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Abstract—In this paper, we propose K-LLD: a patch-based,
locally adaptive denoising method based on clustering the given
noisy image into regions of similar geometric structure. In order
to effectively perform such clustering, we employ as features the
local weight functions derived from our earlier work on steering
kernel regression [1]. These weights are exceedingly informative
and robust in conveying reliable local structural information
about the image even in the presence of significant amounts of
noise. Next, we model each region (or cluster)—which may not
be spatially contiguous—by “learning” a best basis describing the
patches within that cluster using principal components analysis.
This learned basis (or “dictionary”) is then employed to optimally
estimate the underlying pixel values using a kernel regression
framework. An iterated version of the proposed algorithm is also
presented which leads to further performance enhancements. We
also introduce a novel mechanism for optimally choosing the local
patch size for each cluster using Stein’s unbiased risk estimator
(SURE). We illustrate the overall algorithm’s capabilities with
several examples. These indicate that the proposed method ap-
pears to be competitive with some of the most recently published
state of the art denoising methods.

Index Terms—Clustering, dictionary learning, image denoising,
kernel regression, principal component analysis, Stein’s unbiased
risk estimator (SURE).

I. INTRODUCTION

I
N recent years, affordable hardware has made it possible

for digital cameras to capture images of very high resolu-

tion. With the advent of such high resolution imaging devices,

the signal sensors are becoming increasingly dense in terms of

the number of pixels per unit area of the sensor. This means that

relatively speaking, fewer photons are available to each sensor

element (pixel) and as a result the overall sensor is increasingly

more prone to the effects of noise. Hence, denoising remains

an important research problem in image processing. Before we

deal with the image denoising problem, we first define our ob-

servation model as

(1)
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where is the original pixel intensity of the th pixel observed

as after being corrupted by zero mean independent identi-

cally distributed additive noise . Many recently introduced

denoising methods are patch based in nature [2]–[7]. Hence, it

is useful to formulate the observation model in terms of image

patches as well. Decomposing the image into overlapping

patches, we can also write the data model as

(2)

where is the original image patch with the th pixel at its

center written in a vectorized format and is the observed

vectorized patch corrupted by a noise vector . Denoising the

image is thus solving the inverse problem to estimate the pixel

intensities .

Many linear and nonlinear methods have been proposed

to solve this problem. One of the earlier methods to achieve

considerable success in this domain was the bilateral filter, pro-

posed by Tomasi et al. [8]. While this method received broad

attention in the image processing and computer vision commu-

nities, it fails to perform well in the presence of strong noise.

A wavelet domain denoising method using a scale mixture of

Gaussians (GSM) proposed by Portilla et al. [9] was shown to

perform significantly better than the competing methods at the

time of its introduction and was considered to be the state of

the art until recently. Buades et al. [2], [3] proposed a simple

patch-based algorithm that takes advantage of the presence of

repeating structures in a given image and performs a weighted

averaging of pixels with similar neighborhoods to suppress the

noise. Kervrann et al. [4], [10] considerably improved a local-

ized version of this algorithm using an iterative scheme where

the variance of the intensity estimate at each pixel location

is used to calculate the weights and the region of support for

the averaging process. A more recent method named BM3D,

proposed by Dabov et al. [7], [11], works on the same principle

of using similar patches across the image to perform denoising.

However, in contrast to the other techniques discussed here,

this method performs denoising in the transform domain. This

method of denoising proves to be extremely effective and can

be considered to be the state of the art at this time. Another very

effective method that achieves excellent denoising results is the

K-SVD algorithm proposed by Aharon et al. [5], [12]. In this

method, an optimal overcomplete dictionary of image patches

adapted for the observed noisy data is first determined. As-

suming that each image patch is sparse representable, denoising

is carried out by coding each patch as a linear combination

of only a few patches in the dictionary. In [13], Mairal et al.

show that further performance improvements can be achieved

by learning multiscale global dictionaries. Extension of the
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CHATTERJEE AND MILANFAR: CLUSTERING-BASED DENOISING WITH LOCALLY LEARNED DICTIONARIES 1439

K-SVD method to denoising color images, among other image

processing applications, was also proposed by Mairal et al.

[6]. Another recent method by Takeda et al. [1] addresses

the denoising problem by posing it in a kernel regression

framework. It has been shown in [14]–[16] that several of the

spatial domain denoising methods mentioned earlier, such as

the bilateral filter [8], nonlocal means [2], and optimal spatial

adaptation [4] can be cast in the kernel regression framework,

directly or with locality constraints. Broadly speaking, these

denoising methods inherently share the same regression frame-

work as the steering kernel regression (SKR) method of [1],

differing mainly in the way the kernel or the weight matrix is

calculated. Such kernel-based methods have also been shown

to have an equivalent variational formulation. This relationship

has been studied by Brox et al. [17] for the nonlocal means

(NLM) filter where an iterative version of NLM is motivated

from considering an equivalent variational framework using

gradient descent. Adaptation of the NLM filter in a variational

framework for image denoising and segmentation has also been

done by Gilboa et al. [18]. Barash [19] studied the relationship

between the bilateral filtering process and anisotropic diffusion.

Tschumperlé et al. [20] also reported the equivalence between

variational denoising methods and anisotropic diffusion. In

each of these works, parallel relationships can be shown for

other kernel-based denoising methods which differ mainly in

the way their corresponding kernel weights are calculated.

In this paper we propose a framework for denoising by

learning a suitable basis function to describe image patches.

Use of such basis functions to describe geometric structure has

been previously explored leading to the invention of curvelets

[21], contourlets [22], bandelets [23], etc. All these tools allow

learning of a suitable basis to describe the image, especially the

intricate edge and texture regions. We approach the problem of

denoising through geometric representation by first explicitly

segmenting the image based on the underlying local image

structure. For this, we make use of normalized local kernels

as indicators of the data geometry to segment the image into

structurally similar regions. A suitable basis is learned for

each of the regions to best describe the underlying image data.

Then we estimate the denoised intensity of each pixel in the

image by a regression analysis using the local kernels and

the learned dictionary. Our major contribution in this paper is

the framework which allows us to perform image denoising

through efficient data representation. In this paper, we present

well motivated choices of methods to achieve the objectives at

each step of our denoising algorithm.

The remainder of the paper is outlined as follows: for the

sake of completeness, we briefly describe the SKR method in

Section II as we choose to use the steering weights as the indi-

cator for local geometric structure. We go on to provide motiva-

tions for our method in Section III. Our clustering-based method

which makes use of locally learned dictionaries (hence named

K-LLD) is then discussed in detail in Section IV; and an it-

erative version of this method is presented in Section V. This

is followed by Section VI, where we describe how to extend

our method for better performance by varying the kernel sup-

port size in a data adaptive way. The automatic stopping rule is

then described in Section VII. The work is then experimentally

validated in Section VIII. We finally conclude the paper with

a summary and a few words about possible future research in

Section IX.

II. STEERING KERNEL REGRESSION

While kernel regression is a well studied method in statistics

and signal processing, it was recently used to good effect to ad-

dress image processing problems like denoising, interpolation

and deblurring by Takeda et al. [1], [24]. While many image de-

noising methods can be shown to have a corresponding kernel

regression formulation [3], [14]–[16], the steering kernel regres-

sion (SKR) method is distinguished by the way it forms the local

regression weights. The weights used in each of the methods in

[1], [2], [4], [8] can be considered to be a measure of similarity

of a group of pixels compared to a certain pixel or neighbor-

hood of pixels under consideration. For localized methods, a

local patch of weights around each pixel (henceforth referred

to as kernels) needs to be estimated. In SKR, a robust estimate

of the gradient is taken into consideration in analyzing the radio-

metric similarity of two pixels in a neighborhood (patch). This

information is then used to determine the shape and size of a

canonical kernel (in particular, a Gaussian). The steering kernel

in this particular case can be expressed as

(3)

where describes the similarity of the th pixel with respect

to the th pixel, denote the location of the th and

the th pixels respectively and is a global smoothing parameter

which controls the support of the steering kernel. The matrix

denotes the symmetric gradient covariance matrix formed from

the estimated vertical and horizontal gradients of the th pixel.

It can be expressed as a matrix that allows the Gaussian of (3)

to align with the underlying image structure by a combination

of elongation and rotation operators. Mathematically, it can be

expressed in the form

(4)

where represents the rotation operator that aligns the

Gaussian to the direction of the underlying edge and

denotes the elongation operator, and acts as a scaling

parameter. The weight is calculated for each pixel in a

neighborhood with the th pixel at its center to form

the weight matrix (or kernel).1 The vectorized version of this

kernel we will denote by where .

We refer the reader to [1] for a more in-depth explanation of

the kernel formation process. A local kernel is obtained in this

way for each pixel, providing a similarity measure of a pixel to

its local neighborhood. A few such local kernels are shown in

Fig. 1. It can be clearly seen how the kernels are representative

of the underlying image structure. Furthermore, it can be seen

that different locations in the image having different intensities

1It is worth noting that for each pixel at � in the neighborhood of a pixel
of interest at � , we have a distinct covariance matrix � . As can be clearly
observed in Fig. 1, the steering kernel weights are not simply elliptical in shape
as one might initially expect. They are indeed much more interesting and infor-
mative.
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Fig. 1. Steering weights formed from (a) the original house image; (b) noisy
image with additive white Gaussian noise of standart deviation 15. Note how the
weights roughly represent the underlying image structure in the original image.

but similar underlying structure still result in similarly shaped

kernels.

For the SKR method of Takeda et al. [1], the data is mod-

eled to be locally polynomial where the image is assumed to be

sufficiently smooth (locally) to allow fitting of a polynomial of

some low degree (usually 0, 1 or 2). We can then rewrite the data

model of (2) as

(5)

where the dictionary is a matrix whose columns are formed

from polynomial basis vectors and is the vector of coeffi-

cients. For a second-order polynomial regression framework,

the matrix has the form

...
...

...

(6)

where the spatial location is within a prede-

fined neighborhood of and the operator

represents the raster scanned lower triangular form of a matrix

and is given by (7), shown at the bottom of the page.

Once the local weight matrices are formed using (3), the de-

noising process is carried out by estimating the pixel intensity at

each location in a local polynomial regression framework. This

is done by solving the optimization problem

(8)

where . The denoised estimate of the th pixel is

given by where is the first column of the identity

matrix. The premultiplication by results in picking of the first

element of the vector as the estimated intensity. The weighted

least squares problem of (8) has a solution in

(9)

Note that while the optimization framework of (8) al-

lows us to estimate all the coefficients of the vector

simultaneously, only the first

entry is retained as the estimate of the intensity. The other

coefficients correspond to estimates of higher order derivatives

and are consequently used in obtaining a better estimate of the

steering kernel in the iterative version of the SKR algorithm.

Further details of that algorithm are explained at length in [1].

III. MOTIVATION

In the SKR framework, the weights or kernels locally adapt to

the underlying structure of the image. The weights follow edge

directions and dictate the contribution of various pixels in a local

neighborhood of the pixel to be denoised. However, this regres-

sion framework has two inherent limitations: the basis function

remains the same (polynomial) over the entire image, and the

order of regression is constant for the entire image. These draw-

backs force both smooth and textured regions of any image to be

reconstructed using the same basis vectors (and, hence, the same

order of regression). Our method aims to alleviate these prob-

lems by the use of regression where both the type and number

of basis vectors are dictated by the given image data.

In [1], the authors work primarily with regression models of

orders 0, 1, and 2. They show that the second-order regression

generally leads to a better denoising performance, as compared

to lower orders. In their case, the second-order polynomial dic-

tionary is formed of six columns, consisting of vectors

corresponding to the zeroth-, first-, and second-order terms of

a polynomial expansion (in two spatial dimensions). The es-

timated is a vector of six coefficients, in keeping with the

number of columns in the dictionary. In their pointwise recon-

struction scheme, the authors retain only the first coefficient as

the estimated intensity. This can be shown to be a special case

of a patch-based version of the same framework. More specifi-

cally, once the parameters are estimated, one can proceed to

reconstruct a vectorized version of each patch in the image as

. Now, if just the center pixel of the estimated patch is

retained, we get the pointwise reconstruction scheme

where (10)

When is the polynomial basis, it turns out that ,

leading exactly to the same pointwise estimate as in [1]. Hence,

one can easily extend the SKR method to perform denoising by

(7)



CHATTERJEE AND MILANFAR: CLUSTERING-BASED DENOISING WITH LOCALLY LEARNED DICTIONARIES 1441

Fig. 2. Block diagram of our algorithm.

estimating patches in the image. Each of these estimated (over-

lapping) patches, written in a vectorized form as , is then a

linear combination of the columns in the dictionary . One can

then imagine each of the columns of the dictionary to be a vec-

torized version of some patch of pixel intensities. This inter-

pretation then becomes somewhat similar to the recently intro-

duced K-SVD algorithm developed by Aharon et al. [5]. How-

ever, in their work the authors develop an overcomplete dictio-

nary, which is learned to best represent the patches of pixels

in a given image. This method tends to find the best global

overcomplete dictionary and represent each image patch as a

linear combination of only a few dictionary vectors (atoms).

The coefficients of the linear combination are found through

a sparse coding process. Methods of learning such a globally

overcomplete dictionary that best describes patches in any given

image have been actively researched for various image pro-

cessing tasks [25]–[27]. One can easily think of such a learned

global overcomplete dictionary to be local in nature where, for

each patch, the dictionary consists of only the basis vectors (or

atoms) used for sparse coding. Hence, each image patch has a

local dictionary which is a much smaller subset of the global

dictionary.

This brings out the inherent similarities and dissimilarities

of the two successful denoising techniques, namely the local

kernel regression-based methods and those that learn a global

data-adaptive dictionary. Our work introduces a general de-

noising framework that bridges the gap between these two

techniques. It also addresses the question of efficient data

representation through a simple preprocessing step of data clus-

tering. Data representation has been the objective of transforms

like curvelets [21], contourlets [22], bandelets [23], etc., where

the main aim is to define geometrically informative bases.

Such bases form dictionaries which are not data dependent

and hence can be termed as fixed dictionaries. Contrary to

such approaches, our method learns local dictionaries that

will best represent each image patch. Moreover, we note that

patches of similar geometric structure should ideally have

similar dictionaries. In our framework, we take advantage of

such similarities in learning the local data adaptive dictionaries

by grouping together regions of similar geometric structure.

Finally, we perform denoising through data adaptive kernel

regression using the local steering weights.2 While our method

2Kernels from other methods such as those presented in [2], [4], [8] can
be used as well. However, our choice of the steering kernel is largely moti-
vated from its robustness to noise. Invariance to intensity difference is another
property of the normalized steering weights which proves advantageous to our
method. This will become clearer later in Section IV-A.

is directed specifically at denoising, a similar methodology has

been employed by Hong et al. [28] to build a multiscale hybrid

linear model for image encoding.

IV. CLUSTERING-BASED DENOISING (K-LLD)

Our algorithm aims to improve on the successful kernel re-

gression framework by eliminating the limitations mentioned

before; namely, the static nature of the dictionary, and the con-

stancy of the approximation order across the image. We go about

this task with a clustering-based algorithm which consists of

three stages (Fig. 2): the clustering step where the image is

clustered using features that capture the local structure of the

underlying image data (patches of pixels from the image), the

dictionary selection stage where we form an optimized dictio-

nary that adapts to the geometric structure of the image patches

in each cluster; and, finally, the coefficient calculation stage

where the coefficients for the linear combination of dictionary

atoms are estimated, subject to the (steering) kernel weights. In

the following sections, we describe and motivate each of the

above stages in detail.

A. Clustering

Feature Selection: In the initial stage, our algorithm attempts

to perform clustering to identify regions of similar structure in

the image. In the existing literature, a wide variety of clustering

algorithms are available [29]. To perform clustering we need

to first identify informative features from the image. While the

choice of features remains an open research problem, in many

cases the features are directly computed from the input image.

Commonly used low level features to identify similar pixels (or

patches) are pixel intensities [2], [8], [28], gradient information

[30], etc., or a combination of these. The use of such features

directly from the input image is not advisable for our denoising

problem due to their instability in the presence of noise. How-

ever, it has been observed in [1] that the steering weights com-

puted in a neighborhood are robust to the presence of significant

amounts of noise. These weights are roughly representative of

the underlying local data structure. Moreover, the normalized

weights (denoted by ) exhibit invariance to

intensity difference between image patches. Hence, we use a

vectorized version of these normalized weights as features to

perform clustering. Thus, clustering is performed using feature

vectors of size for each local steering kernel computed

over a window3 centered at pixel in the image. That

is to say, every pixel of the image is mapped to a feature vector of

size . This is a transformation that maps the pixel data into

a much higher dimensional space in which the clustering takes

place. At the end of this stage we expect the image to be divided

into not necessarily contiguous regions , each containing

patches of similar structure. Hence, the entire noisy image

can be thought to be composed of a union of such clusters

(11)

3In this paper, we will interchangeably refer to this window of pixels as a
patch. The size of such a patch and the kernel support size are the same as the
size of the window.
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Fig. 3. Performance of clustering using the steering weights as features. Notice
how the clustering takes into account the geometric structure of the underlying
image even in the presence of additive white Gaussian noise of standard devi-
ation 15. (a) Parrot image, (b) noisy image, (c) clustering of noise-free image,
(d) clustering of noisy image.

Fig. 4. Clustering results by K-Means algorithm on the house and Barbara im-
ages, corrupted by white Gaussian noise of standard deviation 15. Notice how
edges and patterns of a certain kind are clustered together even when they have
different intensities. (a) Noisy house image, (b) noisy Barbara image, (c) clus-
tering of house image, (d) clustering of Barbara image.

Examples of such clustering can be seen in Figs. 3 and 4. While

the clusters are formed of patches, for simplicity, we resort to

an abuse of notation in (11) by denoting to signify

belongs to the cluster . We can take this liberty since each

patch in an image is uniquely identified by the index of its center

pixel.

Distance Metric: Before we proceed to perform clustering on

the weights, we need to specify a metric to calculate the distance

between two weight functions (features). The easiest measure

of distance between the steering weights of two patches would

be to calculate the or the distance between them. In our

work we use the norm as our distance metric. However, one

may argue that such a choice may not be ideal as neither of

these measures take into account the spatial location where the

weights differ. One can then consider calculating the distance

using a weighted or norm. Other measures of similarity

such as taking the exponential of the negative weighted norm

(where the measure is restricted to values between 0 and 1), or

the Mahalanobis distance can also be considered.

The choice of the best distance metric to quantify the simi-

larity between the kernel functions and the reasons to use such a

metric remain open questions. In our case, for now we work with

the simple distance which proves to be an effective distance

metric to perform satisfactory clustering for our algorithm. Our

experiments have shown that resorting to other metrics like the

weighted norm and the Kullback-Leibler (K-L) divergence

[31] have negligible effect on the final denoising result, while

the latter proves to be much more computationally intensive. It

is mainly due to this reason that we refrain from diverting much

attention to the open problem of better distance metric selection.

Clustering Algorithm: While there are many clustering al-

gorithms available in the literature, we need a method that is

relatively fast and performs satisfactory segmentation of the

image into geometrically similar regions based on the steering

weights. For our method, we make use of a version of the stan-

dard K-means algorithm [32] by Lloyd [33]. This clustering

algorithm is one of the simplest unsupervised methods where

the motivation of clustering is to segment the image into some

prefixed number of clusters such that for each class, the

squared distance of any feature (normalized weight) vector to

the center of the class is minimized. If we use the distance

as our metric, the method aims to minimize the intracluster vari-

ance. K-means then aims to find an iterative solution to compute

the class centers (and, hence, the classes and the mem-

bership of each that minimizes the objective function

(12)

where is the mean vector for the th cluster. Figs. 3 and

4 display the discriminative capabilities of the normalized

steering weights as features when used with the K-Means

algorithm for clustering. We can see that the flat regions are

clustered in the same class, irrespective of the difference in

intensities in different regions. Moreover, edges along a partic-

ular direction (for the house image) and texture of a particular

nature (for the parrot and Barbara images) are associated with

the same cluster. This clearly shows how the clusters are formed

by considering geometric similarity between image patches,

even in the presence of considerable noise.

However, this clustering is still not perfect. The effect of noise

on the clustering algorithm is brought to light in Fig. 3 by com-

paring the image segments obtained from the noisy and the

noise-free parrot images. It can be seen that regions of fine tex-

ture such as the cheek area of the parrot are misclassified with

the background in the noisy case. Such erroneous classifications
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are also noticed in Fig. 4. Notice how the top of the table in the

Barbara image, containing very fine periodic structure, is clas-

sified together with the flat background region. We observe a

similar effect for the house image where the facade of the house,

having fine structure, is grouped together with the smooth sky

region. This failure can be attributed to the fact that in the pres-

ence of considerable noise, the steering weights may still render

very fine structure indistinguishable from smoother regions cor-

rupted by noise. This is demonstrated in Fig. 1 by the similarity

in structure of the steering weights for pixels in the sky and the

facade in the noisy house image. While this is certainly some-

thing that is not desired from the clustering stage in an ideal

scenario, we must evaluate the clustering performance taking

into consideration the effect of the noise. We find that the de-

generation is quite graceful since the finer details are not easily

distinguishable even by the human eye. In general, the advan-

tages of our clustering scheme, especially under strong noise,

easily outweigh these shortcomings. This can be readily seen

from Figs. 3 and 4, where the majority of the clustering is true

to the underlying image geometry.

B. Dictionary Selection

Once the clusters are formed, we proceed to form a dictio-

nary best suited to each cluster independently. For each cluster

we intend to find a dictionary that best describes the structure

of the underlying data within that cluster. In other words, for

each image patch in a cluster , we want to find an estimate

which best approximates the input vectorized patch . Mathe-

matically, we intend to find the optimal and to minimize

the cost function

(13)

where is the mean vector of the set

denotes the dictionary which best represents the

patches in cluster and denotes a vector of coefficients for

the linear combination of dictionary atoms to compute . Note

that this allows us to learn a dictionary whose form is dictated

by the underlying data and not restricted to be polynomial, as

is the case for SKR [1]. This can in effect be thought of as

progressively selecting one atom at a time such that the squared

reconstruction error is minimized with each atom. This can

be shown by rewriting (13) as

... (14)

where performs centering of the data by mean

subtraction and is the total number of atoms needed to fully

describe all . Choosing a dictionary to minimize this

cost function is nontrivial since the parameters are also un-

known. One way to estimate these two unknowns is by using a

numerical method of alternate minimization where we first as-

sume one of the two variables (say ) to be fixed and mini-

mize the cost function of (14) with respect to the other ( in our

case). Once a minimum is obtained for , it is kept fixed and

we minimize with respect to . This process is carried on it-

eratively. However, such a method requires good initial guesses

for each of the unknowns. To circumvent this difficulty, we ap-

peal to the variable projection approach [34] where we first write

down an analytical expression for the estimate of assuming

to be known. The estimate of that minimizes the cost

function in (13) is given by

(15)

This solution is then plugged into (13) and we reformulate the

problem as that of minimization with respect to alone. To

simplify the problem further, we enforce the dictionary to be

orthonormal, transforming the optimization problem of (13) into

(16)

Here, is the matrix where each column is a vector from the

set of all vectorized patches and denotes

the Frobenius norm for matrices. This non-iterative approach of

variable projections has been known to contain the same fixed

points as solving the original optimization of (13) assuming

quite general smoothness conditions described in [34] and [35].

Moreover, constraining the dictionary to be orthonormal sat-

isfies the condition of having constant rank which is as-

sumed by the variable projection method.4

The problem of dictionary learning, as expressed in (16), es-

sentially boils down to finding the principal components of the

(centered) data matrix . However, we run the risk of overfit-

ting to the noise since the data vectors are noisy. To overcome

this problem, we restrict the number of atoms to be the first

principal components so that we do not overfit to the noise. The

optimization framework that we essentially work with is thus

subject to

(17)

4The variable projection method assumes that the matrix� be of constant
rank, even if not full rank. In our case, since� is orthonormal, the regularity
condition is automatically satisfied.
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Fig. 5. Data adaptive dictionary for each of the clusters of the house image
that is corrupted by additive white Gaussian noise of standard deviation 15. The
patch size and hence size of each atom is 11� 11. Note that different clusters
may require different number of atoms and how the atoms represent the data
structure of the corresponding cluster.

where is the number of pixels in each patch, is a constant

and is the standard deviation of the corrupting noise which

is assumed to be known or can be estimated [4], [36]. How-

ever, instead of solving (17) directly, we select the top most

informative principal components to reconstruct a rank ap-

proximation of . The optimal choice of can be easily

obtained from the PCA framework as the solution of the con-

strained optimization problem

such that (18)

where are the singular values of

the data matrix obtained directly from the principal com-

ponent analysis framework. The motivation for the constraint

term of (18) is to find the principal components that contribute

towards explaining the variance in the data that arises due to the

presence of noise and discard them from the dictionary.

Once the dictionary is learned for each cluster, we can rep-

resent each of the vectorized versions of the noisy patches as a

linear combination of the atoms in the dictionary in the form

(19)

where represents the mean patch of the th cluster. As pre-

viously mentioned, the value of that satisfies (18) may vary

across clusters. This is illustrated in Fig. 5.

At this point, the coefficients still have to be determined.

One way of obtaining the coefficients would be by using (15).

While such a formulation would stay true to the variable projec-

tion framework, we note that it does not take into account the

local kernel weights for each patch. This is necessary since

the dictionary atoms that best describe the cluster need not nec-

essarily be optimal for the patches that lie at the cluster bound-

aries, where important geometric transitions (such as changes

in texture, occlusions, etc.) between regions appear. Moreover,

patches that may have been misclassified due to the presence of

noise will also not be reconstructed effectively. Local similarity

information in the form of the kernels are thus useful for better

restoration, especially at the cluster boundaries. We describe the

coefficient calculation procedure using the local kernels in the

next section.

C. Coefficient Calculation

Once the dictionary is formed for each cluster, we proceed to

estimate the parameters under a regression framework. We

pose this as an optimization problem

(20)

where is the mean subtracted vectorized ver-

sion of the th patch in the image. Equation (20) is the same

cost function for the SKR problem in [1], except that is

no longer a fixed polynomial dictionary of a certain order. The

dictionary now is adapted to a specific class of image structure

that is captured by each cluster. Furthermore, the number of

principal components or dictionary atoms that will be needed

to fit a prespecified percentage of data varies across the dif-

ferent clusters, as shown in Fig. 5. Here, for example, the smooth

flat regions of the first cluster need only one dictionary atom

to well describe each patch whereas regions with sharp edges

and texture may require more atoms. This results in a varying

order of regression across locations depending on which cluster

each pixel belongs to. Equation (20) is simply a weighted least

squares problem which has a solution in

(21)

Once the parameters are estimated, we can reconstruct the

target patch as

(22)

The patches thus estimated are overlapping, so we should ide-

ally optimally combine the overlapping regions somehow to

form the final image. However, since the parameters are esti-

mated taking into account the local weights, the pixels in each of

the estimated patches have a high confidence in regions where

the local weights are high. As a result, the patch reconstruction

form of (22) is more accurate along the edge directions and to-

wards the center of the patch under consideration (that is, wher-

ever the local weights are strong). This is especially true for the

patches that lie near the boundaries of a cluster,5 or those that

may have been misclassified. Hence, instead of combining the

different estimates of the same pixel, we simply retain the in-

tensity estimate for which the pixel is at the center of the patch

being restored. This is done by simply using the center pixel of

each estimated patch, as shown in (10). The combination of a

5Clustering using image patches allows us to associate with each cluster a
region in the image formed by the center pixels of the member patches. For our
work, any patch that has any part of it lying outside this region is considered a
borderline patch (or equivalently borderline point).
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local regression model to obtain the parameters and reten-

tion of the center pixel in each reconstructed patch builds into

the method a tolerance to errors in the classification stage.

As mentioned before, the outlined method results in different

orders of regression in each cluster depending on the underlying

image characteristics. The order of regression may be quite high

at certain locations, especially in the texture regions. Moreover,

the weight matrix can be singular, as can be seen in Fig. 1 where

in some regions only few of the weights in the local kernels

have any significant contribution. To make sure that the term

does not become ill-conditioned, we truncate

the dictionary size such that the condition number of the term

to be inverted remains below a certain threshold. Note that this

would involve checking the condition number for each pixel

location, making the process extremely inefficient. However, we

make use of the fact that the weight matrices in each cluster

should be quite similar in nature, and, hence, we can check the

condition number of for a much smaller subset

of pixels in each cluster and determine the dictionary size. This

truncated dictionary is now used as the dictionary for the whole

cluster and the parameters are calculated using (21).

It is worth pointing out here that though we make use of

kernel regression to estimate the coefficients for the linear com-

bination shown in (19), this coefficient calculation process can

very easily be replaced by another method. In our work, we

have experimented with a version of orthogonal matching pur-

suit (OMP) [37] that takes into account the weight matrix to

estimate the coefficients. While the resulting denoised image

is similar in nature, OMP proves to be much slower than per-

forming regression using the steering kernels.

V. ITERATIVE DENOISING

In this section, we explain how the clustering-based method

described above can be iterated to improve the final denoised

image. Fig. 6 shows the block diagram of the entire method.

The motivation to iterate the method stems from the fact that

presence of high amounts of noise adversely affects the calcula-

tion of the local image gradients, which in turn affects the cal-

culation of the steering weights. This can hamper the ability of

the clustering algorithm to properly segment the image into re-

gions of similar structure. Furthermore, the dictionary selection

process also becomes influenced by noise. Considering these

effects, it makes sense to assume that the first two stages of the

algorithm work better on images with less noise. Once all the

three stages of the algorithm, namely clustering, dictionary se-

lection, and coefficient calculation stages are run on the input

noisy image, we get an output image where the noise is con-

siderably reduced. The steering weights are then recalculated

on this output image. These new weights are then used to per-

form clustering of the denoised image into similar regions as de-

scribed in Section IV-A. Once the clusters are formed with the

new weights, we use patches from the updated image to form

dictionary atoms in the way outlined in Section IV-B. We thus

choose the principal components from the updated image, which

is a truer representation of the underlying data due to the rela-

tively smaller amount of noise present. Finally, the new dictio-

nary and the updated weights are used to perform the final stage

Fig. 6. Block diagram of the iterative version of our algorithm.

Fig. 7. Illustration of how the MSE varies with iterations for additive white
Gaussian noise of standard deviation 15. The MSE of the input image was ap-
proximately 225 in each case.

of kernel regression as explained in Section IV-C. It is impor-

tant to point out, however, that unlike the previous stages, we

perform the final denoising using the original noisy image. In

our experiments, we found that performing denoising with the

updated weights on the original image better preserves edges

and texture than denoising the output of the previous iteration.

Fig. 7 illustrates the usefulness of iterating the current frame-

work. Here we see that there is usually a sharp drop in mean

squared error (MSE) from the initial MSE of 225 in the first

couple of iterations. The minimum MSE was reached in the

second iteration for the parrot and the man images and in the

third iteration for the house image. On iterating further, the de-

noised image gets blurred in most cases, which results in a rise

in MSE. This is much more noticeable in images containing tex-

ture, as in the parrot and man images. This necessitates a stop-

ping criterion for the iterative framework. A resolution of this

question based on Stein’s unbiased risk estimator (SURE) [38]

is presented later in Section VII.

VI. DATA-ADAPTIVE KERNEL SUPPORT SIZE

In the previous sections, we motivated and presented an algo-

rithm where the image is segmented into regions of similar geo-

metric structure and an optimal dictionary is learned on each of

the segments. A kernel regression is then performed to finally

denoise the image. We also discussed how this process can be

carried out in an iterative fashion. One factor which can strongly

affect the performance of the resulting algorithm is the choice

of the support size of the kernel. The size of the kernel has to

be chosen keeping in mind the amount of noise present as well

as the image structure that we are dealing with. Images con-

sisting mainly of smooth regions will be denoised better when

the kernel has a large support (i.e., when the number of pixels

considered for denoising is large) whereas texture regions

are typically restored better by smoothing over smaller regions
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(fewer number of pixels). This leads us to extend our method

to incorporate a variable kernel support (which we also refer to

as window size or patch size) in keeping with the underlying

data structure. Thus, we want to adaptively control the number

of pixels that will be considered in the denoising process of

each pixel depending on the local geometric structure of the

image. Such an optimization has been previously considered by

researchers to obtain improved performance [4], [39]. In our ap-

proach, we readily take advantage of the fact that our method

works by clustering the image into regions of similar under-

lying geometry. Since the optimal kernel size depends on the

underlying structure, we can proceed to optimize the window

size for each cluster. This leads to finding a data adaptive dic-

tionary for each cluster, where even the size of the atoms differ

in each cluster. In a sense, we now further optimize the dictio-

nary for each cluster.

Before we move ahead with determining the optimal window

size in each cluster, we need to first identify a measure of the de-

noising performance for each cluster. We choose to quantify the

denoising performance in each cluster using the mean squared

error (MSE) measure. Although, in the absence of ground truth

calculating the MSE is not directly possible, an approximation

of the MSE can be used to evaluate the denoising performance

for a specific window size. In [4], Kervrann et. al approximate

the local MSE by the variance of the intensity estimate at each

pixel to determine the optimal neighborhood over which de-

noising is to be performed. They show that a function of the

variance can be used as an indicator of an upper bound for the

MSE. For our work, we estimate the MSE using SURE [38]. The

use of SURE to effectively optimize parameters for denoising

has also been reported in [40]–[43]. In our case the parameter

to optimize here is the support size of the local kernels within a

cluster.

A. Stein’s Unbiased Risk Estimate (SURE)

In [38], Stein presented a method by which an unbiased es-

timate of the MSE can be obtained, considering the corrupting

noise to be sampled from a normal distribution. We first need to

formulate an analytical expression for our pointwise denoising

process. To do this, we define a local operator that quantifies

the noise suppressed at each pixel location such that

(23)

Then, from the SURE framework [38], we can get an estimate

of the MSE as

(24)

where denotes the number of pixels (i.e., set cardinality) of

the th cluster, is the standard deviation of the additive noise

and denotes the gradient of with respect to

the th pixel. From (22) and (23), we get the expression

Fig. 8. Actual and estimated MSE as a function of the window size in different
clusters for the house image with additive white Gaussian noise of standard
deviation 15. The corresponding clusters are shown above.

(25)

Treating as a constant for each cluster, we calculate the

gradient with respect to the th pixel

(26)

where . In essence, pre

and post multiplication with the vector reduces the first part

of the above expression to simply selecting the central element

of the matrix . For each cluster, the estimated MSE from (24)

then takes the form

(27)

B. Choosing the Optimal Kernel Support Size

Once we have a way of estimating the MSE for each cluster

(assuming that is either known a priori or can be estimated

[4], [36]), we can select an optimal kernel size for each cluster

which leads to the best reconstruction (in terms of the MSE).
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Fig. 9. Comparison of denoising results on noisy parrot image corrupted by additive white Gaussian noise of standard deviation 25. (a) Original image, (b) noisy
image, (c) GSM [9] (MSE 93.87), (d) BM3D [7] (MSE 88.82), (e) iterative SKR [1] (MSE 99.96), (f) K-SVD [5] (MSE 101.54), (g) K-LLD (fixed kernel support
size) (MSE 96.95), and (h) K-LLD (adaptive kernel support size) (MSE 94.57).

The algorithm then works by finding not just the most descrip-

tive dictionary but also doing so at an optimal window size,

both of which are dictated by the structure of the underlying

image data. This leads to an optimal reconstruction (in terms

of MSE) in each cluster. In this spatially adaptive method, the

steering kernels are initially formed using a very small window

size (e.g., 5 5). The initial kernel size is chosen taking into ac-

count the fact that too small a kernel size might result in failure

to capture the underlying image structure. These initial steering

kernels are used to segment the image into regions of similar

geometric structure. A small kernel size (and, hence, smaller di-

mension of the feature) here also results in a relatively quicker

clustering. Once the image is segmented we begin the process

of finding the optimal window size for each cluster. For this, we

start with the smallest window size and calculate the optimal

dictionary at that particular size and estimate the MSE of the

restored cluster. This process is then performed with a growing

window size, terminating when the estimated MSE begins to in-

crease. The optimal window size and the reconstruction which

yields the best estimated MSE is thus chosen for each cluster.

Fig. 8 shows the actual and estimated MSE of each of the clus-

ters, with differing window sizes for the house image corrupted

by additive Gaussian noise of standard deviation 15. It can be

seen that the MSE changes with changing window sizes. We

rollback the window size when the MSE begins to increase and,

hence, an estimate of the MSE for all window sizes is not neces-

sary. This spatially adaptive method introduces a feedback loop

between the output of the coefficient calculation stage and the

input of the dictionary selection stage.

While using a data adaptive window size allows us to better

adapt to the underlying image structure, it also allows us to

perform denoising without having to decide on the optimal

patch size, thus reducing the number of parameters. Moreover,

this adaptive framework allows us to decrease the time spent

in the clustering stage. We can now perform the clustering

based on features (normalized steering kernels) obtained with

the smallest window size. This reduces the clustering time by

an order of magnitude since K-Means performs clustering in

(NPK), where is the size of each feature vector, is the

total number of features and is the number of clusters.

VII. STOPPING CRITERION

Once our iterative denoising framework is in place, we need

to determine a stopping criterion for the iterations. As illustrated

in Fig. 7, the MSE of the denoised output reaches a minimum

and then starts increasing with further iterations. We thus need

a stopping rule which will allow us to determine the best result

(in terms of MSE) and discontinue further iterations. To iden-

tify when the best result has been achieved, we make use of

the fact that our framework already estimates the squared error

for each pixel location in order to estimate the MSE for each

cluster. One way to define a stopping criterion then is to estimate

the MSE using the SURE framework for the entire image and

stop iterating when the estimated MSE starts increasing. How-

ever, we can take further advantage of our framework by deter-

mining a stopping criterion for each cluster instead. We make

use of the estimated MSE for each cluster and stop processing

a cluster when the estimated MSE for that particular cluster in-

creases. But this method cannot be used directly since there may

be pixels whose cluster memberships change over iterations.

Hence, we need to recalculate the estimated MSE from the pre-

vious iteration for each of the clusters formed in the current it-

eration. To do this we need to keep track of the pointwise error
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Fig. 10. Comparison of denoising results on noisy man image corrupted by additive white Gaussian noise of standard deviation 25. (a) Original image, (b) noisy
image, (c) GSM [9] (MSE 93.12), (d) BM3D [7] (MSE 96.82), (e) iterative SKR [1] (MSE 104.75), (f) K-SVD [5] (MSE 113.64), (g) K-LLD (fixed kernel support
size) (MSE 101.46), and (h) K-LLD (adaptive kernel support size) (MSE 99.98).

estimates from the previous estimate as we go into the next iter-

ation. Once the image is segmented into clusters in a particular

iteration, we recalculate the estimated MSE from the previous

iteration for each cluster by taking the mean of the estimated

squared errors of each cluster member. Once the cluster is de-

noised in the current iteration, we can obtain an estimate of the

cluster MSE for the updated denoised result. The MSE of the up-

dated result is then compared to that obtained from the previous

iteration and the current denoising result is rejected if the esti-

mated MSE is found to increase. This forms the stopping crite-

rion for each cluster. Such a mechanism allows us to continue it-

erating over those clusters where an improvement in MSE might

still be observed. Once all the clusters have reached their respec-

tive minimum estimated MSE, the iterations are stopped and the

final denoised image is obtained. This stopping criterion proves

to be more effective than a simple stopping rule based on the

estimated MSE for the entire image since we allow the MSE to

be minimized per cluster.

VIII. RESULTS

To validate our method, we performed various experiments.6

We artificially added zero mean white Gaussian noise of dif-

ferent standard deviations to produce noisy images. We com-

pare the results obtained by two versions of our K-LLD method,

in the case where the kernel support size is fixed and the case

where the support size is allowed to vary across clusters de-

pending on the underlying data geometry. For the fixed window

size version, we used a patch size typically between 11 11

and 15 15 for our experiments, depending on the amount of

6Further experimental comparisons can be viewed at http://www.soe.ucsc.
edu/~priyam/K-LLD/

noise present in the image. The parameters that can be tuned for

our method are the number of clusters for the clustering

stage and the threshold on the condition number of the inverting

term of (21). For the parrot image shown in Fig. 9, the method

was found to give the best results when the image was divided

into 10 classes. The man and house images of Figs. 10 and 11

were found to produce the best results using 5 clusters. Although

is a tunable parameter, our experiments with different im-

ages across various noise variances have revealed that for most

images, denoising performance close to the least MSE can be

achieved using anything between 5 to 10 clusters.7 This, there-

fore, does away with the necessity of tuning for most images.

However, for illustrative purposes, in this paper we show results

using a value of that allowed us to achieve the least MSE.

Moreover, to eliminate dependence on the random initialization

of cluster centers for the K-Means algorithm, we perform clus-

tering using K-Means multiple (typically 3) times and use the

best clustering that produces the least cost from (12). This is

done only for the first iteration of our algorithm. To reduce the

running time, the cluster centers from an iteration are used as ini-

tialization for the clustering stage of the next iteration. For the

dictionary selection stage, the parameter that needs to be spec-

ified is the constant of proportionality from (18) that controls

the number of atoms in the dictionary. The best results were ob-

tained when was fixed to be 2.5 for all images, across all noise

variances. Apart from this, the bandwidth or the smoothing pa-

rameter for the steering kernel also needed to be tuned for op-

timality. This parameter was tuned heuristically to produce the

best results in terms of MSE.

7A graph showing the MSE obtained using different numbers of clusters on
different images can be found at http://www.soe.ucsc.edu/~priyam/K-LLD.
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Fig. 11. Comparison of denoising results on noisy house image corrupted by additive white Gaussian noise of standard deviation 25. (a) Original image, (b) noisy
image, (c) GSM [9] (MSE 49.16), (d) BM3D [7] (MSE 33.64), (e) iterative SKR [1] (MSE 47.69), (f) K-SVD [5] (MSE 41.09), (g) K-LLD (fixed kernel support
size) (MSE 46.47), and (h) K-LLD (adaptive kernel support size) (MSE 45.18).

Apart from the smoothing parameter for the kernel calcula-

tion step, all other parameters were kept unchanged for the adap-

tive window size version of our method. For this method, we

start off with an initial window size of 5 5 to calculate the

steering weights and perform clustering. For each cluster, the

window size is then increased gradually (by 2 pixels in both hor-

izontal and vertical directions to 7 7, 9 9, etc.) and a new

dictionary is learned. We bound the window size growth to a

maximum of 21 21. Finally, an estimate of the MSE is ob-

tained for the restored pixels in the cluster. We then retain the

estimates that are obtained with the kernel support size at which

the least estimated MSE is obtained. The results obtained for

the parrot, man and house images corrupted by additive white

Gaussian noise are shown in Figs. 9–11. Notice how the adap-

tive window size is able to restore more structure in the images,

especially the cheek region for the parrot and hair and other tex-

ture regions for the man image. An improvement in terms of

MSE is also achieved. This can be expected since we are lo-

cally minimizing the MSE for each cluster. In each of these ex-

periments the noise variance was assumed to be known and this

information was used to estimate the optimal kernel size using

the SURE framework.

The time required by our method to denoise an image de-

pends on the number of clusters and the noise variance

since stronger noise typically requires more iterations, as can be

expected. Denoising the 256 256 pixels of the parrot image

corrupted by additive white Gaussian noise of standard devi-

ation 25 using 10 clusters requires 4 iterations. Our nonopti-

mized MATLAB implementation takes approximately 692 s.

The house image of the same dimensions takes 540 s to de-

noise using 5 clusters. The clustering stage for our method ac-

counts for approximately 8.5% and 6.6% of the time required

to denoise the parrot and the house images respectively. The

dictionary learning part using PCA proves to be the most time

consuming stage with approximately 30% and 44% of the time

being taken for the two images respectively. This can be ex-

pected since the dictionary needs to be learned at different scales

for our method. The kernel computation takes up approximately

24% of the time in each of the images. While our method can

take a relatively long time to run for large images, it should

be noted that our method can be easily parallelized to take ad-

vantage of modern processors with multiple cores. This can be

done because the last two stages of our algorithm, namely dic-

tionary learning and coefficient calculation, are performed inde-

pendently for each cluster.

We compare our denoising results to some recently proposed

spatial and transform domain denoising methods, namely GSM

[9], ISKR [1], K-SVD [5], and BM3D [7]. To be fair, we tune

the required parameters to produce the best results in terms

of MSE (or equivalently PSNR) for each of these methods. A

comparison of these methods using five independent realiza-

tions of Gaussian white noise (for each choice of standard de-

viation) are tabulated in Table I where we present the average

PSNR of the denoised outputs obtained from various methods.

It can be seen that our method compares well or even betters, in

some cases, the denoising result of the spatial domain methods

(namely ISKR [1] and K-SVD [5]) in terms of PSNR, especially

in higher noise cases. We note that the transform domain method

of BM3D [7] consistently outperforms all the other methods in

terms of PSNR. However, qualitatively, our method is capable

of better restoration in the texture regions. This can be seen

in the hair and the texture of the seat in Fig. 10. Further, we

note that the patch-based method of K-SVD performs better de-

noising compared to our method for images that lack a lot of

texture (e.g., the house image). However, in high noise cases,

our method appears to perform better restoration of texture.
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TABLE I
DENOISING PERFORMANCE OF SOME RECENT METHODS [1], [5], [7], [9]
COMPARED TO OUR DATA ADAPTIVE WINDOW SIZE METHOD BASED ON

RESULTS OBTAINED ON DIFFERENT IMAGES WITH ADDITIVE WHITE GAUSSIAN

NOISE OF DIFFERENT STANDARD DEVIATIONS ���. THE RESULTS NOTED ARE

THE AVERAGE PSNR OBTAINED BY THE METHODS OVER FIVE INDEPENDENT

NOISE REALIZATIONS FOR EACH �

IX. CONCLUSION

In this paper, we presented a general framework for image de-

noising which works by learning a geometric descriptor using

local kernels. The resulting approach falls in a class between

methods that can be categorized as kernel regression based [1],

[2], [4], [8] and those that aim to learn the best global dictionary

[5], [25]. We go about our approach by clustering the image

using meaningful features that are able to capture the under-

lying geometry in the presence of noise. A dictionary is learned

for each of the clusters and a generalized kernel regression is

performed to produce a denoised estimate for each pixel. Fur-

ther degrees of freedom are introduced into the method by con-

sidering a varying kernel support size which is automatically

learned from the image structure in each cluster. In this paper

we present a particular way of carrying out each of the three

stages of our method, namely clustering, dictionary learning,

and coefficient calculation. However, each of these blocks can

be replaced by alternate approaches that satisfy similar objec-

tives. Our framework is evaluated experimentally and compared

to some of the state of the art methods for denoising. It can be

seen that the performance of our approach to denoising is com-

petitive, qualitatively as well as quantitatively.

For optimal performance, it is necessary to tune a few pa-

rameters of our framework. This is indeed undesirable and our

ongoing research aims at addressing this issue. Although our

method is not very sensitive to the number of clusters when it

lies within a particular range, it may be useful to use variants of

K-Means that converge to the optimal number of clusters auto-

matically [44]. Use of other unsupervised clustering algorithms

like the mean shift method [45] can be considered as well. An-

other important feature of the clustering stage is the selection

of an informative distance metric. While all these factors influ-

ence the output of our method, we believe that the present work

provides a generally interesting and intuitively appealing frame-

work in which such relevant questions can be addressed in the

future.
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