved for ease of reference, although they are rather immediate consequences of
standard Wasserstein-type estimates of probability kernels (e.g. [38, 41]).

Lemma A.8. Let Pn, P be probability measures on a separable metric space such that Pn
w
−→

P and Pn(ψ)→ P (ψ) ∈ (0,∞) for some continuous function ψ ≥ 0. Then Pψn
w
−→ Pψ.

Proof. By Skorohod coupling [30, Proposition 4.30] there exist random variables Xn,X such
that L(Xn) = Pn, L(X) = P , and Xn → X almost surely. Let φ be a bounded and
continuous. Then Yn = φ(Xn)ψ(Xn) converges almost surely to Y = φ(X)ψ(X), and |Yn| ≤
‖φ‖∞ψ(Xn) almost surely for all n. Because Eφ(Xn)→ Eφ(X) <∞, Lebesgue’s dominated
convergence theorem (as stated in [30, Theorem 1.21]) implies that Pn(φψ) = EYn → EY =

P (φψ). Hence Pψn (φ) =
Pn(φψ)
Pn(ψ)

→ P (φψ)
P (ψ) = Pψ(φ). �
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Lemma A.9. Let Pn, P be probability measures on Z+ × [0, 1], and let K be a probability
kernel from Z+ × [0, 1] into Z+ such that y 7→ K((x, y), t) is continuous for every x, t ∈ Z+.

If Pn
w
−→ P , then PnK

w
−→ PK.

Proof. Let φ : Z+ → R be bounded. Assume that (xn, yn) → (x, y). Then the probability
measures on Z+ defined by Qn(A) = K((xn, yn), A) and Q(A) = K((x, y), A) converge
according to Qn({t})→ Q({t}) for all t ∈ Z+, and hence also weakly. Hence the function Kφ

defined by Kφ(x, y) =
∑

tK((x, y), t)φ(t) is bounded and continuous. Now Pn
w
−→ P implies

that PnK(φ) = Pn(Kφ)→ P (Kφ) = PK(φ). Hence PnK
w
−→ PK. �

Lemma A.10. If Pn
w
−→ P and (Pn)rs → (P )rs ∈ (0,∞), then the laws in (2.5)–(2.6) satisfy

Binrs(Pn)
w
−→ Binrs(P ) and Bin+rs(Pn)

w
−→ Bin+rs(P ).

Proof. Define ψ-biased probability measures Pψn , Pψ using ψ(x, y) = (x)ry
s. Then P ∗

n
w
−→

P ∗ by Lemma A.8. Observe next that the kernels K((x, y), t) = Bin(x − r, y)(t) and
K+((x, y), t) = Bin+(x− r, y)(t) are continuous in y (being polynomials of finite order). The

claims now follow by Lemma A.9 because Binrs(Pn) = Pψn K and Bin+rs(Pn) = Pψn K+. �

A.6. Graph components. Denote by N1(G) ≥ N2(G) the largest two component sizes in
G (with N2(G) = 0 if G is connected.) Let Bt(G) = {i ∈ V (G) : |Ci(G)| > t} be the set of
nodes with component larger than t.

Lemma A.11. For all t ≥ 0: (i) N1(G) ≤ max{|Bt(G)|, t} and (ii) N1(G) + N2(G) ≤
|Bt(G)| + 2t.

Proof. (i) Let C1 be a component of G of size |C1| = N1(G). If |C1| ≤ t, there is nothing to
prove. If |C1| > t, then every node in C1 has component larger than t, and hence C1 ⊂ Bt(G)
implies |N1(G)| ≤ |Bt(G)|.

(ii) If N2(G) ≤ N1(G) ≤ t, the claim is clear. If N2(G) ≤ t < N1(G), the claim follows
from (i). Assume now that t < N2(G) ≤ N1(G), and let C1, C2 be components of G with
sizes |C1| = N1(G) and |C2| = N2(G). Then every node in C1 ∪ C2 has component larger
than t, and the claim follows from N1(G) +N2(G) = |C1 ∪C2| ≤ |Bt(G)|. �

A.7. Graph superpositions. Let G1, . . . , Gm be graphs such that V (Gk) ⊂ V for all k.
For A ⊂ [m] we denote by GA the overlay graph with V (GA) = V and E(GA) = ∪a∈AE(Ga).

Lemma A.12. For any A,B ⊂ [m] and t ≥ 0,

|Bt(GA∪B)| ≤ |Bt(GA)|+ t|UB |,

N1(GA∪B) ≤ max{|Bt(GA)|+ t|UB |, t},

where UB = ∪k∈BV (Gk).

Proof. Assume that i ∈ Bt(GA∪B) \ Bt(GA). Then |Ci(GA∪B)| > t but |Ci(GA)| ≤ t, and
we see that Ci(GA) must contain some node j ∈ UB. Then i ∈ Cj(GA) and |Cj(GA)| ≤ t.
We conclude that

Bt(GA∪B) \Bt(GA) ⊂
⋃

j∈UB:|Cj(GA)|≤t

Cj(GA).

Hence

|Bt(GA∪B)| ≤ |Bt(GA)|+ |Bt(GA∪B) \Bt(GA)| ≤ |Bt(GA)|+ t|UB|.

The second inequality follows because N1(GA∪B) ≤ max{|Bt(GA∪B)|, t} by Lemma A.11.
�
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In the following two results, we denote by NA the set of neighbours of node i in GA, and
we set DA = |NA| to denote the degree of i in GA.

Lemma A.13. Let g be an arbitrary probability density on Z+. Let ε(t) =
∑

r+s=t

(

P(DA∪B =

r)− P(DA = r)
)

g(s). Then
∑

t≥0 |ε(t)| ≤ 2P(DB > 0).

Proof. Denote the densities of the degrees by fA∪B = L(DA∪B) and fA = L(DA). Then
∑

t≥0 |ε(t)| = ‖fA∪B∗g − fA∗g‖1 = 2dtv(fA∪B∗g, fA∗g) ≤ 2dtv(fA∪B , fA). Further, dtv(fA∪B, fA) ≤
P(DA∪B 6= DA) ≤ P(DB > 0). �

Lemma A.14. Assume that G1, . . . , Gm are mutually independent, let A,B ⊂ [m] be dis-
joint, and let EA, EB be events determined by (Ga)a∈A and (Gb)b∈B , respectively. Then

P(DA∪B = t, EA, EB) = P(DA +DB = t, EA, EB) + ε(t),

where the error term is bounded by |ε(t)| ≤ cBtP(DA ≤ t, EA), and where cB = maxj 6=i P(ij ∈
E(GB), EB).

Proof. Because DA∪B = DA +DB outside the event F = {|NA ∩NB | > 0}, we see that

ε(t) = P(DA∪B = t, EA, EB ,F)− P(DA +DB = t, EA, EB ,F).

Hence it follows that |ε(t)| ≤ P(DA ≤ t, EA, EB ,F), where the upper bound can be expressed
as

P(DA ≤ t, EA, EB ,F) =
∑

U :|U |≤t,i/∈U

P(NA = U, EA)P(|U ∩NB| > 0, EB).

Because P(|U ∩NB | > 0, EB) ≤
∑

j∈U P(ij ∈ E(GB), EB) ≤ cBt whenever |U | ≤ t, the claim
follows. �

A.8. Galton–Watson processes. Let f be a probability measure on Z+ and consider
a Galton–Watson branching process with offspring distribution f . The exploration queue
length of the corresponding tree [49, Section 3.3] satisfies the recursion Q0 = 1 and Qt =
1(Qt−1 > 0)(Qt−1−1+Zt) where Z1, Z2, . . . are independent f -distributed random integers.
The total progeny equals T = inf{t ≥ 1 : Qt = 0} ∈ [0,∞]. We denote ρt(f) = P(T > t) and
ρ(f) = P(T =∞). We also note that P(T > t) = P(Qt > 0).

Lemma A.15. If fn
w
−→ f , then (i) ρt(fn) → ρt(f) for all t ≥ 0. If fn

w
−→ f and f(0) > 0,

then (ii) ρ(fn)→ ρ(f), and (iii) ρωn(fn)→ ρ(f) for all sequences ωn →∞.

Proof. A natural coupling of exploration processes implies that |ρt(fn)− ρt(f)| ≤ tdtv(fn, f)
for all t. Hence (i) follows by noting that weak convergence and total variation convergence
are equivalent for probability measures fn, f on the countable space Z+. Claim (ii) follows
by [39, Lemma 2.6]. For (iii), we first note that ρt(f) → ρ(f) as t → ∞. Hence given any
ε > 0, we may choose t so that ρ(f) ≤ ρt(f) ≤ ρ(f) + ε. Then, we see that

ρ(fn) ≤ ρωn(fn) ≤ ρt(fn) + ε

for all sufficient large values of n such that ωn ≥ t. Now (iii) follows by noting that ρ(fn)→
ρ(f) by (i), and ρt(fn)→ ρt(f) by (ii). �
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A.9. Coupon collection. The classical coupon collector’s problem involves a collector who
at each round receives a coupon with type selected uniformly at random among a set of
n types, independently of previous rounds. We denote by Nt the number of distinct coupon
types obtained after collecting t coupons.

Lemma A.16. Fix integers k, t, n ≥ 1 such that 1
k ≥

1
t +

1
n . Then the probability that the

number of distinct coupon types obtained after collecting t coupons is less than k is at most

(A.8) P(Nt < k) ≤

(
t

k

)k (n

k
−
n

t

)−(t−k)
.

Especially, P(Nt < k) ≤ n−α whenever α + k ≤ (1 − β)t and t ≤ nβ/2 for some α > 0 and
β ∈ (0, 1)

Proof. Fix s = log(nk −
n
t ). Then s ≥ 0 and k

ne
s = 1 − k

t < 1. Denote by Tk the number of
coupons needed to obtain k distinct coupon types. Then Tj+1−Tj is geometrically distributed

with moment generating function Ees(Tj+1−Tj) = (1−j/n)es

1−(j/n)es . Hence

EesTk =

k−1∏

j=0

(1− j/n)es

1− (j/n)es
≤

(

es

1− k
ne

s

)k

.

Markov’s inequality applied to esTk+1 hence shows that

P(Nt < k) = P(Tk > t) ≤ e−stEesTk+1 =
es(k−t)

(
1− k

ne
s
)k

=
(nk −

n
t )
k−t

(
k
t

)k
.

Observe next that 1
k−

1
t ≥ t

−2 implies that the right side of (A.8) is at most
(
t
k

)k
(
t2

n

)t−k
≤

t2tn−(t−k) ≤ nβt−(t−k) for t ≤ nβ/2. Hence P(Nt < k) ≤ n−α when we also assume that
α+ k ≤ (1− β)t. �
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