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Abnormal dynamical coupling between brain structures is believed to be primarily responsible for the generation of epileptic
seizures and their propagation. In this study, we attempt to identify the spatio-temporal interactions of an epileptic brain using a
previously proposed nonlinear dependency measure. Using a clustering model, we determine the average spatial mappings in an
epileptic brain at different stages of a complex partial seizure. Results involving 8 seizures from 2 epileptic patients suggest that
there may be a fixed pattern associated with regional spatio-temporal dynamics during the interictal to pre-post-ictal transition.
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1. INTRODUCTION

There is sufficient evidence to believe that the brain dynamics
can be effectively modeled through complex nonlinear inter-
actions. Application of nonlinear dynamical measures [1, 2]
such as short-term Lyapunov exponents (STLmax) and cor-
relation dimension on an epileptic brain have revealed that
the complexity of the brain dynamics reduces significantly as
a seizure is approaching. In other words, the temporal dy-
namics of the brain progresses from a “high-dimensional”
nonconvergent (chaotic) state to a much smaller dimensional
“chaotic” state.

Much of the analysis on temporal dynamics focuses on
analyzing and characterizing the irregular behavior of the
time signal of either intracranial or scalp EEG. However, it
is important to realize that the brain is a multidimensional
system with a large set of neuronal oscillators that are phys-
ically and functionally coupled together. Obviously, neurons
communicate with each other through synaptic potentials re-
sulting in microscopic action potential discharges. Abnormal
neural population synchrony can also produce mesoscopic
transient activity, clinically called sharp waves or spikes. De-

pending on the pathophysiological states, the nature of the
spikes with respect to their frequency of occurrence, ampli-
tude, and shape, can be very distinctive. Particularly in an
epileptic brain, it would be natural to expect the distinc-
tions between interictal, preictal, and ictal spikes could pos-
sibly be a consequence of the dynamical changes in spatio-
temporal communications between various regions of the
brain. Therefore, it is essential to unravel the functional con-
nectivity of the neural networks and analyze how the struc-
tures change during seizure events.

Even though observations that the macroscopic EEG
cannot be distinguished from linearly correlated noise [3],
many nonlinear approaches have been able to extract inter-
regional coupling information in a manner that would not
have been possible by spectral approaches. Nonlinear depen-
dencies between multiple signals have been studied in the last
two decades, with the hope of enhancing the tool set pro-
vided by the linear methods. Unfortunately, they have faced
some practical implementation problems such as sensitiv-
ity to noise, choice of parameters, and the high computa-
tional cost. Most of the state-space methods rely on finding
the functional dependencies between two-time series based
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on how their trajectories in the embedded phase space de-
scribe each other. Inspired by the similarity–index (SI) tech-
nique introduced by Arnhold et al. [4], we earlier proposed a
self-organizing map (SOM)-based computationally efficient
measure, SOM-SI [5, 6], to measure asymmetric dependen-
cies between time sequences. Conceptually, the SI and the
SOM-SI methods rely on the assumption that if there is a
functional dependency between two signals, the neighboring
points in the state space of one signal correspond to neigh-
borhoods of their counterpart. The SOM-SI method maps
the embedded data from signals onto a quantized output
space through an SOM [7, 8] specialized on these signals,
and utilizes the activation of SOM processing elements (PE)
to infer about the influence directions between the signals.
This approach reduces the computational complexity dras-
tically by exploiting the accurate quantization properties of
the SOM in representing the dynamics of the signal in the
phase space. Our previous work [6] showed that the SOM-
SI was capable of determining the temporal evolution of de-
pendencies between various cortical sites, at different stages
of temporal lobe epileptic seizures.

Epileptic seizures, in particular, are characterized by dy-
namic states (interictal, ictal, preictal, and postictal) that
are known to possess both local and global spatio-temporal
groupings. Channels associate and deassociate in time; how-
ever, depending on the psycho-physiological state of the
brain, certain groups of channels might have a higher like-
lihood of sharing same channel connectivities, thus forging a
long-term association. In epileptic intracranial EEG, identi-
fying such state-dependent clusters may provide us with use-
ful insights on the evolution of brain patterns during seizure
states. In this study, we propose a spatio-temporal clustering
model to qualitatively analyze the spatio-temporal groupings
in multidimensional epileptic structures. Unlike in many
other clustering approaches, where dynamical features ex-
tracted from the data are used as basis to determine group-
ings, our proposed clustering approach uses the dependen-
cies among the original data recordings to do the same. Our
approach, in short, essentially seeks to analyze the regional
grouping of cortical sites at different stages of a seizure, based
on their mutual interactions.

On a clinical perspective, this study intends to investigate
spatio-temporal relationships across various regions of an
epileptic brain to help determine the epileptic focus and the
dynamical changes that lead to a seizure. In order to achieve
this ultimately goal, it is necessary to develop appropriate sig-
nal processing tools that extract features to cluster different
regions of the brain based on their functional dependencies.
The highlight of this clustering measure is that it uses a sim-
ilarity or a proximity matrix that is entirely data-dependent
to determine regional dependencies. Our idea is two folds:
(a) to propose a novel tool to determine clusters and present
synthetic simulations and real data to support the validity
and robustness of this measure, (b) to apply this measure
on real-epileptic data and present a detailed clinical inves-
tigation on the outcome. The study was made on 8 complex
partial seizures from 2 patients suffering from temporal lobe
epilepsy. The conclusions of this paper are based on observa-
tions from these 8 seizures only.

The paper is organized as follows. We first present a
brief review of SOM-SI in Section 2. Section 3 discusses
the spectral-clustering approach and the proposed spatio-
temporal cluster model. Data description is provided in Sec-
tion 4 followed by clinical evaluation of the clustering ap-
proach on the epileptic EEG data, in Section 5. Section 6 dis-
cusses about potential directions for future study.

2. SIMILARITY INDEX (SI) MEASURE

(A) Original SI measure

Assume that X and Y are two time series generated by a sys-
tem, which are embedded into two vector signals in time us-
ing delays. N(X | Y) is defined as the average dependency of
X on Y and it can be written as [5],

N(X | Y) =
1

N

N−1
∑

n=0

Rn(X)− Rn(X | Y)

Rn(X)
, (1)

where Rn(X) is the average Euclidean distance between the
state-vector of Xn and the remaining state-vectors in X . The
Y-conditioned Euclidean distance Rn(X | Y) measures the
average Euclidean distance between Xn and the vectors in X
whose corresponding time partners are the k-nearest neigh-
bors of Yn. This measure takes values in [0, 1], where 0 im-
plies no coupling and 1 implies perfect synchronization [4].
Average dependence of Y on X , N(Y | X), is similarly com-
puted. The difficulty with this approach is that at every time
instant n, we must search for the k nearest neighbors of the
current embedded signal vectors among allN sample vectors;
this process requires O(N2) operations. This high complexity
hinders real-time implementation and analysis. In addition,
the measure depends heavily on the free parameters, namely,
the number of nearest neighbors and the neighborhood size
ε. The neighborhood size ε needs to be adjusted every time
the dynamic range of the windowed data changes.

2.1. SOM-based similarity index (SOM-SI)

The self-organized-map- (SOM-) based SI algorithm [5] is
fundamentally aimed at reducing the computational com-
plexity of the SI technique. The central idea is to create a
statistically quantized representation of the dynamical sys-
tem using an SOM [7, 8]. An SOM is a neural-network in
which spatial patterns from the input space are mapped onto
an ordered output space consisting of a set of processing ele-
ments (PE). Thus each PE in the SOM, based on its location
on the map, compactly models different features/dynamics
of the input.

For best generalization, the map needs to be trained to
represent all possible states of the system (or at least with
as much variation as possible). As an example, if we were
to measure the dependencies between EEG signals recorded
from different regions of the brain, it is necessary to create an
SOM that represents the dynamics of signals collected from
all channels. The SOM can then be used as a prototype to
represent any signal recorded from any spatial location on
the brain, assuming that the SOM PEs have specialized in the
dynamics from different regions.
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One of the salient features of the SOM is topology preser-
vation; that is, the neighboring PEs in the feature space cor-
respond to neighboring states in the input data. In the appli-
cation of SOM modeling to the similarity index concept, the
topology preserving quality of the SOM will be of added ad-
vantage, because of the fact that the neighboring PEs in the
feature space will now correspond to neighboring states in
the input data.

Assume X and Y are two time series generated by a sys-
tem, which are embedded into two vector signals in time-
using delays. Define the activation region of a PE in the SOM
as the set of all input vectors (the embedded signal vectors)
for which the PE is the winner based on some distance metric
(Euclidean in most cases). Let Xn be the set of time indices of
input vectors x j that are in the activation region of the winner
PE corresponding to the input vector xn at time n. Similarly
define the set Yn.

Then the procedure to estimate the directed SOM-SI be-
tween X and Y is as follows:

(1) Train an SOM using embedded vectors from both X
and Y as the input.

(2) At time n, find Wx
n , the winner PE for vector xn, and

find W
y
n , the winner PE for vector yn.

(3) To find Rn(X), compute the average Euclidean distance
between Wx

n and all the other winner PEs in the SOM.
Similarly, compute Rn(Y).

(4) Determine the sets Xn and Yn for Wx
n and W

y
n , respec-

tively.

(5) Determine the nearest PEs W
y
n, j corresponding to vec-

tors y j , where j ∈ Xn. Determine the nearest PEs Wx
n, j

corresponding to vectors y j , where j ∈ Yn.

(6) Calculate Rn(X | Y) = (1/q)Σ
q
j=1‖W

x
n −Wx

n, j‖, where
q is the number of elements in Xn. Calculate Rn(Y |

X) = (1/q)Σ
q
j=1||W

y
n −W

y
n, j||, where q is the number

of elements of Yn.

(7) Compute the ratios,

Nn(X | Y) =
(

Rn(X)− Rn(X | Y)
)

/Rn(X),
Nn(Y | X) =

(

Rn(Y)− Rn(Y | X)
)

/Rn(Y).
(2)

(8) Find interdependencies N(X | Y) and N(Y | X) as the
average of Nn(X | Y) and Nn(Y | X) over all n.

(9) Compute the SOM-SI as the difference,

χ = N(Y | X)−N(X | Y). (3)

Positive values of χ indicate that influence of X on Y is more
than the influence of Y on X , while negative values indicate
the opposite. Higher magnitude of χ indicates a stronger cou-
pling of the signals.

The computational savings of the SOM approach is an
immediate consequence of the quantization of the input
(signal) vector space. The nearest neighbor search involves
O(NM) operations as opposed to O(N2) in the original SI,
where M is the number of PEs. Traditionally M≪ N , hence,
SOM-SI offers a significantreduction in computations com-
pared to original SI.
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Figure 1: Experimental setup to compare SOM-Similarity Indices
obtained from two (2) separate maps.

2.2. Testing the robustness of SOM-SI on
multiple SOMs

To illustrate the accuracy of the SOM-based measure, we pre-
viously presented a few experimental simulations [5, 9] in-
volving synthetically constructed linear and nonlinear inter-
active models. Results from each of them demonstrated the
accuracy of our quantized measure, validated through sta-
tistical quantification with results from the original SI mea-
sure. For application on seizures especially, a 25 × 25 sized,
2-dimensional SOM grid was trained to embed all the dy-
namical states of an EEG attractor. SOM, being one of the
most important elements of this improvised measure, one of
the pre-requisites of this approach, is to ensure that: (a) for
data modeling purposes, the training set captures the vari-
ance found in the dynamics of the ictal states from all the
channels for a given patient and (b) the similarity indices
computed using the SOM’s processing elements are indepen-
dent of the SOM and the corresponding training dataset. Put
in other words, pair-wise similarity indices computed on two
separate SOMs should be significantly close to each other if
not equal.

While the previous test results [9] were a testimony to
the former, the independence of the observed interactions
through similarity indices to a given SOM needed to be
tested before proceeding with extensive data analysis. From
the multivariate EEG data samples of an epileptic patient,
two separate training sets were constructed. One of the train-
ing sets (say training set-1) consisted of portions of data sam-
pled from the interictal, ictal, preictal, and postictal states of
seizures 1 and 2. The other training set (say training set-2)
consisted of data portions picked around seizure 4 and 5. Us-
ing the same normalization procedures on both the sets and
with the same set of training parameters as before, two sep-
arate SOMs (called as SOM-1 and SOM-2 for convenience)
were trained. Post training, the SOM-similarity indices were
obtained from pair-wise analysis of interdependence among
channels chosen from the ROF and LOF regions of the brain,
as illustrated in Figure 1.

Test data from three (3) recording sites in right or-
bitofrontal region (namely, ROF1, ROF2, and ROF3) and 3
sites from left orbitofrontal regions (namely LOF1, LOF2,
and LOF3) were picked from intervals surrounding seizures
4, 5, 6, 7 and seizure 11, respectively. The similarity index
profiles {N1(X | Y)}t and {N2(X | Y)}t obtained from com-
puting the SOM-SI on large intervals (say time t = 1, . . . ,T )
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of seizure data are quantitatively compared using the classi-
cal correlation coefficient and error-percentage as the com-
parison metrics. The error-percentage is computed as fol-
lows:

{e} = 100∗
{

N1(X | Y)t −N2(X | Y)t
N1(X | Y)t

}T

t=1

, (4)

where N(X | Y) is the normalized interdependency of X
on Y. Note that the notations X and Y are used to denote
the two channels of interest. Normalized error e quantifies
the percentage difference between the interdependency val-
ues from SOM-2 and SOM-1, keeping interdependency value
from SOM-1 as the reference. From the error population, the
fraction of the absolute error values less than 20% and the
fraction less than 10% are computed to determine the degree
of dependence of the SOM-SI measure on the data used to
train a SOM.

For illustration, the results from analyzing the interde-
pendency of LOF3 on LOF4 on various seizures are shown in
Figure 2. The histograms correspond to the error ensembles
obtained from analyzing over long seizure intervals. Quali-
tatively, the superimposed traces in Figure 2 indicate the ex-
tent of agreement or disagreement between the SOM-SI pro-
files. Table 1 compiles a summary of the agreement between
the SOM-SI profiles for about 13 hours of EEG data. A large
fraction of errors less than 20%, supported by a high corre-
lation coefficient between the two SOM-SI profiles, suggests
that there was very little disparity between the SOM-SI pro-
files from SOM-1 and SOM-2. Besides, the high percentages
also seem to suggest the EEG data dynamics might not vary
drastically from one seizure to another, and therefore the
two SOM models produced almost identical SI results. This
finding consequently supports our original belief that a well-
trained SOM and a well-picked training dataset is sufficient
to carry out inter-dependency analysis on all the seizures of a
patient.

Overall, pair-wise analyses of the interdependency
among 6 channels (15 combinations) on 5 seizures of the
epileptic patient were performed on SOM-1 and SOM-2. The
average correlation coefficient and the error results between
the SOM-SI profiles are shown in Table 2.

Results from Table 2 indicate that in around 80% of the
times, the differences between the SOM-SI results are less
than 20%. This is not surprising considering that the dif-
ferences are measured in percentages (3), and therefore even
small discrepancies in the case of small dependency values
can appear magnified. In addition, we also speculate that the
discrepancies could be the outcome of the two SOMs being
trained in an identical fashion instead of being fine-tuned to
obtain the lowest reconstruction error in each.

In general, if the SOMs can be designed to obtain the low-
est reconstruction error, by iteratively choosing the best sets
of parameters, a slight improvement in the performances can
be easily achieved; but as it stands, a slight discrepancy can
nevertheless be always expected although it may have very
little impact in the overall scheme of analysis.

3. SPATIO-TEMPORAL CLUSTERING MODEL

Often time series structures collected from a multi-dimen-
sional dynamical system share similar information that re-
flect system wide interactions or even synchronization abili-
ties. By definition, the word similar could mean that the in-
formation shared among a set of channels are stronger than
the information they share with other channels. Such spatial
similarities could possibly be transient up to a few seconds
or could even stretch to several minutes or hours. As we pos-
tulated earlier, dynamial similarities in spatio-temporal be-
havior could be one of the driving factors to trigger certain
events in biological systems. From a clinical point of view,
we believe that analyzing the temporal changes in channel
similarities could reveal some interesting aspects about the
epileptic brain.

Similarity-based time-series clustering [10, 11] is a well-
researched topic in the area of dynamical graph theory. It is
an extremely useful approach to characterize spatial group-
ings in time sequences. Similar time sequences are typically
grouped based on their mutual interactions. In this study, us-
ing the SOM-SI as a computational tool to derive the dis-
tance/similarity/proximity matrix, we propose a clustering
model to dynamically analyze the spatio-temporal groupings
in mutivariate time sequences.

3.1. 1 Model for spatio-temporal clustering

In this section, we propose a clustering approach to extract
information on spatio-temporal distribution of multivariate
time measurements. A 3-fold approach, consisting of spatial-
discretization of the data using spectral-clustering technique
[12, 13], temporal quantification using Hamming distance,
followed by application of another clustering technique, is
presented in Figure 3. The rational will become apparent
during the explanation.

Spectral clustering is one of the many clustering meth-
ods that use subspace decomposition on data-derived affinity
matrix to achieve data-clustering. Using kernel methods, the
data samples are projected onto a higher dimensional space
where the discriminant analysis is much easier. Projecting the
data onto a feature space results in tightly formed clusters
such that the between cluster entropy is maximized and the
within-cluster entropy is minimized. In our study, we apply
the standard spectral clustering algorithm by Ng et al. [12] to
spatially cluster the similarity indices obtained by the SOM-
SI technique.

Pair-wise evaluation of SOM-SI measure on all the possi-
ble combinations (CN

2 , where N is assumed to be the number
of channels) of a portion of a multivariate time series leads
to k = 2∗(CN

2 ) similarity indices in [0, 1]. k is multiplied by 2
because of the asymmetric nature of the SOM-SI measure. If
we imagine the time series as various inter-connected nodes
in a multidimensional graph, the SOM-SI similarity indices
represent the affinity or rather the weights of the connection
between those nodes. Therefore, we can translate them into
a square matrix of size N × N , where N is the number of
channels. Since the weighting is normalized between 0 and 1,
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Figure 2: Comparing interdependencies between channels LOF3 and LOF4. Left: SOM-similarity profiles from the output of SOM-1 and
SOM-2 are superimposed. Right: Histogram of the errors in %. Top: Seizure 4 and 5. Middle: Seizure 6 and 7. Bottom: Seizure 11.

Table 1: Quantitative comparisons between the SOM-SI profiles obtained from SOM-1 and SOM-2. LOF3 and LOF4 data was projected on
each of the SOMs and then the SOM-SI measure was applied to analyze the dependency of LOF3 on LOF4.

Interdependency N(LOF3| LOF4) Correlation Coefficient (%) Fraction of error less than 20% Fraction of error less than 10%

Seizure 6 and 7 95.74 0.8504 0.5597

Seizure 4 and 5 98.45 0.9234 0.7543

Seizure 11 91.59 0.6452 0.3614
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Table 2: Summary of the comparisons between the SOM-SI profiles from SOM-1 and SOM-2. Each row represents the statistics (mean and
variance) of pair-wise SOM-SI analyses of the epileptic EEG data from 6 channels (15 combinations).

Correlation Coefficient (%) Fraction of error less than 20% Fraction of error less than 10%

Seizure 6 and 7 94.32± 2.85 0.79± 0.1 0.54± 0.12

Seizure 4 and 5 97.46± 1.08 0.91± 0.06 0.73± 0.12

Seizure 11 93.24± 2.06 0.71± 0.08 0.41± 0.07

Time-delay

embedding

Multichannel
data

SOM-SI

Temporal

quantification

using hamming

Spectral-

clustering

Clustering

Figure 3: Block diagram to extract spatio-temporal groupings in-
formation in Multivariate EEG structures.

the diagonal elements, representing the affinity of a channel
with itself, are coded as 1.

However, to be able to perform spectral-decomposition
on an affinity matrix, Ng’s algorithm [12] requires that the
affinity matrix be square and symmetric in nature. This is
because the eigen decomposition yields orthogonal column
vectors (also called eigenvectors) only if the projection ma-
trix is square-symmetric. The asymmetric matrix can be
transformed to a symmetric matrix by adding it to its trans-
pose and dividing each entry by 2. Following the eigen de-
composition on the transformed affinity matrix, we have a
set of labeled clusters representing the membership of the
channels.

If the above procedure is repeated over consecutive
time (T) windows (overlapping or nonoverlapping), chan-
nel groupings obtained on each time window (t = 1 · · ·T)
can be arranged in a matrix (of dimension N × T) as in (5).

κspect =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

3 2 2 . . . . . 3 1
1 2 2 . . . . . 3 2
. . . . . . . . . .
. . . . . . . . . .
3 1 2 . . . . . 1 2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (5)

To characterize the average clustering of the channels
over a longer period of time, we propose another, albeit sim-
ple, hierarchical clustering approach that uses Hamming dis-
tance to derive the proximity matrix.

3.2. 2 Temporal quantification using
hamming distance

We showed in the previous section that the multivariate time
series can be grouped by using similarity-based clustering
techniques such as spectral clustering. The spectrally clus-
tered labels specify the groups of channels exhibiting high de-
gree of within-cluster similarities and low degree of between-
cluster similarities. Often in applications such as epileptic

EEG analyses where associations last longer, it is important
to identify channel groupings over a longer time-window.

State-dependent connections can be quantified by clus-
tering rows of the κspect matrix that are similar with each
other over a longer time interval, say T. In this con-
text, we propose a simple statistic that computes the rel-
ative frequency of any two channels sharing the same la-
bels/groupings to determine the degree of similarity. In other
words, in a time window of length T, we check the average
number of times when the two channels of interest, share the
same cluster label.

In an algebraic context, the above operation is equivalent
to computing pair-wise Hamming distance in a time window
T. Similarity can be quantified by subtracting the Hamming
distance from 1. That is, if dham

i j is the hamming-distance be-
tween channels “i” and “j,” similarity in probabilistic terms
can be obtained as

psim
i j = 1− dham

i j . (6)

Thus, computing the pair-wise similarity for all i and j
combinations will result in a P matrix of size N ×N (N is the
number of channels). For convenience, we will call the matrix
P the cluster-similarity matrix in all our future references.

Finally, hierarchical clustering on the cluster-similarity
matrix P will yield information on the cluster groupings over
a time T. In the context of EEG data, clustering will thus en-
able us to know the groups of channels that have similar be-
havioral structure in the brain, over a longer time frame.

4. EPILEPTIC EEG DATA DESCRIPTION

Intracranial EEG signals were recorded from the hippocam-
pus, subtemporal and frontal cortex structures of epileptic
patients having a history of complex-partial and secondary
generalized seizures of temporal lobe focus, using bilaterally
and surgically implanted electrodes (Figure 4). The clinical
motivation for the location of the electrodes was mainly to
identify focal area for presurgical evaluation. Using ampli-
fiers with an input range of ±0.6 mv, the recorded signals
were converted to a narrow-band using an antialiasing fil-
ter with a cutoff range between 0.1 Hz and 70 Hz. Using an
analog-to-digital converter with 10-bit quantization preci-
sion, the narrow-band signals were sampled/digitized at 200
samples/sec. Measurements involved recording EEGs from
multiple sensors (28 to 32, with common reference channels)
and the recordings spanned over 6 continuous days. A total
of 55 seizures, of temporal lobe onset were recorded from 5
patients, in the range of 6 to 18 seizures for each patient.



Anant Hegde et al. 7

1
2
3
4
5
6

left orbitofrontal
(LOF)

Left
subtemporal

(LST)

Right

subtemporal

(RST)

Right

temporal

depth (RTD)

Right orbitofrontal

(ROF)

1
2
3
4
5
6

left
temporal

depth (LTD)

12341234

1 2 3 41234

Figure 4: Diagram of the depth and subdural electrode mon-
tage in an epileptic brain. Electrode strips are placed over the left
orbitofrontal (LOF), right orbitofrontal (ROF), left subtemporal
(LST), right subtemporal cortex (RST). Depth electrodes are placed
on the left temporal depth (LTD) and right temporal depth (RTD),
to record hippocampus EEG activity.

The distinction of these patients from general patients
with temporal lobe epilepsy is their seizures are medically re-
fractory. In other words, these patients’ seizures cannot be
controlled by the currently available anticonvulsant medica-
tions. We note that all the patients had to undergo surgery as
part of their treatment.

5. RESULTS

In the last section, we proposed a spatio-temporal model to
extract groupings from long-term multivariate recordings. In
this section, we will focus on the application of that model
on the epileptic intracranial EEG time series. The first part of
the section will describe the details on the application of the
model and the second part will discuss the results of analy-
ses on 8 seizures, from 2 patients. With respect to selecting
seizures for our analysis, the underlying reasoning was to be
able to understand the following:

(a) complex partial types of seizures;

(b) how the functional relationships among different cor-
tical sites of the brain changed over time; and

(c) the temporal variability of functional relationships
across successive seizures.

For (c), we selected pairs of seizures that were neither too
close nor too distant in time to introduce coupling from pre-
vious seizure events or external effects of many other envi-
ronmental variables. Therefore, we picked pairs of seizures
that were between 60 minutes and 6 hours apart only. The
minimum of 60 minutes was chosen so that the second
seizure was not in the postictal region of the preceding
seizure. Pairs of seizures more than 6 hours apart were treated
as seizures in isolation and therefore were left out of the se-
lection.

5.1. 1 Application on epileptic intracranial EEG data

The temporal changes in the spatial structure of an epilep-
tic brain was analyzed on twenty four (24) representative
channels recorded bilaterally from the orbitofrontal, tem-
poral, and subtemporal regions on the brain. One of the
fundamental requirements for analyzing the dynamics of a
non linear system is to construct the state-space attractor
from just a single recording of the time series. From previous
studies that estimated intracranial EEG attractor size using
correlation-dimension techniques [14, 15], the EEG state-
space dimensionality using Taken’s embedding theorem [16]
was bounded between 3 and 10. In our intracranial EEG data,
the embedding dimension (m) and the delay (τ) were chosen
to be m = 10 and τ = 4. The parameters were compatible
with other studies [14, 15], performed on the same data. The
following steps describe the procedure to track the spatio-
temporal connectivity patterns in intracranial EEG data.

(1) The intracranial EEG attractors were reconstructed in
the high dimensional state space. On nonoverlapping
10-second epochs, one set of pair-wise interdepen-
dence values among 24 channels are computed using
the SOM-SI measure.

(2) The similarity indices, from every window, are trans-
lated into a symmetric similarity/affinity/proximity
matrix. With the number of clusters (say n1) specified
apriori as discussed below, spectral clustering on the
affinity matrix results in channels being labeled as one
of the n1 clusters.

(3) Steps 1 and 2 are repeated for all the successive
windows, representing 10-second stationary segments.
However, the overall ability of the channels to associate
with each other over longer time duration needs to be
quantified.

On T: 30-minute time segments (equal to 90, 10-second
windows), pair-wise Hamming-distance based cluster-
similarity matrix P is computed among all the channels. The
matrix elements essentially index the probability of channels
to group into the same cluster over a 30-minute time interval.

Spectral clustering or any other clustering algorithm on
the cluster-similarity matrix P will result in final cluster
memberships. The number of clusters is fixed to n2 as spec-
ified below. For computing similarity indices in step 1, the
epoch length of 10 seconds is chosen as a tradeoff between
stationarity and sample-size requirements. Also note that the
successive windows are 10 seconds apart (alternate 10-second
windows) for reasons specific to computational feasibility.

We now describe step 2 in more details. The channel in-
terdependencies obtained from SOM-SI represent the spatio-
temporal correlation indices obtained by computing pair-
wise similarity index among 24 channels. In spectral clus-
tering jargon, the resulting matrix can be interpreted as an
affinity matrix representing the pair-wise distances between
24 nodes. After spectral-clustering, we have a set of labeled
clusters representing the membership of the channels [17].
Repeating this procedure on every 10-second window will
yield a discrete-valued matrix κspect similar to (5).
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Typically, the choice for the number of clusters n1 in step
2 is conditioned on the significant eigenvalues. The dimen-
sionality of the space will affect tremendously the computa-
tional complexity of the overall procedure. In our analysis,
the sum of the first 3 eigenvalues typically ranged from 60%
to 80% of the total variance, due to changes in seizure states.
Considering this variability between epochs, and the fact that
the number of clusters need to be the same for all epochs in
order to be able to determine the overall grouping in chan-
nels (using cluster-similarity matrix P), we fixed the number
of clusters to n1 = 3.

Experimental studies using nonlinear dynamics have
shown [1, 2] that the quantitative descriptors of EEG exhibit
seizure precursors in the form of interictal to preictal state
transitions. The preictal transition time is not exactly known,
however the literature [1, 2] suggests that it has a broad range
of 5 minutes to 60 minutes before seizure. Therefore in step 5,
as a tradeoff between state transition periods and time reso-
lution, we choose a 30-minutes time window to characterize
both the preictal and the postictal periods.

Patient P093

This patient had a history of complex partial seizures, local-
ized in the mesial structures of the temporal lobe. Surgery
revealed a lesion (mesial temporal sclerosis) in the right hip-
pocampus (RTD electrodes) region. The set of 24 channels
are listed below:

Channels 1 to 4: LTD3, LTD5, LTD7, LTD9,
Channels 5 to 8: RTD4, RTD6, RTD8, RTD10,
Channels 9 to 12: LST1, LST2, LST3, LST4,
Channels 13 to 16: RST1, RST2, RST3, RST4,
Channels 17 to 20: LOF1, LOF2, LOF3, LOF4,
Channels 21 to 24: ROF1, ROF2, ROF3, ROF4.
Before data analysis, a validation test was utilized to check

whether application of different clustering algorithms on P

would consistently result in same cluster memberships or
not. For a given number of clusters n2, it turned out that all
the clustering algorithms including spectral clustering pro-
duced the same outputs. Therefore, we decided to choose the
simple hierarchical clustering algorithm used in Matlab 6.5
owing to its graphical support.

Cluster-similarity matrices P indicating the probability
that two channels share the same grouping in a 30-minute
time segment are shown gray-scale coded in Figure 5. Pre-
seizure analysis on 30-minute windows is shown for up to
3 hours. Similarly, the postseizure analysis is shown for the
first 30 minutes. The ability of the left side channels to have
a higher tendency to group together compared to the right
hemisphere channels is quite noticeable from Figure 5. In ad-
dition, the orbitofrontal lobes seem like the only brain area to
have a high probability of making a cross-hemisphere group-
ing. On the left hemisphere, the LST and the LTD channels
are consistently seen to share the same clusters.

To confirm the observations from Figure 5, the hierar-
chical clustering algorithm was applied on each of those P

matrices. Figure 6 graphically illustrates two instances of the
clustering outputs through dendrograms. A dendrogram is
strictly defined as a binary tree with a distinguished root that

has all the data items at its leaves. Conventionally, all the
leaves are shown at the same level of the drawing. The or-
dering of the leaves is arbitrary. The heights of the internal
nodes are related to the metric information (P here) used to
form the clustering. Using a threshold of 0.4 and the average-
linkage technique to determine fusion levels, clustering was
performed on a predefined number of clusters (n2). For de-
termining apriori the number of clusters n2, several dendro-
grams were visually analyzed. There seemed to be at least 3 to
4 strong groupings among channels in most of the dendro-
grams. For consistency, therefore, we chose to fix the number
of clusters n2 to 3 for all the analyses.

Both dendrograms in Figure 6 clearly translate the spatial
patterns observed in the corresponding P matrices of Fig-
ure 5. The top dendrogram in Figure 6 corresponds to the
2.5-to-3 hour time window (indicated by −5) in Figure 5. It
is easy to see that the dendrogram considers the RTD and the
RST as isolated clusters due to their weak between-cluster fu-
sion level. Since the number of clusters n2 is restricted to 3, all
the remaining channels form a single large cluster. Similarly,
the bottom dendrogram in Figure 6 corresponds to the P ma-
trix indicated by−1 in Figure 5. In this case, the RST and the
RTD channels group into one cluster; also well supported by
a dark patch in Figure 5. This enables the LST/LTD chan-
nels and the LOF/ROF channels to group together as separate
clusters.

The overall cluster configuration is listed in Table 3.
We summarize the spatial patterns at different time inter-

vals of seizure 11 as follows.
(1) The LST and the LTD channels, in particular, exhibit

a strong tendency to belong to the same group.
(2) The LOF and the ROF channels form a strong bilat-

eral homologous connection, as seen from all the matrices in
Figure 5.

(3) Relatively strong similarity can be seen between RTD
and the RST channels.

(4) Common observation in all the matrices is the strong
similarity between the left hemisphere channels as opposed
to the right hemisphere channels. This is reflected in the abil-
ity of LOF channels to have a higher probability of sharing
clusters with other left hemisphere channels, as seen in Fig-
ure 5.

(5) Interestingly, no temporal changes are seen in the
spatial-patterns yet.

5.2. Statistical validation

The cluster configurations observed from analyzing 30-
minute segments necessitates validation. Previously [9], we
partially validated our model (up to the spectral cluster-
ing stage), using synthetically coupled multivariate time se-
quences (both nonlinear and linear). Simulations involv-
ing creation of dynamic graphs involve multidimensional
time series that continuously change cluster memberships
over time. Determining the average spatio-temporal group-
ings from a collection of multivariate time series is relatively
easier to be demonstrated in linear coupling cases. How-
ever, nonlinear dynamic model constructions are extremely
hard and mostly nontrivial. We therefore decided to pursue
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Figure 5: Seizure 11 of patient P093: Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices were
computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time
interval.

Table 3: Spatio-temporal groupings as obtained for seizure 11 of patient P093.

P093, Seizure 11 C1 C2 C3

Preseizure, (2.5–3 hrs) RTD RST LTD, LST, LOF, ROF

Preseizure, (2–2.5 hrs) RTD, RST LOF, ROF LTD, LST

Preseizure, (1.5–2 hrs) RTD, RST LOF, ROF LTD, LST

Preseizure, (1–1.5 hrs) RTD, RST LOF, ROF LTD, LST

Preseizure, (30 mins–1 hr) RTD, RST LOF, ROF LTD, LST

Preseizure, (0–30 mins) RTD, RST LOF, ROF LTD, LST

Postseizure, (30 mins–1hr) RTD, RST LOF, ROF LTD, LST
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Figure 6: Dendrogram representation of the cluster results in Seizure 11, P093. TOP: Dendrogram corresponding to 2.5 hours before seizure.
BOTTOM: Dendrogram corresponding to the 30-minute preseizure period.

a verification of the time-averaged cluster groupings on the
intracranial EEG data, using the quasisurrogate analysis tech-
nique [18–20].

Recall that the cluster groupings obtained over 30-
minute time segments involve two steps. First step con-
sists of applying spectral clustering technique on the SOM-
similarity indices (computed on 10-second intracranial EEG
data segments). Then similar grouping patterns among
channels are extracted by using hierarchical clustering ap-
proach on the cluster-similarity matrices P. In order to val-
idate this 2-step approach, we define our hypothesis as fol-
lows.

H0: The average within-cluster channel interaction at
each window (out of 91, 10-second windows) is not sig-
nificantly different from the corresponding between-cluster
channel interactions.

We propose to test this hypothesis on all the 3 (n2) clus-
ters separately, for every 10-second window within the 30-
minute period. Within-cluster interaction is computed by
averaging the pair-wise similarity indices for all the chan-
nels within a cluster. For between-cluster interaction, the
pair-wise interactions among 3 channels picked randomly
from each of the 3 clusters are computed. A between-cluster
interaction statistic is formed by computing the average
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Table 4: P093, Seizure 11: Over each 30-minute (91 samples total) window, number of times the within-cluster interaction is greater than
between-cluster interaction, at 95% significance level.

P093, Sz 11 −5 −4 −3 −2 −1 0 (Sz) 1

C1 1 1 0.91 0.95 0.99 1 0.93

C2 0.82 0.89 0.96 0.91 0.89 0.85 0.98

C3 0.95 0.55 0.80 0.70 0.46 0.46 0.97

Table 5: Spatio-temporal groupings as obtained for seizures 4 and 5 of patient P093.

P093, Seizure 4 and 5 C1 C2 C3

Preseizure 4, (30–60 mins) RTD, RST LOF, ROF LTD, LST

Preseizure 4, (0–30 mins) RTD, RST LOF, ROF LTD, LST

Postseizure 4, (0–30 mins) RTD LTD, LST, LOF, ROF RST

Postseizure 4, (30 mins–1 hr) RTD LOF, ROF LTD, LST, RST

Preseizure 5, (30 mins–1 hr) RTD LTD, LST, LOF, ROF RST

Preseizure 5, (0–30 mins) RTD LTD, LST, LOF, ROF RST

Postseizure 5, (30–1 hr) RTD LTD, LST, LOF, ROF RST

interactions from random selection of 3 channels (one from
each cluster) over a number of trials. We found that this
statistic follows a quasinormal distribution, implying that the
within-cluster interaction value can now be compared with
the mean and the variance sample estimates of the between-
cluster statistic. Mathematically, we construct the z-score as
follows

Z i
t =

∣

∣Ci
wt
−
〈

Cbt

〉
∣

∣

σ
(

Cb

) t = 1, 2, . . . , 90 and i = 1, 2, 3, (7)

where Ct
wt

is the within-cluster interaction at time “t”, for
cluster “i”; 〈Cbt〉 is the mean and σ(Cbt) is the standard devia-
tion of the between-cluster interaction at time “t”; Z i

t reflects
the z-score and is considered significant at the 95 percentile
significance if Z i

t > 1.96 (reject H0). In Table 4, the bolded
value in each cell represents the number of windows (out of
91) having significant z-score in the 30-minute period corre-
sponding to Figure 5 (P093, Seizure 11). It is easy to observe
that the null-hypothesis H0 is rejected beyond doubt, vali-
dating the clustering results.

Seizures 4, 5, 6 and 7:

Spatio-temporal clustering analyses, similar to the one de-
scribed on seizure 11 were performed on several other
seizures, of the same patient P093. The cluster-similarity ma-
trices P obtained from time intervals surrounding seizures 4
and 5 and 6 and 7 of patient P093 are shown in Figures 8
and 9, respectively. Channel groupings for the same are listed
in tables 5 and 6, respectively. All the 4 seizures present very
consistent groupings.

(1) Consistent to the observation in seizure 11, we ob-
serve the temporal depth and the subcortical regions of the
left hemisphere are always grouped together.

(2) Once again, the association of ROF-LOF areas into
the same cluster suggests a strong homologous connection
between the orbitofrontal areas of the brain. This observation
is also in agreement with those in seizure 11.

(3) The dendrograms once again presented 4 unam-
biguous clusters in the form of RST, RTD, LST/LTD, and
LOF/ROF. The fusion levels, indicating the strength of con-
nection between clusters, often turn out in favor of RTD and
RST to be grouped separately. Owing to the fact that we
have predefined the number of clusters to 3, the LST, LTD,
LOF & ROF channels will consequently get grouped into one
cluster.

(4) Once again, temporal changes are not very evident
in the spatial patterns. However, observing Figures 8 and 9
and their corresponding dendrograms (not shown), the fu-
sion levels and the topology of the connections change with
time. These changes can only be quantified using statistical
tests such as Mantel test statistics or the Double Permutation
Statistics (DPS).

Patient P092

In this section, we present the summary results of the clus-
tering analyses performed on patient P092 suffering from
a lesion (mesial temporal sclerosis) in the medial temporal
lobe structures of the right hemisphere. Channel configura-
tion for the patient P092 is as follows:

Channels 1 to 4: LTD1, LTD3, LTD5, LTD7,
Channels 5 to 9: RTD2, RTD4, RTD6, RTD8, RTD12,
Channels 10 to 13: LST1, LST2, LST3, LST4,
Channels 14 to 17: RST1, RST2, RST3, RST4,
Channels 18 to 21: LOF1, LOF2, LOF3, LOF4,
Channels 22 to 24: ROF1, ROF2, ROF3.
Note that a separate 25 × 25-sized, 2-dimensional EEG-

SOM grid was created to model the data dynamics of P092.
Postspectral clustering analysis on 30-minute data segments
led to some interesting observations.

Figure 10 shows the dendrograms created for seizure seg-
ments 2 hours prior to seizure 1 and 30 minutes preseizure,
respectively. As before, the number of clusters (n1) specified
in the spectral-clustering step after SOM-SI block was fixed
to 3. The fusion levels between most of the channel clusters
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Figure 7: Statistical validation of the clustering results. In each panel, thick lines are used to represent the profiles of the three clusters in a 30-
minute time interval. The thin lines are the surrogate profiles indicating between-cluster interactions. Cluster veracity can be visually verified
by observing that amplitudes representing within-cluster interaction for cluster profiles are mostly higher that the amplitudes representing
between-cluster interaction for surrogate profiles, at each time instance.

Table 6: Spatio-temporal groupings as obtained for seizure 6 and 7 of patient P093.

P093, Seizure 6 and 7 C1 C2 C3

Postseizure 6, (0–30 mins) RTD, RST LTD, LST LOF, ROF

Preseizure 7, (30 mins–1 hr) RTD, RST LTD, LST LOF, ROF

Preseizure 7, (0–30 mins) RTD LTD, LST, LOF, ROF RST

Postseizure 7, (0–30 mins) RTD LTD, LST, RST LOF, ROF

Postseizure 7, (30 mins–1 hr) RTD LTD, LST, LOF, ROF RST

Postseizure 7, (1 hr–1.5 hrs) RTD LTD, LST, LOF, ROF RST

is greater than 0.4, indicating a lack of strong connectivity
between regions.

For the second level of clustering, as before, let the num-
ber of clusters n2 be fixed at 3. Cluster analysis on the 30 min-
utes segment 2 hours prior to seizure 1 (top dendrogram in
Figure 10) results in the following groups of channels:

Cluster number 1: LTD and LST,
Cluster number 2: RTD and RST,
Cluster number 3: LOF and ROF.
Observe the cluster formed from LTD and LST chan-

nels, in the dendrogram. It is made up of two subclusters,
a large and a small cluster. The small cluster consists of only
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Figure 8: Seizures 4 and 5 of patient P093. Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices
were computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time
interval.

two channels, LTD (3 and 5) and fuses with the other sub-
cluster at a very high fusion level (implying weak link). If
n2 was to be increased to 4, the clustering algorithm would
classify this subcluster as an independent cluster. A detailed
analysis on all seizures in P092 revealed a strong intrachan-
nel correlation (or low fusion level) between channels LTD
(3 and 5) and a weak interchannel correlation with the rest
of the channels. Surrogate analysis also confirmed the im-
balance by having very few rejections for the cluster consist-
ing of LTD (3 and 5) channels. It is obvious that the average

interaction (within-cluster interaction) of the largest clus-
ter would be pulled down if there are subclusters that have
a strong within-subcluster interaction, but a weak between-
subcluster interaction. Consequently, the within-cluster in-
teraction of the largest cluster can be expected to be as
weak as or marginally better than the between-cluster in-
teractions, leading to fewer rejections of the null hypothesis
H0.

This problem can possibly be overcome by increasing the
number of clusters to 4 or more. However, for consistency,
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Figure 9: Seizures 6 and 7 of patient P093: Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices
were computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time
interval.

we let the number of clusters n2 be fixed at 3 in the rest of the
analyses.

Seizures 1, 3, and 4:

For illustration, the cluster-similarity matrices correspond-
ing to seizure 1 is shown in Figure 11. Overall, the spatio-
temporal clustering results for seizures 1, 3, and 4 are sum-
marized in Tables 7 to 9.

From the cluster results of patient P092, we note the fol-
lowing:

(1) The nonfocal zone LTD has a strong coupling with
the LST region. Correspondingly, strong affinity is observed
between RTD and RST as well. These observations are consis-
tent with the observations for P093. However, unlike in P093,
we also see here that LTD connects and disconnects with sev-
eral other channels, depending on the seizure state.

(2) As in P093, we observe an exclusively strong connec-
tion between ROF-LOF regions at all stages surrounding a
seizure. There are few instances where the ROF breaks into a
separate group. We do not have any explanation for this drift
in ROF, at this point in time.
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Figure 10: Dendrograms corresponding to P092, Seizure 1. Top: 2 hours before Seizure. Bottom: 30-minute preseizure.

Table 7: Spatio-temporal groupings as obtained for seizure 1 of Patient P092.

P092, Seizure 1 C1 C2 C3

Preseizure, (1.5–2 hrs) RTD, RST LTD, LST (1, 3, 4) LOF, ROF, LST (2)

Preseizure, (1–1.5 hrs) RTD LST, RST, LOF, ROF, LTD (1, 7) LTD (3, 5)

Preseizure, (30 mins–1 hr) RTD, RST LTD, LST LOF, ROF

Preseizure, (0–30 mins) RTD, RST LTD, LST LOF, ROF

Postseizure, (0–30 mins) RTD, RST LTD, LST LOF, ROF

Postseizure, (30–1 hr) RTD LTD, LST, LOF, RST ROF
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Figure 11: Seizure 1 of patient P092 Number in bracket indicates the 30-minute time interval when the cluster-similarity matrices were
computed. The cluster-similarity matrices represent the probability that two channels share the same cluster label in a 30-minute time
interval.

Table 8: Spatio-temporal groupings as obtained for seizure 3 of Patient P092.

P092, Seizure 3 C1 C2 C3

Preseizure, (1.5–2 hrs) RTD LST, LTD, RST LOF, ROF

Preseizure, (1–1.5 hrs) RTD LST, LTD, RST LOF, ROF

Preseizure, (30 mins–1 hr) RTD, RST LST, LTD LOF, ROF

Preseizure, (0–30 mins) RTD, RST LST, LTD LOF, ROF

Postseizure, (0–30 mins) RTD, RST LST, LTD LOF, ROF

Postseizure, (30–1 hr) RTD, RST LST, LTD LOF, ROF

Table 9: Spatio-temporal groupings as obtained for seizure 4 of Patient P092.

P092, Seizure 4 C1 C2 C3

Preseizure, (1.5–2 hrs) RTD, RST LST, LTD LOF, ROF

Preseizure, (1–1.5 hrs) RTD, RST LST, LTD LOF, ROF

Preseizure, (30 mins–1 hr) RTD LST, LTD, RST LOF, ROF

Preseizure, (0–30 mins) RTD, RST LST, LTD LOF, ROF

Postseizure, (0–30 mins) RTD, RST LST, LTD LOF, ROF

Postseizure, (30–1 hr) RTD, RST LST, LTD LOF, ROF
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(3) Statistics from the surrogate analyses confirmed the
veracity of the technique in most of the cases. As pointed out
earlier, discrepancies occurred in a few instances for the clus-
ters containing LTD (3, 5) channels.

Finally, we summarize the analysis on 2 patients and 8
complex partial seizures:

(1) Contrary to the accepted view that the seizure activity
initiates in the focal zone followed by a gradual propagation
to other regions, we observed that the spatial organization
reflected by EEG activity exhibits either minimal or no pro-
gressive changes from the focal zone (RTD) to other zones
(based on how it groups with other regions in the brain).

(2) Evidence show stronger ipsilateral connection be-
tween the LTD and LST zones compared to the connection
strength between RTD-RST. Statistical analysis to check if a
significant difference in intrahemisphere coupling strengths
exists is needed.

(3) We also found evidence to show a strong cross-
hemispheric activity by observing consistent groupings of the
right and left orbitofrontal lobes at all seizure states.

(4) Patient P093 was seen to have qualitatively lesser
spatio-temporal changes in its P matrices than P092 across
the 30-minute analysis. It remains to be checked whether a
significant change in the spatial organization before seizure
is a pre-requisite to its initiation.

6. DISCUSSION

In this study, we applied the SOM-based similarity index
measure to analyze the mutual interactions among critical
areas of an epileptic brain. Based on the functional relation-
ships, we analyzed long term structural connectivity’s related
to various seizure states by proposing a spatio-temporal clus-
tering model. On analyzing 8 complex partial seizures from 2
patients suffering from temporal lobe epilepsy, we found that
the orbitofrontal regions always exhibit a strong homologous
connectivity while maintaining a low relationship with other
regions. The left subtemporal and the lefttemporal depth re-
gions (nonfocal hemisphere) were identified to have a strong
ipsilateral connection, regardless of seizure states. Finally, we
found that the epileptic focus, namely, the right hippocam-
pus depth region, maintained a relatively strong connection
with the right subtemporal region. Interestingly, the config-
uration of the groupings between different regions always re-
mained the same, regardless of whether the patient was in an
interictal, preictal, or postictal state although the inter-region
connectivity strengths seemed to vary slightly across states.

So far, because of the data size, we were constrained to
analyze only on 8 seizures from 2 patients. Future effort
in this direction would be to apply the proposed approach
on a larger set of seizures and more patients. In addition,
since we analyzed only complex partial seizures, it would
be worthwhile to check the cluster grouping in other types
of seizures such as partial secondary generalized and sub-
clinical seizures.

Recall from the results that certain channels were always
grouped together regardless of the seizure states. This raises a
question if this pattern is unique to an epileptic patient, and
therefore be considered as a blueprint of seizures. While it

is almost impossible to obtain intracranial EEG on normal
subjects, one plausible way to answer this speculation would
be to apply the proposed clustering approach on scalp EEG
data from normal subjects and then analyze the differences
in groupings with that of scalp EEG obtained from seizure
patients.

One of our other main objectives in this study was
to develop engineering tools to determine spatio-temporal
groupings in a multivariate epileptic brain. We proposed a
similarity-based clustering approach and used it to extract
hidden structures from an epileptic brain. One of the ob-
vious limitations with any clustering approach is determin-
ing the optimal number of clusters. Techniques to address
cluster size have been researched, without much success. In
eigenvector-based methods such as spectral clustering, clus-
ter size can possibly be approximated to be equal to the num-
ber of eigenvectors corresponding to significant eigenvalues.
In multiple datasets however, the optimal cluster size need
not have to be the same across different datasets rendering
cluster comparisons weak. In our approach, we analyzed a
large number of data sets and empirically, fixed the cluster
size to 3. This may not be an efficient or a systematic ap-
proach to tackle the problem. Theoretic efforts are needed
to develop a mathematical criterion that allows us to deter-
mine a fixed cluster size, suitable to all groups of data. Be-
sides, exploring tools better than clustering to unravel hidden
patterns in multidimensional time sequences would be very
beneficial.
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