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Abstract This paper considers the network structure preserving model reduction of

power networks with distributed controllers. The studied system and controller are

modeled as second-order and first-order ordinary differential equations, which are

coupled to a closed-loop model for analyzing the dissimilarities of the power units.

By transfer functions, we characterize the behavior of each node (generator or load)

in the power network and define a novel notion of dissimilarity between two nodes

by the H2-norm of the transfer function deviation. Then, the reduction methodology

is developed based on separately clustering the generators and loads according to

their behavior dissimilarities. The characteristic matrix of the resulting clustering is

adopted for the Galerkin projection to derive explicit reduced-order power models

and controllers. Finally, we illustrate the proposed method by the IEEE 30-bus system

example.
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1 Introduction

Power networks, nowadays, are experiencing the penetration and integration of a

wide array of new electronic devices and renewable energy sources (see [6, 16] for

an overview). In the foreseeable future, power networks will become more and more

complex with more variation in the generators, uncertain loads, and denser trans-

mission lines. Centralized power generation is being replaced by a more distributed

generation.

The immense size of power grids yields mathematical models with high dimen-

sions complicating further analysis. In most cases, a complete model of the power

network is neither practical nor necessary for, e.g., transient analysis, failure detec-

tion, distributed controller design, or system simulation. Therefore, we need to

construct a reduced-order model that can approximate the behavior of the original

complex power system with an acceptable accuracy. More importantly, we desire to

preserve the network structure in the reduced-order model such that it can be inter-

preted as a reduced network with a less complex topology. Specifically, the reduced

power system is evolving over a simpler network that consists of fewer generator and

load buses and sparser transmission lines. The network structure is necessary for the

application of sensor allocation and the management of distributed power generation.

The main interest of this paper is to investigate the problem of model order reduc-

tion for power networks with distributed controllers with the preservation of network

structures.

Literature review Conventional model reduction techniques, including balanced

truncation and Krylov subspace methods, have been extended to the dynamic reduc-

tion of power systems (see, e.g., [10, 23, 24, 32, 42, 45, 49]). In these papers, the

power network systems are modeled in first-order state space representations, and

the reduced-order models are constructed within the framework of Petrov-Galerkin

projection. Even though these methods provide systematic procedures to produce

lower-dimensional models, which benefits the computation and simulation of power

systems, the network structure is not retained through the reductions, and the pro-

jected states in the reduced-order model often lack a physical interpretation. A

structure-preserving approach is proposed in [15], where the network model is firstly

reduced by the balanced truncation, which still preserves the semistability such that

the reduced-order model can be reformed as a network system. In spite of fewer

nodes, the obtained reduced network has a complete interconnection. This restricts

the use of the reduced-order models in further applications, especially the implemen-

tation of distributed control laws. In a distributed control network, control laws are

implemented locally by each generator, and these controllers send and receive data

through a communication network, which is only connecting generators and in gen-

eral, that has a different topology from the power network (see [1, 21, 31, 34, 36,

47] for more details). In this case, each generator can only receive information from

its adjacent generators through the communication network, which means that the

control signals have to be generated by using only part of the system states. How-

ever, in the reduced-order model resulting from the conventional approaches, each

state is composed of a linear combination of all the original states. As a result, the
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controllers designed based on such models are not to be realized in a distributed

fashion.

Another network simplification method is the Kron reduction, which has been

widely used in e.g. classic circuit theory, smart grid monitoring, and transient stabil-

ity assessment. The extension of this approach for model order reduction of electric

networks can be found in [11, 19, 36] and in the references therein. The network

structure of a power system is preserved as the Schur complement of the Laplacian

matrix of the original network is again a Laplacian matrix, which represents a smaller

network. Despite the simplicity of implementation, the Kron reduction modeling only

eliminates the load buses in the power network [19]. To reduce the complexity of

a network of synchronous generators, which is modeled by a second-order swing

equation, [20, 41] propose a method based on time-scale separation and singular per-

turbation analysis. This approach identifies the sparsely and densely connected areas

of power grids and then aggregates the state variables of the coherent areas. Similar to

Kron reduction, the algebraic structure of the Laplacian matrix is maintained through

the singular perturbation approximation. However, the method in [41] ignores the

fluctuation of power demands from the loads.

Clustering analysis of power networks, derived from the concept of diakoptics,

has been intensively explored in the study of coherency recognition, area aggrega-

tion, and behavior approximation in the power grid. A large and complex power

network could be more easily analyzed and managed when it is decomposed into

several smaller components. The coherency-based approach is most popular for the

clustering analysis of electric networks. Many related results have been reported in

the literature (see [3, 16, 17, 26, 33, 39, 48] and the references therein). The gen-

erator coherency is introduced as the tendency of generators when the disturbances

are affecting the system. The reduced model of the power network then results

from aggregating those coherent generators. However, the coherency identification

is a data-driven process, which heavily relies on the accuracy of the sampling data

generated from the time-domain voltage angle responses of the generator buses.

Differently, [43] proposes a Petrov-Galerkin approximation framework based on

graph clustering, which is applied to physical network systems. However, the meth-

ods for cluster selection are still not well-explored. As an extension, [37] suggests

to use the almost equitable partition (AEP) as a clustering of the underlying graph,

but finding AEPs is generally a very difficult problem and computationally expen-

sive, which limits this method in practical applications. The results in [9, 35] can be

regarded as the combination of graph clustering and conventional model reduction

techniques, balanced truncation, and Krylov subspace methods, respectively. How-

ever, it is still a challenge to apply these ideas to second-order systems, which are

common model settings in the context of power networks. The approach in [28] offers

another feasible solution for the clustering-based model reduction. The notion of

cluster reducibility is generalized as the uncontrollability of the system states. Then,

the reducible states are merged to reduce the dimension of the system as well as to

preserve the network structure. To cope with second-order networks, the results are

then extended in [27]. Nevertheless, the considered model is a second-order model,

which is assumed to be asymptotically stable. This restricts this approach in some

applications, such as the coupled swing dynamics in power networks [20].
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Contribution The presented work provides a novel model order reduction scheme

for power networks with the associated distributed controllers. The reduction pro-

cedure is developed based on our previous results in [12, 14], where the reduction

of first-order network systems is studied. An extension to second-order models of

networks is proposed in [13]. This paper explores the application of power net-

works that contain many generator and load buses, and the proposed method aims to

simultaneously simplify the structures of the transmission network and its distributed

controller.

By linearizing the nonlinear structure preserving model of the power network

[7], we obtain the network model in a second-order representation. Together with

the distributed controller, the closed-loop system is derived, which is semistable and

contains the Laplacian matrices of the power transmission network and the commu-

nication graph of the controllers. The clustering analysis of the networks is based on

the closed-loop system. Similar to the idea in [13], that a reduced-order model is gen-

erated by clustering the nodes behaving similarly. More specifically, the behaviors

of network nodes are characterized by transfer functions, and an H2-norm character-

ization of the dissimilarity of nodal behaviors is adopted such that the hierarchical

clustering algorithm in [13] can find suitable clusterings for generator and load nodes,

respectively. This notion of dissimilarity is data-independent, which means that we do

not need the time-domain sample data to evaluate the differences among the nodes.

Compared with [13], the current paper mainly focuses on the application of power

networks whose models couple the generator and load dynamics with the distributed

controllers. The proposed method need to reduce the power network and commu-

nication network simultaneously, instead of only simplifying the network system

as in [13]. The definition of nodal behaviors cannot be directly applied, since the

influence of communication networks of the distributed controllers has to be con-

cerned, and the behaviors of generator and load nodes are supposed to be treated

differently.

As the dissimilarity is defined in terms of the H2-norm, we use the controllability

Gramian of the closed-loop system to evaluate the dissimilarities between all pairs

of generator and load buses. A numerical difficulty comes from the computation of

the controllability Gramian. Due to the semistability, the corresponding algebraic

Lyapunov equation may not have a unique solution [5]. This paper extends the idea

of [14] to obtain a controllability Gramian by solving two algebraic equations rather

than a single Lyapunov equation.

Besides, the hierarchical clustering algorithm is adapted to generate appropriate

network clusterings for both generators and loads, so that the nodes with similar

behaviors are grouped into the same clusters. Then, the Galerkin method is applied

to yield a reduced-order power network with a simplified distributed controller.

The characteristic matrices of the resulting clusterings are used as the projec-

tion matrices. It is shown that the algebraic structures of Laplacian matrices are

retained in the reduced-order model. Consequently, the interconnection topologies

of the power transmission network and communication network of the controller are

simplified.
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2 Models of power network and distributed controller

Consider a connected power network consisting of n synchronous generators and m

loads. Denote Vg = {1, · · · , n} and Vl = {n + 1, · · · , n + m} as the index sets

of generator and load buses, respectively. Then, the interconnection structure of the

power grid can be represented by a connected undirected graph

G = (Vg ∪ Vl, E), with E ⊂ (Vg ∪ Vl) × (Vg ∪ Vl).

E is the set of unordered pairs (i, j) representing transmission lines between nodes

i and j , which are assumed to be inductive. Notice that |Vg| = n and |Vl | = m;

therefore, G contains n + m nodes.

The dynamics of generators and loads in a power network are characterized by

nonlinear structure-preserving models [7, 18] as follows.

(1) Generator bus i ∈ Vg:

θ̇i = ωi,

Miω̇i = −Diωi −
∑n+m

j=1 ViVjX
−1
ij sin(θi − θj ) + P m

i ; (1)

(2) Load bus i ∈ Vl :

θ̇i = ωi

0 = −Diωi −
∑n+m

j=1 ViVjX
−1
ij sin(θi − θj ) − P l

i .
(2)

All the symbols in the models are described as follows.

– θi Voltage phase angle

– ωi Voltage frequency w.r.t the nominal reference ω∗ (typically 50 or 60 Hz)

– Mi > 0 Angular momentum of generator i

– Di > 0 Damping coefficient

– Vi > 0 The voltage magnitude at node i

– Xij ≥ 0 The inductance of the transmission line connecting nodes i and j

– P m
i Controllable power generation

– P l
i Unknown power demand

The above structure-preserving power network models are commonly used in sta-

bility analysis and controller design of power networks, including the analysis of

network synchronization and frequency regulation (see [7, 18, 47]). For example,

[22] studies the full-order description of synchronous generators in a grid setting.

However, controlling such model turns out to be rather complicated. Furthermore,

it should be remarked that the models in (1) and (2) are simplifications for the real

power systems based on the assumption that the influence of the windings of the gen-

erators is negligible and the power lines are assumed to be lossless. Therefore, only

very slow electromechanical transients will be affected by the type of feedback that

is proposed for use in this paper. For example, transients as described in [30] would

not be applicable.
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To obtain a linear model based on (1) and (2), we follow [36, 44] and assume

that the differences of the phase angles are relatively small, i.e., θi − θj ≈ 0 for

any i, j ∈ Vg ∪ Vl , which is satisfied in a vicinity of the nominal condition. This

assumption then leads to a linearization of the power network model in the following

compact second-order form

�p :
[

Mg 0

0 0

] [

θ̈g

θ̈l

]

+
[

Dg 0

0 Dl

] [

θ̇g

θ̇l

]

+
[

L1 L12

LT
12 L2

] [

θg

θl

]

=
[

Pm

−Pl

]

, (3)

where θg ∈ R
n, θl ∈ R

m are the state vectors collecting θi with i ∈ Vg and i ∈ Vl ,

respectively. Matrices Mg , Dg , and Dl are diagonal and positive definite, which are

defined as Mg := diag(M1, M2, · · · , Mn) ∈ R
n×n, Dg := diag(D1, D2, · · · , Dn) ∈

R
n×n, and Dl := diag(Dn+1, Dn+1, · · · , Dn+m) ∈ R

m×m. Moreover, Pm and Pl

are collections of P m
i with i ∈ Vg and P l

i with i ∈ Vl , respectively. The weighted

Laplacian matrix L ∈ R
(n+m)×(n+m) of the network topology G is partitioned as

L =
[

L1 L12

LT
12 L2

]

. (4)

The (i, j)-th entry of L is given by

Wij = Wji := ViVjX
−1
ij , (5)

which is interpreted as the maximum real power transfer between any two nodes i and

j with constant voltage levels. The value of Wij is positive if there is a physical cable

directly connecting nodes i and j and 0 otherwise. L has a very special structure as

stated in the following lemma [12, 40].

Lemma 1 If L is a Laplacian matrix associated to a connected weighted undirected

graph G, then 1©. The diagonal entries of L are strictly positive while the off-diagonal

components are negative or 0. 2© LT = L ≥ 0 and L has only one 0 eigenvalue. 3©
1T L = 0 and L1 = 0.

It is a crucial task to maintain the frequencies of generators and loads in the power

network close to the nominal value. However, with the growth of the network size,

centralized controllers become increasingly expensive due to the need for the infor-

mation of all generators. Recently, distributed averaging PI controllers have been

proposed for the frequency control of power networks (see [1, 21, 36] for the details).

The distributed controllers exchange information over a communication network

Gc := (Vg, Ec), with Ec ⊂ Vg × Vg,

which is assumed to be undirected and connected. It should be emphasized that the

topology of the communication network Vg is generally different from the topology

of the power network G. For each generator i ∈ Vg , the controller takes the form

Qi ξ̇i = −ωi −
∑

j∈Ni
cij (zi − zj ),

P m
i = ξi .

(6)

Here, Ni represents the set of neighboring generators of node i in Gc, i.e., the collec-

tion of generators that generator i communicates with. The coefficients cij = cji > 0
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reflect the strengths of the connection between generators i and j . Qi is a posi-

tive gain. The controller (6) is designed to regulate the frequency deviation to 0

and enforce the controller states ξi to reach a consensus, i.e., the generated power

deviation of all generators becomes equal at steady state.

Notice that the controller (6) only need the information from the neighbors of

generator i; therefore, it can be implemented in a distributed fashion. We now write

the controller in the vector form

�c :
{

Qξ̇ = −Lcξ − ωg,

Pm = ξ,
(7)

where Lc is the Laplacian matrix of the communication network whose (i, j)

entry is given by cij . The vector ξ ∈ R
n is the collection of ξi , i ∈ Vg , and

Q := diag(Q1, Q2, · · · , Qn). ωg := θ̇g ∈ R
n represent the frequencies of all the

generators.

By substituting the distributed controller (7) for Pm in (3), we obtain the closed-

loop system

�cl : Eẋ = Ax + Bd (8)

where the state variable xT :=
[

θT
g θT

l ωT
g ξT

]

∈ R
3n+m and

E =

⎡

⎢

⎢

⎣

Dg 0 Mg 0

0 Dl 0 0

Mg 0 0 0

0 0 0 Q

⎤

⎥

⎥

⎦

, A =

⎡

⎢

⎢

⎣

−L1 −L12 0 In

−LT
12 −L2 0 0

0 0 Mg 0

0 0 −In −Lc

⎤

⎥

⎥

⎦

, and B =

⎡

⎢

⎢

⎣

0

−Im

0

0

⎤

⎥

⎥

⎦

.

(9)

Here, d := Pl is the power consumption of the m loads, which is uncontrollable and

regarded as the stochastic disturbance of the closed-loop system (8). We analyze the

stability of �cl in the following theorem.

Theorem 1 The closed-loop power system �cl is semistable, and the trajectories of

its impulse response converge to 0.

Proof Observe that det(E) = det(Dg) det(Dl) det(D−1
g Mg) 	= 0. Therefore, E is

nonsingular, and its inverse reads as

E−1 =

⎡

⎢

⎢

⎣

0 0 M−1
g 0

0 D−1
l 0 0

M−1
g 0 −M−1

g DgM
−1
g 0

0 0 0 Q−1

⎤

⎥

⎥

⎦

. (10)

which gives

E−1A =

⎡

⎢

⎢

⎣

0 0 In 0

−D−1
l LT

12 −D−1
l L2 0 0

−M−1
g L1 −M−1

g L12 −M−1
g Dg M−1

g

0 0 −Q−1 −Q−1Lc

⎤

⎥

⎥

⎦

. (11)

By [36], interconnecting the controller �c and the power network system �p results

in a zero frequency deviation and consensus of the controller states. It then implies
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that, with impulse signals as disturbances of the closed-loop system �cl , all the

state trajectories converge to constant values, i.e., lim
t→∞

eE−1At exists. Thus, �cl is

semistable by the definition in [8].

Furthermore,using the third property of Laplacian matrices in Lemma 1, it is easy

to check that

ker(E−1A) = ker(A) = span
(

[

1T
n 1T

m 0T
n 0T

n

]T
)

. (12)

Together with semistability, we conclude that E−1A only has one 0 eigenvalue at the

origin, and all the other eigenvalues have strict negative real parts. Notice that the

vectors

vR ∈ span

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

1n

1m

0n

0n

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

and vL ∈ span

⎛

⎜

⎜

⎝

⎡

⎢

⎢

⎣

1n

0m

0n

Q1n

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

(13)

are the right and left eigenvectors of E−1A corresponding to the 0 eigenvalue, respec-

tively, i.e., E−1AvR = 0 and vT
LE−1A = 0. Based on this, we can obtain the

following decomposition

E−1A = UDU−1 = [vR, VR]

[

0

D̄

] [

vT
L

V T
L

]

, (14)

where U is unitary, and D̄ ∈ R
3n+m−1 is Hurwitz. Hence, ‖vR‖2 = 1 and vT

LvR = 1,

which yields

vR = 1√
n + m

⎡

⎢

⎢

⎣

1n

1m

0m

0n

⎤

⎥

⎥

⎦

and vL =
√

n + m

n

⎡

⎢

⎢

⎣

1n

0m

0n

Q1n

⎤

⎥

⎥

⎦

, (15)

Then, the convergence value of the impulse response is computed as

lim
t→∞

(

eE−1At
)

E−1B = vRvT
LE−1B

= 1

n

⎡

⎢

⎢

⎣

1n1T
n 0n×m 0n×n 1n1T

n Q

1m1T
n 0m×m 0m×n 1m1T

n Q

0n×n 0n×m 0n×n 0n×n

0n×n 0n×m 0n×n 0n×n

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0n

D−1
l

0n

0n

⎤

⎥

⎥

⎦

= 0.
(16)

That completes the proof.

Remark 1 Due to the singularity of matrix E−1A, the closed-loop system �cl is

not asymptotically stable. However, Theorem 1 indicates that, for any initial condi-

tion, the unforced system responses can reach the steady states at 0. Theorem 1 also

offers a physical interpretation for the power network. The distributed controller in

(7) eliminates the effects of disturbances, namely a sudden impulse change in the

power demand, and steers the frequencies of all the nodes (i.e., the generator and load

buses) to the nominal value ω∗.
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3 Clustering of power networks

To uncover the community structure of generators and loads, a novel clustering

method is proposed and applied in this section, where the clusters are constructed

based on the differences of node behaviors.

3.1 Concepts of clustering

As the physical components of a power network can be interpreted by an undi-

rected weighted graph [38], the techniques of graph analysis help us achieve a better

understanding of the essential properties of the power system. Especially, the graph

clustering can be applied to identify the communities of generators and loads, which

group the units with similar behaviors. In this subsection, we first recapitulate the

notion of network clustering (or graph partition) from, e.g., [12, 13].

Definition 1 Consider a graph G = (V, E), where V = {1, 2, · · · , k} is the index set

of nodes. A nonempty index subset of V , denoted by C, is called a cluster of graph G.

Then, network clustering is to partition V into r (r ≤ k) disjoint clusters which cover

all the elements in V .

A network clustering is denoted by {C1, C2, · · · , Cr}, where Ci ⊆ V , and Ci ∩
Cj = ∅, ∀ i, j ∈ {1, 2, · · · , r}. Mathematically, the clustering of a graph G can be

represented by a binary characteristic matrix, which is defined as follows.

Definition 2 Let |V| = k and {C1, C2, · · · , Cr} be the clustering of G with node set

V . The characteristic vector of the cluster Ci is defined by binary vector π(Ci) ∈
R

k where 1T
k π(Ci) = |Ci |, and the j th element of π(Ci) is 1 when j ∈ Ci and 0

otherwise. Then, the characteristic matrix of the clustering is a binary matrix denoted

by

� := [π(C1), π(C2), · · · , π(Cr)] ∈ R
k×r . (17)

In the following subsections, we propose a new method for cluster selection in

power networks. The choices of clustering will determine the accuracy of network

approximation. i.e., how close the behaviors of the reduced and original networks are.

Hence, the cluster selection algorithm is the most crucial part of the clustering-based

model reduction. This paper provides a new way of cluster selection, which involves

a particular notion of dissimilarity and an adaption of the hierarchical clustering

algorithm. The details of our method are described hereafter.

3.2 Characterization and computation of dissimilarity

In the context of clustering, node dissimilarities intuitively describe how different

the nodes are from each other. In contrast with the existing results in the literature,

such as [16, 29, 39], the clusters of a power network in this paper are identified

without sampling data from a real system. We calculate the dissimilarities of network
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nodes by the H2-norms of transfer function discrepancies, rather than the Euclidean

distances of the relative positions. Then, potentially, we can place the nodes with

similar behaviors into the same clusters.

More precisely, by considering the state variables of the closed-loop power system

�cl in (8), the behavior of generator i (i ∈ Vg) is characterized by its responses of

the voltage angles θi , the frequencies ωi , and the controller states ξi . We include ξi

into behavior characterization of generators since we also approximate the controller

�c. When the generators are clustered, the communication network of the distributed

controllers is automatically simplified. Hence, the effects of the controller states ξi

are also needed to be included. As for the behavior of load i (i ∈ Vl), it can be

simply represented by its voltage angle responses θi with respect to the stochastic

disturbances d.

The behaviors of generators and loads can be expressed in the complex frequency

domain by the transfer functions from d to the indicative state variables. Denote two

new binary vectors

αi = ei + ei+n+m + ei+2n+m, β i = ei+n, (18)

where ei is the ith unit base vector. Then, the behavior of generator i is given by

�
g
i (s) =

[

θi(s) ωi(s) ξi(s)
]T

d(s)
= αT

i (sI − A)B, i = {1, 2, · · · , n}, (19)

where θi(s), ωi(s), ξi(s), and d(s) are the Laplace transforms of the states θi , ωi , and

ξi , and the input d, respectively, in the closed-loop system. Furthermore, the behavior

of load i ∈ Vl is represented by

� l
i (s) = θi+n(s)

d(s)
= βT

i (sI − A)B, i = {1, 2, · · · , m}. (20)

Thereupon, a pairwise dissimilarity of nodes i and j is defined for generators and

loads, respectively.

D
g
ij = ‖�g

i (s) − �
g
j (s)‖H2

, Dl
ij = ‖� l

i (s) − � l
j (s)‖H2

. (21)

Moreover, the dissimilarity matrices for the generators and loads are denoted by

Dg ∈ R
n×n and Dl ∈ R

m×m, which are constructed by collecting D
g
ij and Dl

ij .

Clearly, Dg and Dl are symmetric matrices with nonnegative entries and zero diago-

nal elements. Besides, the boundedness of Dg and Dl is also guaranteed by Theorem

1. The reasons of the boundedness are explained as follows.

For simplicity, let

A = E−1A, B = E−1B, (22)

where E, A, and B are system coefficients of the closed-loop system �cl in (8). Note

that impulse response of node i in �cl is expressed by eAtB, which is a bounded

smooth function of t and exponentially converges to 0. Thus, the boundedness of D
g
ij

and Dl
ij can be seen from the the definition of H2-norm [2].

‖�g
i (s) − �

g
j (s)‖2

H2
=

∫ ∞
0 (αi − αj )

T eAtBBT eA
T t (αi − αj )dt

= (αi − αj )
T P(αi − αj ),

(23)
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and similarly,

‖� l
i (s) − � l

j (s)‖2
H2

= (βi − βj )
T P(βi − βj ). (24)

In both equations, P is the controllability Gramian of the closed-loop system �cl . For

large-scale networks, (23) and (24) provide an efficient method to compute matrix D,

since we first calculate P and then just apply vector-matrix multiplication to obtain

all the entries of D. However, the semistability of �cl poses a challenge to implement

this idea. For asymptotically stable systems, their controllability Gramians can be

uniquely determined by solving the associated continuous-time algebraic Lyapunov

equation

AP + PAT + BBT = 0. (25)

In the semistable case, A is not Hurwitz, which results in multiple solutions of the

above Lyapunov equation [5]. To characterize the controllability Gramian from the

solutions of (25), the following lemma is proven.

Lemma 2 The controllability Gramian P of the semistable power system �cl is

positive semidefinite, and it is uniquely determined by the combination of (25) and

vT
LPvL = 0, (26)

where vL is the left eigenvector of A given in (15).

Proof Since vT
LA = 0, for any t , we have

vT
LeAtB = vT

L

(

I + At + A2

2
t2 + · · ·

)

B

= vT
LB =

√
n + m

n

[

1T
n 0T

m 0T
n 1T

n Q
]

⎡

⎢

⎢

⎣

0n

D−1
l

0n

0n

⎤

⎥

⎥

⎦

= 0.

(27)

Thus, (26) holds. It then yields vT
LPvL = 0, which means P is positive semidefinite.

Next, we show that solving the algebraic Lyapunov equation (25) together with

(26) will yield a unique solution. A contradiction proof is provided. Assume that two

distinct symmetric matrices P1 and P2 are both the solutions of (25) and (26). From

(25), we have

A(P1 − P2) + (P1 − P2)A
T = 0, (28)

which leads to

eAt
[

A(P1 − P2) + (P1 − P2)A
T
]

eA
T t = d

dt

[

eAt (P1 − P2)e
AT t

]

= 0. (29)

Therefore,
∫ ∞

0

d

dt

[

eAt (P1 − P2)e
AT t

]

dt = 0. (30)

Note that lim
t→∞

eAt = vRvT
L . Then, we obtain from (30) that

P1 − P2 = vRvT
L (P1 − P2)vLvT

R , (31)
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which is equal to 0 due to (26). Thus, it contradicts the fact that P1 	= P2. As a result,

the common solution of (25) and (26) is unique.

In the following theorem, we then provide a method to determine the controllabil-

ity Gramian of the semistable system �cl by solving linear matrix equations.

Theorem 2 Let Pa be an arbitrary solution that fulfills (25) and (26) simultaneously.

Then, the controllability Gramian P of the closed-loop power system �cl in (8) is

computed as

P = Pa − JPaJ
T , (32)

where J is a constant matrix defined by

J := lim
t→∞

eAt = 1

n

⎡

⎢

⎢

⎣

1n1T
n 0n×m 0n×n 1n1T

n Q

1m1T
n 0m×m 0m×n 1m1T

n Q

0n×n 0n×m 0n×n 0n×n

0n×n 0n×m 0n×n 0n×n

⎤

⎥

⎥

⎦

∈ R
(3n+m)×(3n+m). (33)

Proof Equation (27) implies that JPJ T = 0. From (31) in the proof of Lemma 2,

we have

Pa − P = J (Pa − P)J T = JPaJ
T , (34)

which leads to (32).

It should be remarked that P in (32) does not depend on the choice of Pa , which

can be any symmetric real solution of (25). Besides, we can modify the Hessenberg-

Schur method (SB04MD (SLICOT)) in [25] to solve the Lyapunov equation with a

nonsingular A matrix. The output of the adapted Hessenberg-Schur algorithm will

give one solution of (25), and we then use the relation in (32) to obtain the real value

of P . Hereafter, we apply (23) and (24) to determine all the dissimilarities of different

pairs of generators or loads in the power grid.

3.3 Hierarchical clustering of generator and load buses

The idea of hierarchical clustering has been extensively explored in many fields,

including pattern recognition, data compression, and network science (see [4, 29]).

Hierarchical clustering, in principle, is a greedy algorithm, whose running time grows

polynomially with the size of the studied networks. Compared to the K-means algo-

rithm, another popular clustering method, the result of hierarchical clustering is not

affected by the initializations of the graph partitions. Due to the above qualities, we

choose and adapt the hierarchical algorithm to cluster the generator and load buses

for the purpose of model order reduction.

In this paper, the generators and loads are grouped separately on account of differ-

ent evaluation criteria of dissimilarities (see Section 3.2), yet the same hierarchical

clustering procedures can be applied for both. It is because the hierarchical clustering

only needs the dissimilarity matrices Dg and Dl , whose entries already contain the

dissimilarities of all pairs of generator and load nodes. Hereby, we only analyze the



Clustering approach to model order reduction... 1929

clustering of generators and the clustering of loads in parallel. Both procedures go in

the same way; hence, we only present it for any D ∈ {Dg,Dl}.
As nodes are merged into small clusters, we must measure how similar two clus-

ters are. In this paper, we consider the average cluster dissimilarity. It characterizes

the dissimilarity of two clusters as the average of Dij over all node pairs i and j that

belong to distinct clusters [4]. More precisely, the dissimilarity of clusters Cμ and Cν

is defined as follows.

Ŵ(Cμ, Cν) = 1

|Cμ| · |Cν |
∑

i∈Cμ

∑

j∈Cν

Dij . (35)

The value of Ŵ(Cμ, Cν) is computed only using the entries of D that correspond to the

nodes in Cμ and Cν . Hereupon, the clustering approach links the pairs of nodes that

are in close proximity and place them into binary clusters. Then, the newly formed

clusters are merged into larger clusters according to the cluster dissimilarity. In Algo-

rithm 1, the pseudocode of hierarchical clustering algorithm is presented. The inputs

are the dissimilarity matrix D and the desired number of clusters r . The characteristic

matrix � of the clustering is considered as the output of the algorithm.

Algorithm 1 Hierarchical clustering

1: Compute the dissimilarity matrix D by (23) or (24)

2: Place each node into its own singleton cluster, that is Ci ← {i}
3: k ← n

4: while k > r do

5: Set Ŵm to be an arbitrary large number

6: for i = 1 : k − 1 and j = 2 : i − 1 do

7: Compute Ŵ(Ci, Cj ) by (35)

8: if Ŵm > Ŵ(Ci, Cj ) then

9: μ ← i, ν ← j , Ŵm ← Ŵ(Ci, Cj )

10: end if

11: end for

12: Merge cluster μ and ν into a single cluster

13: k ← k − 1

14: end while

15: Compute � ∈ R
n×r

In principle, hierarchical clustering does not require preliminary knowledge about

the number and the size of clusters. In practice, it generates a dendrogram that orga-

nizes a hierarchy of clusters in a tree structure. Any cut of the hierarchical tree offers

a potentially valid clustering of the studied network.

It is also worth mentioning that he formation of clusters in Algorithm 1 does not

intend to only cluster the adjacent nodes. Even if two nodes are not neighbors, their

dissimilarity still can be computed and thus their difference of behaviors is measured,

and two nonadjacent vertices can be clustered when they have relatively similar

behaviors, as the obtained aggregated network will achieve a small approximation
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error (see some numerical examples in e.g. [12, 13]). However, our method does not

exclude the possibility of modifying the algorithm to only aggregate adjacent nodes.

To this end, we need to update the computation of dissimilarity matrix, i.e., we add a

penalty factor if two nodes are not neighbors.

3.4 Reduced model of power network

In Section 3.2, the dissimilarities are calculated in the closed-loop systems, and the

generator and load buses are grouped separately by the hierarchical clustering in

Section 3.3. Then, the controllers are automatically clustered as each of them is

associating with a generator.

Suppose that we acquire r clusters of generator buses and q clusters of load buses.

Correspondingly, the characteristic matrices are denoted by �g ∈ R
n×r and �l ∈

R
m×q , respectively. Let

�p =
[

�g 0

0 �l

]

. (36)

Then, a simplified weighted power network Ĝ can be obtained by aggregating all

the nodes with the same clusters in the original complex network. Mathematically,

the reduced Laplacian matrix of Ĝ is generated by the following projection.

L̂ = �T
pL�p =

[

�T
g L1�g �T

g L12�g

�T
l LT

12�l �T
l L2�l

]

:=
[

L̂11 L̂12

L̂T
12 L̂22

]

∈ R
(r+q)×(r+q), (37)

where L is the weighted Laplacian matrix representing the original network. Simi-

larly, the inertia and damping coefficients in the reduced network are given by

M̂g = �T
g Mg�g, D̂g = �T

g Dg�g ∈ R
r×r , and D̂l = �T

l Dl�l ∈ R
q×q . (38)

This clustering-based projection also has a physical interpretation, as shown in

Fig. 1, which shows the aggregation of generator and load buses, respectively. Notice

that the nodes in the same cluster can be aggregated even if they do not have a direct

connection with each other.

The transmission lines contained in a cluster are neglected, while those connecting

two clusters are aggregated. Moreover, the maximum real power transfer on the new

branch between the clusters Cμ and Cν is given by

Ŵμ,ν =
∑

i∈Cμ

∑

j∈Cν

Wij , (39)

where Wij is the maximum real power transfer between nodes i and j . In the reduced

network, a node represents a cluster of nodes in the original network, and its angular

momentum and damping coefficient are the sum of these parameters of genera-

tors and loads in the original power network. Specifically, the inertia and damping

coefficients of the cluster Ci is computed as

M̂μ =
∑

i∈Cμ

Mi and D̂μ =
∑

i∈Cμ

Di . (40)
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Fig. 1 Illustration of aggregation of generator buses (a) and load buses (b). The nodes in the same cluster

are included in the dashed boxes

Now, we are ready to present the reduced-order power system of �p in (3), which

is obtained by Galerkin projection.

�̂p :
[

M̂g 0

0 0

]

[ ¨̂
θg

¨̂
θl

]

+
[

D̂g 0

0 D̂l

]

[ ˙̂
θg

˙̂
θl

]

+
[

L̂1 L̂12

L̂T
12 L̂2

] [

θ̂g

θ̂l

]

=
[

�T
g Pm

−�T
l Pl

]

,

(41)

where the Laplacian matrix and M̂g , D̂g , and D̂l are defined in (37) and (38), respec-

tively. θ̂g ∈ R
r and θ̂l ∈ R

q are the voltage phase angles of the aggregated generators

and loads in the reduced-order power network, which are used to approximate the

states in the original system:

θg ≈ �g θ̂g, ωg ≈ �gω̂g = �g
˙̂
θg, and θl ≈ �l θ̂l . (42)

Based on (41), the reduced-order nonlinear power system can be also constructed,

which follows the same form as (1) or (2). Here, the reduced-order nonlinear model

is omitted.

As the generators are clustered, the size of the communication network Gc for

the distributed controller in (7) is also simplified. As a result, the dimension of the

controller is reduced simultaneously. Analogously, the representation of the lower-

dimensional controller is written as

�̂c :
{

Q̂
˙̂
ξ = −L̂c ξ̂ − �T

g �gω̂g,

Pm = �g ξ̂ ,
(43)
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where Q̂ := �T
g Q�g and ξ̂ ∈ R

r are states of the reduced-order controller. L̂c :=
�T

g Lc�g represents the simplified communication network.

Combining the reduced versions of the power network �̂p and the distributed

controller �̂c, we derive the reduced-order closed-loop system as follows.

�cl : Ê ˙̂x = Âx̂ + B̂d, (44)

where x̂T :=
[

θ̂T
g θ̂T

l ω̂T
g ξ̂

]

∈ R
3r+q and

Ê=

⎡

⎢

⎢

⎣

D̂g 0 M̂g 0

0 D̂l 0 0

M̂g 0 0 0

0 0 0 Q̂

⎤

⎥

⎥

⎦

, Â=

⎡

⎢

⎢

⎢

⎣

−L̂1 −L̂12 0 �T
g �g

−L̂T
12 −L̂2 0 0

0 0 M̂g 0

0 0 −�T
g �g −L̂c

⎤

⎥

⎥

⎥

⎦

, and B̂ =

⎡

⎢

⎢

⎣

0

−�T
l

0

0

⎤

⎥

⎥

⎦

.

(45)

Here, d := Pl is the uncontrollable power demand in (8). The Galerkin projection

matrix for the closed-loop system �cl is

� =

⎡

⎢

⎢

⎣

�g 0 0 0

0 �l 0 0

0 0 �g 0

0 0 0 �g

⎤

⎥

⎥

⎦

, (46)

which satisfies

Ê = �T E�, Â = �T A�, and B̂ = �T B. (47)

Next, the properties of the reduced-order models are discussed in the following

theorem.

Theorem 3 The reduced power network �p in (41) and the distributed controller

�c in (43) preserve the network structures. The closed-loop system �cl in (44) is also

semistable, and the trajectories of its impulse response converge to 0.

Proof In [13], we have proven that the Galerkin projection based on the characteristic

matrix of network clustering which can preserve the algebraic structure of a Lapla-

cian matrix, which means L̂ in (37) and L̂c in (43) are the reduced Laplacian matrices

representing the simplified power network and communication links. Besides, (40)

shows that M̂g , D̂g , and D̂l are diagonal positive definite. Therefore, the reduced

models in (41) and (43) have the same structures as (8) and (7), respectively.

Following the same reasoning line of Theorem 1, the closed-loop system �cl is

semistable. It has only one pole at the origin, and all the other poles are located in the

open-left half plane. The vectors

v̂L =
√

r + q

n

⎡

⎢

⎢

⎣

�T
g �g1r

0q

0r

Q̂1r

⎤

⎥

⎥

⎦

and v̂R = 1√
r + q

⎡

⎢

⎢

⎣

1r

1q

0r

0r

⎤

⎥

⎥

⎦

(48)
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are the left and right eigenvectors of Ê−1Â corresponding to the only zero eigenvalue,

which can be verified by v̂T
L Ê−1Â = 0, and Ê−1Âv̂R = 0. Note that the character-

istic matrix of the graph clustering has the property �g1r = 1n. Hence, ‖v̂R‖2 = 1,

and v̂T
L v̂R = 1. We further obtain

lim
t→∞

(

eÊ−1Ât
)

Ê−1B̂ = v̂R v̂T
L Ê−1B̂

= 1

n

⎡

⎢

⎢

⎣

1r1T
r �T

g �g 0r×q 0r×r 1r1T
r Q̂

1q1T
r �T

g �g 0q×q 0q×r 1q1T
r Q̂

0r×r 0r×q 0r×r 0r×r

0r×r 0r×q 0r×r 0r×r

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

0r

D̂−1
l �T

l

0r

0r

⎤

⎥

⎥

⎦

= 0.

(49)

That completes the proof.

4 Case study

We illustrate the proposed method on the IEEE 30-bus test system [46], which con-

tains 6 generator buses and 41 transmission lines. The graph representation of this

power system is depicted in Fig. 2a. In order to fit the network data into the index

setting of the states in our model (3), we use the bus numberings that are different

from the original system date. Now, the generator buses are with the indices from

1 to 6. Assume that the distributed controllers of the generators are identical and

connected based on the communication network in Fig. 2b. The control parameters

in (6) are given by Qi = 0.1 for all generators and cij = 1. Thereby, the closed-

loop power system in (44) is established, which include 42 states, namely the voltage

phase angles of generators and loads, θg ∈ R
6 and θl ∈ R

24, the generator voltage

  1

  2
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  4

  5

  6

  7

  8

  9

  10

  11
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  13

  14

  15
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  17

  18
  19

  20  21

  22   23

  24

  25

  26

  27

  28

  29
  30

Fig. 2 a The topology of IEEE 30-bus test system. The generators and load buses are represented by

circles and squares, respectively. b The communication network that links the distributed controllers on 6

generators
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frequencies ωg ∈ R
6, and the controller states ξ ∈ R

6. The positive semidefinite con-

trollability Gramian is then obtained by Theorem 2. Consequently, the dissimilarity

matrices of generator and load behaviors are computed using (23) and (24). Due to

space reasons, we only give the results for generators as follows.

Dg =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0.0737 0.0824 0.3147 0.1401 0.2319

0.0737 0 0.0854 0.2899 0.1071 0.2121

0.0824 0.0854 0 0.3124 0.1445 0.2418

0.3147 0.2899 0.3124 0 0.2472 0.3374

0.1401 0.1071 0.1445 0.2472 0 0.2041

0.2319 0.2121 0.2418 0.3374 0.2041 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (50)

We then group the generator and load nodes by Algorithm 1, which divides the

node sets in the original network into several subsets that contain nodes with small

dissimilarities to each other. The clustering results of the generator and load nodes

are straightforwardly interpreted by the dendrograms in Fig. 3. The leaves are the

bottom vertical lines representing the buses, and the clustering of two nodes is indi-

cated by merging two leaves into a single branch. The dissimilarity can be read from

the horizontal position of each fusion. In this example, we cluster node sets of the

generators and loads as in Table 1. The clustering results are reasonable owing to the

hierarchical structures of the dendrograms.

Using the characteristic matrices of the resulting clusterings for Galerkin pro-

jection, we obtain the reduced-order models of the power networks and distributed

controller in forms of (41) and (43). The simplified networks are depicted in Fig. 4.
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Fig. 3 Dendrograms showing the clusterings of 6 generator buses (a) and 24 load buses. The horizontal

axis are labeled by bus numberings, and the dissimilarity data are read from vertical axis
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Table 1 Clustering results of generator and load buses

Clusters C1 C2 C3

Generator buses 1, 2, 3, 5 4 6

Clusters C4 C5 C6

Load buses 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28 27, 29, 30 26

Therefore, the network structures are preserved through the reduction process, which

means that we can use the power network with much smaller size to approximate the

behavior of the original one.

Next, the quality of the approximation is evaluated. We consider the outputs of the

closed-loop system �cl as θg , θl , ωg , and ξ , respectively. Correspondingly, they are

approximated by �g θ̂g , �l θ̂l , �gω̂g , and �g ξ̂ , which are assumed to be the outputs

of reduced-order model and controller. Based on this, we compute the approxima-

tion errors of those variables in terms of H2-norms (see Table 2). The errors are not

significant if we think of the values of the node dissimilarities in (50) and the dimen-

sion of the reduced closed-loop model which is considerably lower compared to the

original system.

Next, the performance of the reduced-order model is further demonstrated in the

time domain. The states of both the original and simplified networks are initialized

at zero. From 0 to 20 s, the power demands of the 24 loads, Pl , are assumed by a

random vector with all the entries in the range [0, 3]. After 20 s, the demands are

set to be a new random constant vector, which is generated from [0, 1]. The unit

of Pl is 100 MVA. In Fig. 5, the state trajectories of both systems are compared.

Evolving over time, each state trajectory of the reduced network shows a similar

directional tendency to the trajectories representing a cluster of nodes in the original

network. Furthermore, the most of the response curves of the full-order system are

approximated by those of the reduced model with acceptable errors. Besides, from

Fig. 4 The reduced topology of

the power transmission lines and

communication links, which are

represented by solid and dashed

edges, respectively

’

’

’

’

’

’
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Table 2 The approximation errors evaluated by H2-norms

Variables θg θl ωg ξ

Errors 0.0791 0.2088 0.2379 0.1187

Fig. 5c, we can see how the full-order and reduced-order distributed controllers regu-

late the generator frequency deviations back to 0 in both systems. Moreover, Fig. 5d

illustrates that the states of both controllers are synchronized to the same trajectories.

We implement this numerical test by MatLab 2016a in the environment of a 64-

bit operating system with Intel Core i5-3470 CPU at 3.20 GHz, RAM 8.00 GB. We

observe that the evaluation of dissimilarities takes 0.0564 s, while the clustering algo-

rithm only uses 0.0033 s to find three clusters for both generator and load buses.

Therefore, the total computation time is mainly consumed by the calculation of the

controllability Gramian for dissimilarity evaluation.

Fig. 5 The comparisons of the state responses of the full-order and reduced-order power systems, where

the solid and dashed lines are representing the trajectories of the original and simplified networks
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5 Conclusion

We have considered the reduced-order modeling of power networks and distributed

controllers, which are expressed as semistable second-order and first-order differen-

tial algebraic equations, respectively. By exploiting the controllability Gramian of the

semistable closed-loop system, we have proposed a novel notion of node dissimilar-

ity and apply a hierarchical clustering approach to divide the generator and load buses

into several subsets. Towards the preservation of network structures in the reduced-

order models, the characteristic matrices of the resulting clusters are adopted for the

Galerkin projections of both power system and its controller. The explicit reduced-

order models are established in the same forms of the original models, which inherit a

network interpretation for the interconnections of the power units. A numerical exam-

ple, at last, has shown the performance of the reduced-order model and controller.

This paper provides an idea to explore clusterings of controlled power networks based

on dynamical models. As a further extension, other representations of interconnec-

tions, generators, loads, and controllers may be investigated, e.g., including resistors

on the transmission lines, or more complicated nonlinearities in the generators, or

different types of controllers.
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