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Abstract 

We propose the use of a hierarchical Genetic Algorithm (GA) for 

optimization in complex landscapes. While the slave GA tries to find local 

optima in the restricted fitness landscape of low complexity, the master GA 

tries to identify interesting regions in the entire landscape. The slave GA is 

a conventional GA with high convergence. The master GA is more 

exploratory in nature. This GA clusters the fitness landscape with each 

cluster in control of a slave GA. The number of clusters decreases with 

time to get global characteristics. The novelty of the suggested approach 

lies in the tradeoff between the search for global optima and convergence 

to local optima that can be controlled between the two GAs. We tested the 

http://www.inderscience.com/info/inarticle.php?artid=34320


   

 

   

   

 

   

   

 

   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

algorithm and observed that the approach exceeds conventional GA as well 

as Particle Swarm Optimization in complex landscapes.  

 

Keywords: Hierarchal Genetic Algorithms; Evolutionary Algorithms; Fitness 

Landscape; Dimensionality; Optimization; Genetic Algorithms; Machine 

Learning; Soft Computing; Complexity; Random Algorithms; Swarm Intelligence. 

 

1. Introduction 
Genetic Algorithms are valuable tools for the purpose of optimization (Mitchell 1998). 

The optimization powers of these algorithms have found a variety of use in many spheres 

and disciples. The continuous research in each of these fields has resulted in rising 

complexities that the GA is expected to solve. The conventional GA with simple fitness 

landscape is easily able to search the global optima, escaping all local optima (Manderick 

1993). But this does not certainly hold well when the fitness landscape is too complex in 

nature with many hills and valleys over multiple dimensions. As the fitness function 

grows in complexity, the GA finds very difficult to locate the global optima (Yao 1993; 

Kala et al 2009a, 2009b). As a result the entire algorithm may many times behave 

random in nature.  

The search for global optima in a complex landscape environment is a difficult 

problem. Since the problem is of very high dimensionality, one may be able to explore 

only a reasonably small part of the entire fitness landscape. The task is to explore the best 

areas that may aid in finding the global optima. The time of exploration is always small 

as per the requirements of the fitness landscape. Hence in a limited span of time we have 

to give the best possible output to the problem being optimized.  

GAs use many operators called as Genetic Operators (Deb 1999, Deb and 

Agrawal 1999) to generate individuals from a lower generation to a higher generation. 

These operators may be controlled with the help of some system parameters. Fixing the 

correct values to these parameters is of a lot of importance for the optimal working of any 

GA. A major limitation of the GA is that these parameters are human controlled. As a 

result the users have to try again and again to find the optimal value of the parameters 

looking at the results and other indicators. These parameters are always prone to be sub-

optimal that do not result in the best solutions.  A lot of efforts exist to make the GA 

parameter less to avoid the problem (Lobo, Lima and Michalewics 2007). However we 

would always have to set some parameters of the system as per the No Free Lunch (NFL) 

(Wolpert and Mcready 1997) theorems. 

The crossover and mutation are two commonly used parameters for control of 

the GA as per the fitness landscape and scenario of the GA (Syswerda 1989; Jong and 

Spears 1991, 1992; Eberhart and Shi 2006; Shukla, Kala and Tiwari 2010). The crossover 

encourages the individuals of the population to converge around the best points as they 

search for the optima. On the other hand mutation tries to encourage the exploratory 

nature of the individuals by making them explore at places around the present coverage. 

In this manner crossover contracts the search space while mutation expands the same. 

These parameters are set by the user looking at the convergence rate of the GA. A 

premature convergence may mean a decrease in crossover and increase in mutation rate 

and vice versa. In this manner the GA is able to search for optima in the fitness 

landscape. 

The inability of a single GA to solve the problem of optimization for complex 

landscapes results in a hierarchical application of GA. In this paper we propose a two 

level hierarchy of the GAs or the master and slave GA. The slave GA is the low level GA 



   

 

   

   

 

   

   

 

   

      
 

    

 

 

   

   

 

   

   

 

   

       
 

that works over a limited size of the fitness landscape and tries to find optima there. 

There are many slave GAs that simultaneously search for the optima in their respective 

domains. The master GA does the task of coordination, control and parameter setting of 

the slave GAs. Clustering is used as a mechanism of division of the fitness landscape. 

There is a lot of information change between the two levels of GA for devising a proper 

search strategy. 

This paper is organized as follows. In section 2 we present the related works. 

Section 3 gives the general algorithmic framework. This includes the slave and master 

GA along with the passage of information between the GAs. Section 4 would present the 

various parameters of the proposed GA and the manner in which they need to be set. In 

section 5 we discuss some of the simulation results. We give the conclusions in section 6.  

 

2. Related Work 
Various attempts have been made previously for optimization in complex landscapes for 

complex problems. The Hierarchical Genetic Algorithm (HGA) proposed by Jong et al 

(2004) is a novel approach. Here the authors used the notion of modularity and hierarchy 

and developed an algorithm for optimization. In this approach an initial set of modules is 

first evolved. These are diverse set of modules that give a high performance and may be 

used into the solution being evolved. The genetic individual of hierarchy consists of a set 

of modules. Mutation and crossover were proposed to act upon this structure. Crossover 

carries out the task of exchange of modules among the individuals. The mutation does the 

task of alteration of the modules in order to add new characteristics onto it. An 

application of a hierarchical individual representation and adapted crossover and 

mutation operators may be seen in the recent works of Kumar et al (2008). Here the 

authors applied the Hierarchical Genetic Algorithm for the problem of multilevel 

allocation redundancy which is a well studied problem. Wang et al (2002) used another 

hierarchical representation for the problem of robotic path planning using HGA. Here the 

problem was to find out the optimal robotic path which was modeled by the authors as an 

optimization problem and solved by using HGA.  

One of the highly complex problems is the problem of evolution of the neural 

network. Here we are supposed to evolve the architecture as well as the weights of the 

neural network by evolutionary algorithms. The search space is naturally very complex 

with too many dimensions. Yen and Lu (2000) used hierarchical representation for 

evolving a neural network. In their approach a three level hierarchy was used. The first 

level consisted of the information about the neural layers. The second level consisted of 

information about the neurons. In these bits marked the activation or deactivation of a 

particular neuron. The third level contained the parameters like weights and biases. These 

were coded into the individual as real values. The authors used one-point crossover and 

Gaussian mutation for all the levels. The final evaluation of the neural network was done 

by its performance over the training data with a performance penalty for larger networks. 

The Island Model Parallel Genetic Algorithm (IMGA) is another novel concept 

proposed by Gordon et al (1992). Here the entire population is divided into sub-

populations. Each sub-population has its own evolution procedure and operates in 

isolation to each other. This enables the generation of good individuals which possess the 

general characteristics of that sub-population. This further helps a lot in diversity 

preservation. The migration of individual in-between sub-populations is carried out using 

migration strategies. In migration individuals are transferred from one subpopulation to 

the other subpopulations. This brings in new characteristics to the subpopulation, which 

were developed and optimized by the other subpopulations. These are further developed 



   

 

   

   

 

   

   

 

   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

and enable convergence towards the global minima. Hence the entire algorithm operates 

in the cycles of isolation and migration. Using a similar structure Antonio (2006) 

suggested a HGA with age based structure. Here he also used controlled mutation in 

order to better the local search of the individual. The different hierarchies proposed by 

Antonio further make it possible for the use of different crossover operators running on 

different crossover techniques. A comparison of different crossover operators related to 

Elitist hybrid crossover with genetic improvement, Elitist parameterized uniform 

crossover and Age parameterized uniform crossover is provided in (António 2008). 

Sefrioui and Jacques (2000) also used different models at various hierarchies to carry out 

optimization. 

The Hierarchical Fair Competition based Genetic Algorithms (HFCGA) are a 

class of Genetic Algorithms that solve the problem of premature convergence in HGA 

(Hu et al 2002, 2005). In this mechanism of evolution, the entire population pool is 

organized into hierarchies in terms of the fitness values. Every hierarchy has an 

admission threshold below which it does not entertain individuals and an expert 

threshold. An individual possessing a fitness value above this threshold is exported to 

another hierarchy. Every hierarchy has its own evolution that enables its optimal 

evolution. The various parameters are different for the different level of hierarchies. Oh 

et al (2009) presented an application of such algorithm in the problem of design of fuzzy 

cascade controllers where this algorithm was used for optimization of the fuzzy system.  

Garai and Chaudhuri (2007) proposed a similar algorithm called the Distributed 

Hierarchical Genetic Algorithm (DHGA). Here they divided the entire sub space into 

smaller sub spaces. This algorithm operated in stages. At every stage there was a 

redefinition of the search space that took place. As per the performance the mutation 

operator was also adapted with every stage. The distribution was affected by migration 

that followed a coarser to finer rule where the resolution of the search space was 

increased as the algorithm executed. Lim et al (2007) further proposed the entire work of 

HGA onto a Grid Computing framework. The algorithm was called as the Grid 

Computing Hierarchical Parallel Genetic Algorithm (GE-HPGA).    

A similar concept of hierarchies is implemented in the domain of Evolutionary 

Strategies (ES). Rudolph (1997) used a nested evolutionary strategy where the step size 

of the lower ES was modified after a few iterations. The entire approach consisted of an 

ES that carried out the optimizations as per the parameters that it possessed. The 

performance of the ES depends upon the choice of step size used. Further the step size 

needs to be adaptive and change as per the current scenario. This change was carried out 

by the use of another heuristic strategy that set the step sizes after few iterations of the 

optimization of the ES. Lohmann (1992) used nested ES for discrete and continuous 

variables. Here the inner generations were for the optimization of continuous variables. 

After a few iterations, the discrete variables were changed. This model specially 

highlighted the manner to work with optimization problems involving both discrete as 

well as the continuous variables. Apart from step size, the other major parameter that 

affects the hierarchical implementation of the ES is the isolation period. This is the total 

time which the ES is given in isolation without any change of parameters. Arnold and 

Castellarin (2009) used hierarchical ES to adapt the isolation period. Here the isolation 

period was increased or decreased based on the success of the earlier runs.  

 

3. Algorithm 
The entire algorithm operates in a hierarchical master-slave mode. The master does the 

task of coordination and parameter setting of the slave. The slave does the task of finding 



   

 

   

   

 

   

   

 

   

      
 

    

 

 

   

   

 

   

   

 

   

       
 

the optima in the region allotted. In this manner the algorithm proceeds and explores the 

complex fitness space. The general master-slave framework of the algorithm is given in 

figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Hierarchical nature of the algorithm in terms of master and slave Genetic 

Algorithms 

 

Each of the slaves represents a distinct segment of the fitness space. This 

segmentation of the fitness function is done by the application of clustering. Each slave 

represents a cluster. The number of slaves is the total number of clusters applied by the 

master GA.  

The number of clusters or slaves is kept large at the first little iterations. As the 

algorithm proceeds with generations, we keep reducing the number of clusters. This may 

be interpreted as we start with an intention to explore and find out the local optima at 

specific parts of the fitness space. Later based on its findings, we try to search for the 

global optima. At the last few generations, the number of clusters is unity. Now the local 

GA searches for the entire search space and hence tries to find the global optima. This is 

the local to global search strategy of the algorithm. 

 

3.1 Slave Genetic Algorithm 

The slave GA is a conventional GA. The purpose of the slave GA is to search for the 

optima in the restricted search space. In other words the slave GA searches for the local 

optima. The basic purpose of the slave GA is to fully explore in-depth the given fitness 

landscape. This gives a clear idea of the nature and fitness of that region of the space with 

the investment of computation. Another important fact is that for many real-life situations 

the algorithm may need a good result early. In such scenarios it is better to go deep and 

converge into some local optima, rather than keep searching for global optima. The 

results and other findings of this GA are of a high importance to the master GA that tries 

to control the slave GA in a manner that the best solution is found within the time 

restrictions. The algorithm for the slave GA is shown in figure 2. 

We know that the input given to the slave GA is almost always a simple fitness 

landscape with limited search space. Hence we adapt the various genetic operators and 

parameters to match this need of the slave GA. In the next sub-sections, we discuss the 

importance of the various parameters and operators. This forms a basis of the entire 

working of the algorithm. 
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Figure 2: Slave Genetic Algorithm 

 

3.1.1 Number of Individuals 

The number of individuals in any GA denotes its exploratory nature. It also denotes the 

total computational power. A larger number of individuals denote a more exploration of 

the search space but with the computational cost. More number of individuals ultimately 

limits the generations and makes the algorithm more random. The more complex fitness 

landscapes usually employ more number of individuals. As the search space increases we 

need more and more number of individuals. Hence in this approach, we start with a 

highly limited number of individuals. As the generations proceed, the number of 

individuals has a general increases.  

 

3.1.2 Number of Generations or Isolation Period 

The number of generations in a local GA may also be called as the isolation period. This 

is the time when all local GAs operate in isolated of each other. The number of 

generations in GA again depends upon the complexity of the fitness landscape. A simple 

landscape might require a few generations as compared to a complex one. The larger the 

number of generations, the more is the exploration performed by the GA which means a 

larger computational cost as well. Accordingly, the number of generations is kept low at 

start and they have a general increase as we proceed with the algorithm. 

 

3.1.3 Mutation Rate 

The mutation rate in a GA decides its exploratory nature. It doesn’t let the GA converge 

at some point, rather keeps the GA busy exploring newer regions in the fitness space. The 

larger the value of mutation, the more wide the GA tries to explore in search of the global 
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optima. At the initial iterations, the mutation rate is kept low as we are primarily 

interested in searching for local optima. This also restricts the GA from entering fitness 

space that is in possession with some other local GA. As the algorithm reaches higher 

generations, the mutation rate is increased. This is again because of the fact that much of 

the good parts of the fitness space are already explored at various lower generation runs. 

As a result we need a high mutation rate at the end to explore new areas. 

 

3.1.4 Crossover Rate 

The crossover rate decides the convergence of the GA. It tries to move all the individuals 

towards the best areas and ultimately converge at some point denoting optima. It behaves 

opposite to mutation. Here we keep the crossover high at start. As we keep progressing 

with the generations, the crossover is reduced in general. 

3.1.5 Elite Count 

The elite are the individuals passed directly from one generation to the other. They enable 

preservation of the best individuals from being eliminated or deformed during the genetic 

process. The elite count is usually kept constant to a low value. In this algorithm as well 

we keep the elite count constant to a small value that does not change with generations. 

 

3.2 Master Genetic Algorithm 

While the slave GA works in a restricted fitness space, the task of the global GA is to 

define and distribute this fitness space among the slave GAs. The other task of the master 

GA is the parameter control and the coordination of the slave GAs. Every slave GA is a 

cluster. We treat this cluster or slave GA analogous to the genetic individual while 

working with the master GA. Here each cluster itself has a set of individuals controlled 

by the slave GA. We discuss the various aspects of the master GA and the various genetic 

operators of this GA one by one. The algorithm for the master GA is shown in figure 3. 

 

3.2.1 Individual Representation 

Every slave GA or cluster contains a lot of information that makes up the individual of 

the master GA. The individual or cluster z represents the following information.  

 Position in the fitness space or the fitness landscape. This is taken as the position 

of the best individual searched by the local GA (Iz
rel

) 

 Relative Number of iterations (Iterz
rel

) 

 Relative Mutation Rate (Mutz
rel

) 

 Relative Crossover Rate (Crosz
rel

) 

 Relative Number of Individuals (Indz
rel

) 

 Relative Convergence (Cz
rel

) 

 Relative Diversity (Dz
rel

) 

 

All relative parameters may be positive, negative or zero denoting the deviation of 

these values from the average number values as per the current generation. The other 

parameters denote their normal numeric values. All these are discussed in detail along 

with role in section 3.3. Here convergence and diversity are informational parameters that 

denote the status of the individual. They are not used while application of genetic 

operators or for evaluation of the fitness functions. 

 

 

 

 



   

 

   

   

 

   

   

 

   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Master Genetic Algorithm 

 

 

3.2.2 Number of individuals 
The number of individuals or cluster in the master GA is variable. We start with a very 

high number of clusters as we need some initial idea of the landscape. As the generations 

increase, we keep decreasing the number of individuals or clusters. This induces more 

and more of global traits in the final solution. Another way to interpret this is that we 

mainly use the results of the smaller generation to make up the larger generation. The 

search starts with more exploration at different areas. Once the areas are identified, we try 

to look forward for possibility of global optima out of the generated results of lower 

generations.  

 

3.2.3 Selection 

The selection needs to ensure that two very distinct individuals do not get selected. In 

other words we need to ensure that two clusters do not undergo crossover that lie far apart 

in the fitness space. This is to preserve diversity at the master level. Killing of diversity as 

master GA would badly adverse the algorithm as its results may be magnified at the slave 
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GA operation. We hence use fitness scaling with stochastic selection to select the first 

parent for crossover. The second parent is selected randomly from the nearest k 

individuals. 

3.2.4 Crossover 

The crossover is applied between two individuals or clusters to generate new individuals 

or clusters that belong to the higher generation. We simply take the arithmetic mean of 

the cluster center positions along with the other parameters represented by the individual. 

In this manner the crossover is performed. 

 

3.2.5 Mutation 

In this operator we modify only the position of some cluster and make it move by some 

amount in the fitness space. The amount of movement depends upon the mutation rate 

used in the master GA. 

 

3.2.6 Elite 

The elite pass the best fitness cluster from one generation to the other. Its value is kept as 

unity which is constant for the entire algorithmic run. Here fitness is defined as the fitness 

of individual that resides at the cluster center or the fitness of the best individual of the 

corresponding local GA.  

 

3.2.7 New Individuals and Clusters 

This genetic operator adds new clusters and individuals into the population pool. The 

relative parameters are all initialized to zero. Since the fitness landscape is complex, it is 

always important to search for completely new areas in the fitness landscape in search of 

global optima. It might not be wise to restrict only to the earlier explored areas and to try 

to locate the optima based on the same areas. The addition of new individuals hopes the 

exploration of good fitness areas. 

 

3.2.8 Migration 

As per the notations of the standard hierarchical genetic algorithm, migration refers to the 

interchange of population among the local GAs. Migration in the proposed algorithm 

takes place by the operation of re-clustering. The previously studied genetic operators 

have already computed the locations of the new cluster centers. We further have a 

population of individuals ready obtained from the best few individuals of all the local 

GAs population. We add some more random individuals in this pool of individuals. Then 

re-clustering of the available individuals takes place. Every cluster is given individuals 

that lie closest to it. In this manner the execution of the local GA starts. It is not 

ascertained that every cluster will get individuals as denoted by their relative number of 

individuals. The relative number of individuals only denotes the number of individuals it 

would contribute to the total population pool before re-clustering starts. 

 

3.3 Information Passage between GAs 

The proper working of the algorithm requires a proper coordination being maintained 

between the various local GAs. This is done by the master GA. In order the master GA to 

perform the task, it is important to have passage of information from the master GA to 

the slave GA and vice versa. The master GA initializes and executes the slave GA. As a 

result it is able to pass information to the slave GA. This information includes the initial 

population along with the genetic parameters represented by the cluster.  

The slave GA in turn passes the information of its best individuals as per its 

relative fitness. It also passes the information of its total diversity and convergence. 



   

 

   

   

 

   

   

 

   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

Diversity (Dz) of the z
th

 cluster is defined as the average distance between any two 

individuals. It may be given by the equation (1).  

   
∑ ∑        

 
       

 
   

       
      (1) 

Here Ii denotes the i
th

 individual in the cluster, N is the total number of individuals in the 

cluster 

Convergence (Cz) of the z
th

 cluster is the total change in fitness witnessed by the 

GA with respect to its best individual in the cluster. This is given by equation (2).  

 

Cz=fit(best(Pini)) – fit(best(Pfinal))    (2) 

The relative diversity (Dz
rel

) and relative convergence (Cz
rel

) for any cluster z are 

measured as their relative measures to all clusters in the master population. They are 

given by equation (3) and (4). 

 

  
    

    ̅

                
     (3) 

  
    

    ̅

                
    (4) 

To calculate the other parameters i.e. Relative Number of iterations (Iterz
rel

), Relative 

Mutation Rate (Mutz
rel

), Relative Crossover Rate (Crosz
rel

) and Relative Number of 

Individuals (Indz
rel

) we use the concept of diversity and convergence. Every cluster z has 

a diversity and convergence that affect its relative parameters in a multiplicative manner. 

An increase in diversity means an increase in the relative number of iterations, decrease 

in relative mutation rate, increase in relative crossover rate and decrease in relative 

number of individuals. Similarly an increase in convergence means an increase in the 

relative number of iterations, decrease in relative mutation rate, increase in relative 

crossover rate and decrease in relative number of individuals in the next generation.  

The equation for Relative Crossover Rate (Crosz
rel

) is given by equation (5). 

Similarly the other relative parameters may be computed. 

 

     
          

      
     

                  

 
  (5) 

Here Cros
abs

(1) is the initial crossover rate. The maxcros is the maximum 

percentage increase in the crossover rate with generations. In case any parameter (e.g 

crossover rate itself) decreases with generation, Cros is measured from the final 

generation G rather than initial generation 1. The various parameters increase or decrease 

along with the number of generations (g) of the master GA. The number of individuals of 

master GA (nclus) or the number of clusters decreases uniformly with time along with the 

rise in generations. This is given by equation (6) 



   

 

   

   

 

   

   

 

   

      
 

    

 

 

   

   

 

   

   

 

   

       
 

                    
        

 
    (6) 

Here nclus(1) is the maximum number of clusters that can appear in the master 

GA. These are the number of clusters at the first generations. G is the maximum number 

of generations in the GA. 

The other parameters i.e Number of iterations (Iterz), Mutation Rate (Mutz), 

Crossover Rate (Crosz) and Number of Individuals (Indz) change due to two factors. 

These are absolute and relative. The absolute is a general increase or decrease in the 

parameter value along with the master GA. The relative is the fine tuning done by the 

relative measures of these parameters to optimize the overall performance of the 

algorithm. For the number of iterations, this may be given by equation (7)  

 

                            
         (7) 

Here Iters
abs

(g) is the absolute or a general increase in the total number of 

iterations along with time. This is given by equation (7). 

                          
                  

 
  (8) 

Here maxinc is the maximum percentage increase in the number of iterations as 

discussed earlier.  

Itersz
rel

(g) is given by equation (8). 

4 Various Genetic Parameters 
The parameters that we have added and would like to study are the initial number of 

clusters, initial number of individuals, total generations, initial mutation, initial crossover, 

initial number of iterations, and percentage increase in mutation, crossover and iterations. 

The initial number of clusters denotes the localized nature of the algorithm. The 

more the number of clusters, the more is the approach of the algorithm to return local 

optima as the final answer assuming a limited constant computation. It closely resembles 

the number of individuals in the conventional GA where more individuals add 

randomness. For most real life applications, which require a very fast results we may 

keep the number of clusters high. For applications that are not much time restrictive, the 

clusters may be kept low for more time to be spent on the global exploratory nature of the 

algorithm. Similar trend may be observed in total number of individuals used by local 

GA. The more the number of individuals, the more is the randomness or convergence to 

local optima which may be desirable in real life scenarios. 

The initial mutation and initial crossover are kept sufficiently low and high 

respectively for easy search for the local optima by the local GA. These generalize the 

notion of crossover and mutation over the entire GA. A high initial mutation results in a 

lot of exploration outside the allotted search space in the initial iterations as well. This 

may be an attempt not to converge to local optima, but to search the global optima. As a 

result we take longer to generate good solutions, but the chances of being near the global 

optima are high. In contrast a high initial crossover rate means a desire to converge 

straight into the local optima which might be the case when good solutions are needed 

early in the algorithm run. The initial number of iterations further follows the tends of 



   

 

   

   

 

   

   

 

   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

initial number of individuals where more iterations mean a better exploration in a local 

GA and the solutions returned being more locally searched in nature. This is unlike when 

the search space in search was large. 

The percent increases of the mutation, crossover and iterations denote the 

dynamic changes in the local GA or the local search algorithm. It denotes the speed with 

which the algorithm intends to work over the global picture. This further adapts the local 

GAs as per their local landscapes. Every GA is hence enabled to perform better in the 

scenario it is presently in when compared to the entire algorithm. It may be recalled that 

since the landscape is complex, we increase the randomness in the larger generations and 

the percentage increases denotes the rate of increase of randomness. In this algorithm 

trying to find a global solution is quite analogous to making the algorithm more random. 

Very high percent increases would make the algorithm very random at a very 

early stage. This would not be useful if a good result needs to be generated at early 

stages. Similarly small percentage increases may not be able to find global optima. They 

are likely to be struck at some local optima.  

 

5 Results 
The algorithm was implemented and tested using JAVA as a platform. For the purpose of 

testing we studied the various functions used in literature. We finally selected a set of 11 

test functions. Some of them were taken from the work of Garai and Chaudhuri (2007) 

and the others were taken from the work of Shi et al (2005). These functions along with 

the ranges and optima points are given in table 1. Each of these was executed and 

analyzed separately. The value of the parameters was fixed same for all these functions. 

All simulations were made on a 4 GB RAM, 3.0 3.0 GHz Core 2 Duo processor. The 

parameters used for the simulations were 10 as the initial number of clusters, I (problem 

specific) individuals, G generations (problem specific) of the master GA. The initial 

mutation rate was fixed as 0.03 and crossover rate as 0.8. The initial number of iterations 

of the slave GA was 100. The percentage increases were 1 for mutation and generations 

and 0.5 for crossover. All simulations took 2 to 4 seconds running time as per the set 

parameters except the last function which took approximately 5, 7 and 15 seconds for the 

three runs with different dimensions.  

We used Particle Swarm Optimization (PSO) and standard Genetic Algorithm 

(GA) to compare the proposed algorithms. All simulations were carried out 20 times. The 

parameters of these algorithms were kept following the best practices at the same time 

keeping the runtime of all the algorithms similar. The mutation rate was fixed to 0.03 and 

crossover was fixed to 0.7. Individuals and generation could vary from 600 to 800 and 

1500 to 7500 respectively for various problems. This meant a very large number of 

populations as generations due to low overheads of these algorithms. The means and 

standard deviation of the results obtained from the simulation results along with number 

of individual and generations for proposed algorithm is given in Table 2. The table also 

lists the points of optima in the fitness space as recorded with the best run. 

Table 2 showcases the performances of the proposed algorithms compared to 

standard GA and PSO. The 11 functions given to the algorithm to optimize represent a 

range of simple to complex functions.  

 

 

 

 

 



   

 

   

   

 

   

   

 

   

      
 

    

 

 

   

   

 

   

   

 

   

       
 

Table 1: The benchmark objective functions used for the testing of the algorithm 

 

S. 

No. 

Function Dimension Range Minima 

F1   [                     
   

                
  ][   

         
              

       
           

  ]  

2 -2 ≤ x1, 

x2 ≤ 2 

3 

F2 
         

  (
        

 
)
 

 
2 -10 ≤ 

x1, x2 ≤ 

10 

0  

F3         
     

        
  2 -2 ≤ x1, 

x2 ≤ 2 

0  

F4 

  ∑      
       

        
 

 

  

 

4 -2 ≤ xi 

≤ 2  

0  

F5 

  ∑  
 

 

  

 

6 -1 ≤ xi 

≤ 1  

0  

F6  

 
  

     ∑
  

 

    
  
    ∏     (

  

√ 
)      

    

 

10 -1 ≤ xi 

≤ 1  

-10  

F7 

   ∑  
 

 

  

 

3 -10 ≤ xi 

≤ 10 

-300  

F8 

   ∑   
            

  

 

   

 

5 -1 ≤ xi 

≤ 1  

-8.30 

F9 
   ∑

 

  ∑         
   

 

   
 

4 -10 ≤ xi 

≤ 10  

-4. 

F10      
       

  
 

 
  

          
  

   
   

2 -5 ≤ xi 

≤ 5  

-1.031628 

F11 
  ∑    

 

   

 ∏    

 

   

 
5, 8, 12 -10 ≤ xi 

≤ 10  

0.0 

 

In order to facilitate a judicious comparison between the algorithms, all the 

algorithms were executed for the same time durations. The time was 2 to 4 seconds for all 

functions except the last one for which the time was 5, 7 and 15 seconds for the three 

runs with different dimensions. The parameters of all the algorithms were fixed such that 

the optimization takes place to the largest possible extent in the allocated time duration. 

This is especially important to decide the convergence of the algorithm, as the various 

individuals need to converge after the desired time. Too early or late convergence would 

lead to sub-optimal results. The proposed algorithm, because of complex hierarchical 

operators would execute lesser number of fitness evaluations as compared to the other 

algorithms within the same time. However, as discussed,  it is capable of giving better 

results in complex fitness landscape.  Results show a better performance of the proposed 



   

 

   

   

 

   

   

 

   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

algorithm for the same execution time which advocates the overall improvement by this 

algorithm in optimization.  

 

Table 2: Comparative analysis of working of the proposed algorithm with GA and 

PSO on the objective functions 

 
S. No. Optimal 

Value 

Proposed Algorithm GA PSO 

I, G Mean St 

Deviation 

Mean St 

Deviation 

Mean St 

Deviation 

F1 3  100, 
500 

3.000038 0.000089 142.0500* 301.4589 3.000000 3.79e-8 

F2 0  100, 

500 

0.000000 4.571e-9 0.000000 1.63e-23 0.000000 4.63e-9 

F3 0  100, 
500 

0.000000 9.99e-5 0.000000 2.24e-20 0.000000 7.35e-9 

F4 0  200, 

1000 

0.047769 0.04429 0.000000 1.40e-8 0.000158 0.000108 

F5 0  100, 
500 

0.007559 0.014469 0.000000 1.83e-10 0.000000 3.15e-7 

F6 -10  100, 

500 

-

9.997000 

0.002323 -10.00000 8.991e-9 -10.0000 2.03e-7 

F7 -300  100, 
500 

-
298.7401 

0.671932 -269.462 20.45611 -299.917 0.03725 

F8 -8.30 100, 

500 

-

8.243602 

6.7094e-6 -8.24361 3.70e-10 -8.24360 1.029e-6 

F9 -4 100, 

500 

-

3.997382 

0.008396 -4.00000 3.15e-5 -4.00000 5.12e-9 

F10 -

1.031628 

100, 

500 

-

1.031628 

2.5538e-4 -0.11236# 1.02411 -1.03163 7.81e-9 

F11(i) 

(ii) 

(iii) 

0 

0 

0 

200, 

1000 

350, 

3000 

400, 

4000 

0.028758 

0.025957 

0.157634 

0.048754 

0.033986 

0.369671 

-0.95720$ 

6.50802 

31.3468 

2.94720 

4.50280 

24.6291 

0.01465 

0.072406 

1.051142 

0.00300 

0.01316 

1.49311 

 
*
 At a few runs the algorithm was trapped in the minima corresponding to value 839 and 

30 
#
 At a few runs the algorithm was trapped in the minima corresponding to value -0.21546 

and 2.10425 
$
 At a few runs the algorithm was trapped in the minima corresponding to value 9.41 

  

 

We separately discuss the results in heads of simple and complex functions. The 

functions in table 1 numbered F1 to F9 are relatively simple functions with limited 

dimensionalities or simpler fitness landscape. These functions were given to the various 

algorithms to have a clearer comparison on the general functions between the three 

algorithms. Looking at the results we can clearly see that all the 3 algorithms were easily 

able to optimize these functions. The optimal values were significant in regard to the 

execution time which was intentionally kept small to judge the real-time performance in 

simpler functions. The convergence or optimality of the GA and PSO seem to be much 

higher for these functions. GA and PSO lead to more optimal values as compared to the 

proposed algorithms. Also the low values of standard deviation illustrate the stableness of 

these algorithms as compared to the proposed algorithm. But still the performance of the 

proposed algorithm may be stated significant. Recall that our aim was not the perfect 



   

 

   

   

 

   

   

 

   

      
 

    

 

 

   

   

 

   

   

 

   

       
 

global minima, but a good performance in complex landscapes. In other words, we did 

not intend to converge deep inside the global minima, but rather appreciated the 

exploratory nature as well which acts as an overhead to keep the final value sub-optimal. 

Function F1 somehow did not show a good performance in the use of GA where the GA 

sometimes got trapped in local minima corresponding to 83 and 839 at some of the runs. 

In most cases however, the GA could converge to global minima in F1. 

The scenario keeps changing as we start increasing the complexity. This is when 

the proposed algorithm starts depicting useful characteristics as while the other 

algorithms start facing problems. This was when we gave the inputs F10 and F11 with the 

dimensionalities of 5, 8 and 12. The proposed algorithm was able to generate optimal 

solutions in all the scenarios. The optimality may be stated satisfactory looking at the 

complexity of the landscape. However, the GA completely failed to find optimal 

solutions in these inputs. For F10 the GA could do reasonably well when it got optimal 

values at most of the runs, with non-optimal solutions at few runs. Similar was the case 

with the run of F11 with a dimensionality of 5. The optimal value was fetched most of the 

times with a few non-optimal solutions. However, the optimality was very poor for the 

other runs of F11. The PSO behaved decent with F10 and gave good solution at par with 

the proposed algorithm. However the scenario with F11 was different. The optimality 

was fine for the first run with dimensionality of 5, but kept deteriorating. PSO lost to the 

proposed algorithm in higher dimensions of 5 and 12. In dimensionality of 12, it mostly 

failed to give the correct solutions. 

Based on the simulation with F11, it may be extrapolated that all three 

algorithms would pose problems of high complexity as we keep increasing the 

dimensionality. However, GA and PSO in a dimensionality of 12 lag behind the proposed 

algorithm. Continuing the simulation at higher dimensions would make the difference 

even larger. Many of the real life applications like evolution of ANN (Yao 1993) is a 

highly dimensional problem that takes a lot of time. At such high complexities, it may 

easily be generalized that the proposed algorithm would serve better. 

In order to visually analyze the complexity of the function we draw the function 

F11 in 2-dimensions given in figure 4. It may again be seen that this extended over 

multiple dimensions pose a very complex problem because of which many algorithms 

fail.  

 
 

Figure 4: Fitness landscape (in 2 dimensions) of F11 objective function 



   

 

   

   

 

   

   

 

   

 

 

    

 

 

   

   

 

   

   

 

   

       
 

 

The next thing of interest to study is the convergence. In order to see the 

algorithmic behavior, we see the performance of the algorithm with regard to the best 

individual. Since a large portion of the population is always randomly generated, we 

disregard the performance of average and worst individual which may carry a lot of 

random characteristics that is not of our interest. The performance may be studied 

separately for the master and the slave GA. Figure 5(a) shows the graph between the best 

individual in population v/s generations for the master GA when simulated for F11 with 

dimensionality of 12. It may be seen that the graph has a discrete behavior. Every plot of 

the master GA corresponds to a number of cycles of the slave GA that optimize the 

objective function. Hence the master GA is discrete in little nature. The slave GA on the 

contrary behaves differently. This is a typical GA with high crossover rate and low 

mutation rate to allow fast convergence. The graph between the fitness and generations 

for the first run of the first slave GA is given in figure 5(b).  

 

 
 

Figure 5(a): Convergences in master GA 

 
 

Figure 5(b): Convergences in slave GA 
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6 Conclusions 
In this paper we proposed a hierarchical implementation of the GA. The entire GA was 

implemented in two hierarchies of master GA and slave GA. The role of the slave GA 

was simply to converge to some local minima. This was done to give optimal results in 

low times. The master GA was supposed to carry forward the task of coordination and 

parameter setting of the local GA. 

The testing of the algorithm was done using the benchmark functions available 

in literature (Garai and Chaudhuri 2007; Shi et al 2005). 11 such functions were 

identified. These functions ranged in their complexity and dimensionality. We tested the 

performance of the algorithm in comparison to the conventional GA and PSO. The results 

revealed that the conventional GA and PSO were able to give a good performance in 

most of the simple objective functions. They penetrated deep into the optimization of the 

fitness value and returned a solution that was highly close to the global optima. The 

proposed algorithm also gave a decent performance but could not penetrate that deep in 

search of the global minima. The scenario started changing when we used functions of 

high complexity. Results denote that as the complexity increased, the GA and PSO 

started facing problems. Since most of the real life problems are much complex to the 

tested problem, it may be inferred that the proposed algorithm wit better scalability 

factors would perform much better in real-time situations or elsewhere.  

The proposed algorithm gave a decent performance to complex functions. The 

real scalability test of the proposed algorithm lies in its use in most real life complex 

applications. These applications present a fitness landscape that is much more complex 

than the objective functions used. The work of testing and comparing the proposed 

algorithm in these domains may be done in future. The algorithm further makes an 

attempt to use the global GA as a means of parameter setting of the local GA by using the 

metrics of local GA as guides and relating and absolute changes for general 

improvement. This is a much complex relationship between parameters that require a 

much formal modeling and study. The improvement in this segment may have a deep 

impact on the algorithmic performance. Another important aspect of the algorithm is its 

tradeoff between the local and global characteristics. While we present many parameters 

to adapt the algorithm to any of these characteristics, a formal study in various specific 

scenarios and runtimes may be conducted in future. 
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