

Clustering Based Hierarchical Genetic Algorithm for
Complex Fitness Landscapes

Rahul Kala

MTech

Department of Information Technology,

Indian Institute of Information Technology and Management Gwalior, Gwalior, MP,

INDIA

rahulkalaiiitm@yahoo.co.in

Anupam Shukla

Associate Professor

Department of Information Technology,

Indian Institute of Information Technology and Management Gwalior, Gwalior, MP,

INDIA

dranupamshukla@gmail.com

Ritu Tiwari

Assistant Professor

Department of Information Technology,

Indian Institute of Information Technology and Management Gwalior, Gwalior, MP,

INDIA

rt_twr@gmail.com

*Corresponding Author

Room No 101, BH-1, ABV-IIITM Gwalior, Gwalior, MP, INDIA

Ph.: +91-9993746487

Citation: R. Kala, A. Shukla, R. Tiwari (2010) Clustering Based Hierarchical Genetic

Algorithm for Complex Fitness Landscapes, International Journal of Intelligent Systems

Technologies and Applications 9(2), 185-205.

Final Version Available At:

http://www.inderscience.com/info/inarticle.php?artid=34320

Abstract

We propose the use of a hierarchical Genetic Algorithm (GA) for

optimization in complex landscapes. While the slave GA tries to find local

optima in the restricted fitness landscape of low complexity, the master GA

tries to identify interesting regions in the entire landscape. The slave GA is

a conventional GA with high convergence. The master GA is more

exploratory in nature. This GA clusters the fitness landscape with each

cluster in control of a slave GA. The number of clusters decreases with

time to get global characteristics. The novelty of the suggested approach

lies in the tradeoff between the search for global optima and convergence

to local optima that can be controlled between the two GAs. We tested the

http://www.inderscience.com/info/inarticle.php?artid=34320

algorithm and observed that the approach exceeds conventional GA as well

as Particle Swarm Optimization in complex landscapes.

Keywords: Hierarchal Genetic Algorithms; Evolutionary Algorithms; Fitness

Landscape; Dimensionality; Optimization; Genetic Algorithms; Machine

Learning; Soft Computing; Complexity; Random Algorithms; Swarm Intelligence.

1. Introduction
Genetic Algorithms are valuable tools for the purpose of optimization (Mitchell 1998).

The optimization powers of these algorithms have found a variety of use in many spheres

and disciples. The continuous research in each of these fields has resulted in rising

complexities that the GA is expected to solve. The conventional GA with simple fitness

landscape is easily able to search the global optima, escaping all local optima (Manderick

1993). But this does not certainly hold well when the fitness landscape is too complex in

nature with many hills and valleys over multiple dimensions. As the fitness function

grows in complexity, the GA finds very difficult to locate the global optima (Yao 1993;

Kala et al 2009a, 2009b). As a result the entire algorithm may many times behave

random in nature.

The search for global optima in a complex landscape environment is a difficult

problem. Since the problem is of very high dimensionality, one may be able to explore

only a reasonably small part of the entire fitness landscape. The task is to explore the best

areas that may aid in finding the global optima. The time of exploration is always small

as per the requirements of the fitness landscape. Hence in a limited span of time we have

to give the best possible output to the problem being optimized.

GAs use many operators called as Genetic Operators (Deb 1999, Deb and

Agrawal 1999) to generate individuals from a lower generation to a higher generation.

These operators may be controlled with the help of some system parameters. Fixing the

correct values to these parameters is of a lot of importance for the optimal working of any

GA. A major limitation of the GA is that these parameters are human controlled. As a

result the users have to try again and again to find the optimal value of the parameters

looking at the results and other indicators. These parameters are always prone to be sub-

optimal that do not result in the best solutions. A lot of efforts exist to make the GA

parameter less to avoid the problem (Lobo, Lima and Michalewics 2007). However we

would always have to set some parameters of the system as per the No Free Lunch (NFL)

(Wolpert and Mcready 1997) theorems.

The crossover and mutation are two commonly used parameters for control of

the GA as per the fitness landscape and scenario of the GA (Syswerda 1989; Jong and

Spears 1991, 1992; Eberhart and Shi 2006; Shukla, Kala and Tiwari 2010). The crossover

encourages the individuals of the population to converge around the best points as they

search for the optima. On the other hand mutation tries to encourage the exploratory

nature of the individuals by making them explore at places around the present coverage.

In this manner crossover contracts the search space while mutation expands the same.

These parameters are set by the user looking at the convergence rate of the GA. A

premature convergence may mean a decrease in crossover and increase in mutation rate

and vice versa. In this manner the GA is able to search for optima in the fitness

landscape.

The inability of a single GA to solve the problem of optimization for complex

landscapes results in a hierarchical application of GA. In this paper we propose a two

level hierarchy of the GAs or the master and slave GA. The slave GA is the low level GA

that works over a limited size of the fitness landscape and tries to find optima there.

There are many slave GAs that simultaneously search for the optima in their respective

domains. The master GA does the task of coordination, control and parameter setting of

the slave GAs. Clustering is used as a mechanism of division of the fitness landscape.

There is a lot of information change between the two levels of GA for devising a proper

search strategy.

This paper is organized as follows. In section 2 we present the related works.

Section 3 gives the general algorithmic framework. This includes the slave and master

GA along with the passage of information between the GAs. Section 4 would present the

various parameters of the proposed GA and the manner in which they need to be set. In

section 5 we discuss some of the simulation results. We give the conclusions in section 6.

2. Related Work
Various attempts have been made previously for optimization in complex landscapes for

complex problems. The Hierarchical Genetic Algorithm (HGA) proposed by Jong et al

(2004) is a novel approach. Here the authors used the notion of modularity and hierarchy

and developed an algorithm for optimization. In this approach an initial set of modules is

first evolved. These are diverse set of modules that give a high performance and may be

used into the solution being evolved. The genetic individual of hierarchy consists of a set

of modules. Mutation and crossover were proposed to act upon this structure. Crossover

carries out the task of exchange of modules among the individuals. The mutation does the

task of alteration of the modules in order to add new characteristics onto it. An

application of a hierarchical individual representation and adapted crossover and

mutation operators may be seen in the recent works of Kumar et al (2008). Here the

authors applied the Hierarchical Genetic Algorithm for the problem of multilevel

allocation redundancy which is a well studied problem. Wang et al (2002) used another

hierarchical representation for the problem of robotic path planning using HGA. Here the

problem was to find out the optimal robotic path which was modeled by the authors as an

optimization problem and solved by using HGA.

One of the highly complex problems is the problem of evolution of the neural

network. Here we are supposed to evolve the architecture as well as the weights of the

neural network by evolutionary algorithms. The search space is naturally very complex

with too many dimensions. Yen and Lu (2000) used hierarchical representation for

evolving a neural network. In their approach a three level hierarchy was used. The first

level consisted of the information about the neural layers. The second level consisted of

information about the neurons. In these bits marked the activation or deactivation of a

particular neuron. The third level contained the parameters like weights and biases. These

were coded into the individual as real values. The authors used one-point crossover and

Gaussian mutation for all the levels. The final evaluation of the neural network was done

by its performance over the training data with a performance penalty for larger networks.

The Island Model Parallel Genetic Algorithm (IMGA) is another novel concept

proposed by Gordon et al (1992). Here the entire population is divided into sub-

populations. Each sub-population has its own evolution procedure and operates in

isolation to each other. This enables the generation of good individuals which possess the

general characteristics of that sub-population. This further helps a lot in diversity

preservation. The migration of individual in-between sub-populations is carried out using

migration strategies. In migration individuals are transferred from one subpopulation to

the other subpopulations. This brings in new characteristics to the subpopulation, which

were developed and optimized by the other subpopulations. These are further developed

and enable convergence towards the global minima. Hence the entire algorithm operates

in the cycles of isolation and migration. Using a similar structure Antonio (2006)

suggested a HGA with age based structure. Here he also used controlled mutation in

order to better the local search of the individual. The different hierarchies proposed by

Antonio further make it possible for the use of different crossover operators running on

different crossover techniques. A comparison of different crossover operators related to

Elitist hybrid crossover with genetic improvement, Elitist parameterized uniform

crossover and Age parameterized uniform crossover is provided in (António 2008).

Sefrioui and Jacques (2000) also used different models at various hierarchies to carry out

optimization.

The Hierarchical Fair Competition based Genetic Algorithms (HFCGA) are a

class of Genetic Algorithms that solve the problem of premature convergence in HGA

(Hu et al 2002, 2005). In this mechanism of evolution, the entire population pool is

organized into hierarchies in terms of the fitness values. Every hierarchy has an

admission threshold below which it does not entertain individuals and an expert

threshold. An individual possessing a fitness value above this threshold is exported to

another hierarchy. Every hierarchy has its own evolution that enables its optimal

evolution. The various parameters are different for the different level of hierarchies. Oh

et al (2009) presented an application of such algorithm in the problem of design of fuzzy

cascade controllers where this algorithm was used for optimization of the fuzzy system.

Garai and Chaudhuri (2007) proposed a similar algorithm called the Distributed

Hierarchical Genetic Algorithm (DHGA). Here they divided the entire sub space into

smaller sub spaces. This algorithm operated in stages. At every stage there was a

redefinition of the search space that took place. As per the performance the mutation

operator was also adapted with every stage. The distribution was affected by migration

that followed a coarser to finer rule where the resolution of the search space was

increased as the algorithm executed. Lim et al (2007) further proposed the entire work of

HGA onto a Grid Computing framework. The algorithm was called as the Grid

Computing Hierarchical Parallel Genetic Algorithm (GE-HPGA).

A similar concept of hierarchies is implemented in the domain of Evolutionary

Strategies (ES). Rudolph (1997) used a nested evolutionary strategy where the step size

of the lower ES was modified after a few iterations. The entire approach consisted of an

ES that carried out the optimizations as per the parameters that it possessed. The

performance of the ES depends upon the choice of step size used. Further the step size

needs to be adaptive and change as per the current scenario. This change was carried out

by the use of another heuristic strategy that set the step sizes after few iterations of the

optimization of the ES. Lohmann (1992) used nested ES for discrete and continuous

variables. Here the inner generations were for the optimization of continuous variables.

After a few iterations, the discrete variables were changed. This model specially

highlighted the manner to work with optimization problems involving both discrete as

well as the continuous variables. Apart from step size, the other major parameter that

affects the hierarchical implementation of the ES is the isolation period. This is the total

time which the ES is given in isolation without any change of parameters. Arnold and

Castellarin (2009) used hierarchical ES to adapt the isolation period. Here the isolation

period was increased or decreased based on the success of the earlier runs.

3. Algorithm
The entire algorithm operates in a hierarchical master-slave mode. The master does the

task of coordination and parameter setting of the slave. The slave does the task of finding

the optima in the region allotted. In this manner the algorithm proceeds and explores the

complex fitness space. The general master-slave framework of the algorithm is given in

figure 1.

Figure 1: Hierarchical nature of the algorithm in terms of master and slave Genetic

Algorithms

Each of the slaves represents a distinct segment of the fitness space. This

segmentation of the fitness function is done by the application of clustering. Each slave

represents a cluster. The number of slaves is the total number of clusters applied by the

master GA.

The number of clusters or slaves is kept large at the first little iterations. As the

algorithm proceeds with generations, we keep reducing the number of clusters. This may

be interpreted as we start with an intention to explore and find out the local optima at

specific parts of the fitness space. Later based on its findings, we try to search for the

global optima. At the last few generations, the number of clusters is unity. Now the local

GA searches for the entire search space and hence tries to find the global optima. This is

the local to global search strategy of the algorithm.

3.1 Slave Genetic Algorithm

The slave GA is a conventional GA. The purpose of the slave GA is to search for the

optima in the restricted search space. In other words the slave GA searches for the local

optima. The basic purpose of the slave GA is to fully explore in-depth the given fitness

landscape. This gives a clear idea of the nature and fitness of that region of the space with

the investment of computation. Another important fact is that for many real-life situations

the algorithm may need a good result early. In such scenarios it is better to go deep and

converge into some local optima, rather than keep searching for global optima. The

results and other findings of this GA are of a high importance to the master GA that tries

to control the slave GA in a manner that the best solution is found within the time

restrictions. The algorithm for the slave GA is shown in figure 2.

We know that the input given to the slave GA is almost always a simple fitness

landscape with limited search space. Hence we adapt the various genetic operators and

parameters to match this need of the slave GA. In the next sub-sections, we discuss the

importance of the various parameters and operators. This forms a basis of the entire

working of the algorithm.

Master GA

Master GA

Slave GA 1 Slave GA 2 Slave GA 3 Slave GA n

Figure 2: Slave Genetic Algorithm

3.1.1 Number of Individuals

The number of individuals in any GA denotes its exploratory nature. It also denotes the

total computational power. A larger number of individuals denote a more exploration of

the search space but with the computational cost. More number of individuals ultimately

limits the generations and makes the algorithm more random. The more complex fitness

landscapes usually employ more number of individuals. As the search space increases we

need more and more number of individuals. Hence in this approach, we start with a

highly limited number of individuals. As the generations proceed, the number of

individuals has a general increases.

3.1.2 Number of Generations or Isolation Period

The number of generations in a local GA may also be called as the isolation period. This

is the time when all local GAs operate in isolated of each other. The number of

generations in GA again depends upon the complexity of the fitness landscape. A simple

landscape might require a few generations as compared to a complex one. The larger the

number of generations, the more is the exploration performed by the GA which means a

larger computational cost as well. Accordingly, the number of generations is kept low at

start and they have a general increase as we proceed with the algorithm.

3.1.3 Mutation Rate

The mutation rate in a GA decides its exploratory nature. It doesn’t let the GA converge

at some point, rather keeps the GA busy exploring newer regions in the fitness space. The

larger the value of mutation, the more wide the GA tries to explore in search of the global

Initialization

Selection

Crossover

Mutation

Elite

Fitness Evaluation

While Generations

left

Information to Master GA

optima. At the initial iterations, the mutation rate is kept low as we are primarily

interested in searching for local optima. This also restricts the GA from entering fitness

space that is in possession with some other local GA. As the algorithm reaches higher

generations, the mutation rate is increased. This is again because of the fact that much of

the good parts of the fitness space are already explored at various lower generation runs.

As a result we need a high mutation rate at the end to explore new areas.

3.1.4 Crossover Rate

The crossover rate decides the convergence of the GA. It tries to move all the individuals

towards the best areas and ultimately converge at some point denoting optima. It behaves

opposite to mutation. Here we keep the crossover high at start. As we keep progressing

with the generations, the crossover is reduced in general.

3.1.5 Elite Count

The elite are the individuals passed directly from one generation to the other. They enable

preservation of the best individuals from being eliminated or deformed during the genetic

process. The elite count is usually kept constant to a low value. In this algorithm as well

we keep the elite count constant to a small value that does not change with generations.

3.2 Master Genetic Algorithm

While the slave GA works in a restricted fitness space, the task of the global GA is to

define and distribute this fitness space among the slave GAs. The other task of the master

GA is the parameter control and the coordination of the slave GAs. Every slave GA is a

cluster. We treat this cluster or slave GA analogous to the genetic individual while

working with the master GA. Here each cluster itself has a set of individuals controlled

by the slave GA. We discuss the various aspects of the master GA and the various genetic

operators of this GA one by one. The algorithm for the master GA is shown in figure 3.

3.2.1 Individual Representation

Every slave GA or cluster contains a lot of information that makes up the individual of

the master GA. The individual or cluster z represents the following information.

 Position in the fitness space or the fitness landscape. This is taken as the position

of the best individual searched by the local GA (Iz
rel

)

 Relative Number of iterations (Iterz
rel

)

 Relative Mutation Rate (Mutz
rel

)

 Relative Crossover Rate (Crosz
rel

)

 Relative Number of Individuals (Indz
rel

)

 Relative Convergence (Cz
rel

)

 Relative Diversity (Dz
rel

)

All relative parameters may be positive, negative or zero denoting the deviation of

these values from the average number values as per the current generation. The other

parameters denote their normal numeric values. All these are discussed in detail along

with role in section 3.3. Here convergence and diversity are informational parameters that

denote the status of the individual. They are not used while application of genetic

operators or for evaluation of the fitness functions.

Figure 3: Master Genetic Algorithm

3.2.2 Number of individuals
The number of individuals or cluster in the master GA is variable. We start with a very

high number of clusters as we need some initial idea of the landscape. As the generations

increase, we keep decreasing the number of individuals or clusters. This induces more

and more of global traits in the final solution. Another way to interpret this is that we

mainly use the results of the smaller generation to make up the larger generation. The

search starts with more exploration at different areas. Once the areas are identified, we try

to look forward for possibility of global optima out of the generated results of lower

generations.

3.2.3 Selection

The selection needs to ensure that two very distinct individuals do not get selected. In

other words we need to ensure that two clusters do not undergo crossover that lie far apart

in the fitness space. This is to preserve diversity at the master level. Killing of diversity as

master GA would badly adverse the algorithm as its results may be magnified at the slave

Initialization

Genetic Operators

Generate New Slave GA Individuals

Generate New Clusters

Migration

Slave GAs

While

Generations left

Absolute Increases in Parameters

Relative Increases in Parameters

GA operation. We hence use fitness scaling with stochastic selection to select the first

parent for crossover. The second parent is selected randomly from the nearest k

individuals.

3.2.4 Crossover

The crossover is applied between two individuals or clusters to generate new individuals

or clusters that belong to the higher generation. We simply take the arithmetic mean of

the cluster center positions along with the other parameters represented by the individual.

In this manner the crossover is performed.

3.2.5 Mutation

In this operator we modify only the position of some cluster and make it move by some

amount in the fitness space. The amount of movement depends upon the mutation rate

used in the master GA.

3.2.6 Elite

The elite pass the best fitness cluster from one generation to the other. Its value is kept as

unity which is constant for the entire algorithmic run. Here fitness is defined as the fitness

of individual that resides at the cluster center or the fitness of the best individual of the

corresponding local GA.

3.2.7 New Individuals and Clusters

This genetic operator adds new clusters and individuals into the population pool. The

relative parameters are all initialized to zero. Since the fitness landscape is complex, it is

always important to search for completely new areas in the fitness landscape in search of

global optima. It might not be wise to restrict only to the earlier explored areas and to try

to locate the optima based on the same areas. The addition of new individuals hopes the

exploration of good fitness areas.

3.2.8 Migration

As per the notations of the standard hierarchical genetic algorithm, migration refers to the

interchange of population among the local GAs. Migration in the proposed algorithm

takes place by the operation of re-clustering. The previously studied genetic operators

have already computed the locations of the new cluster centers. We further have a

population of individuals ready obtained from the best few individuals of all the local

GAs population. We add some more random individuals in this pool of individuals. Then

re-clustering of the available individuals takes place. Every cluster is given individuals

that lie closest to it. In this manner the execution of the local GA starts. It is not

ascertained that every cluster will get individuals as denoted by their relative number of

individuals. The relative number of individuals only denotes the number of individuals it

would contribute to the total population pool before re-clustering starts.

3.3 Information Passage between GAs

The proper working of the algorithm requires a proper coordination being maintained

between the various local GAs. This is done by the master GA. In order the master GA to

perform the task, it is important to have passage of information from the master GA to

the slave GA and vice versa. The master GA initializes and executes the slave GA. As a

result it is able to pass information to the slave GA. This information includes the initial

population along with the genetic parameters represented by the cluster.

The slave GA in turn passes the information of its best individuals as per its

relative fitness. It also passes the information of its total diversity and convergence.

Diversity (Dz) of the z
th

 cluster is defined as the average distance between any two

individuals. It may be given by the equation (1).

∑ ∑

 (1)

Here Ii denotes the i
th

 individual in the cluster, N is the total number of individuals in the

cluster

Convergence (Cz) of the z
th

 cluster is the total change in fitness witnessed by the

GA with respect to its best individual in the cluster. This is given by equation (2).

Cz=fit(best(Pini)) – fit(best(Pfinal)) (2)

The relative diversity (Dz
rel

) and relative convergence (Cz
rel

) for any cluster z are

measured as their relative measures to all clusters in the master population. They are

given by equation (3) and (4).

 ̅

 (3)

 ̅

 (4)

To calculate the other parameters i.e. Relative Number of iterations (Iterz
rel

), Relative

Mutation Rate (Mutz
rel

), Relative Crossover Rate (Crosz
rel

) and Relative Number of

Individuals (Indz
rel

) we use the concept of diversity and convergence. Every cluster z has

a diversity and convergence that affect its relative parameters in a multiplicative manner.

An increase in diversity means an increase in the relative number of iterations, decrease

in relative mutation rate, increase in relative crossover rate and decrease in relative

number of individuals. Similarly an increase in convergence means an increase in the

relative number of iterations, decrease in relative mutation rate, increase in relative

crossover rate and decrease in relative number of individuals in the next generation.

The equation for Relative Crossover Rate (Crosz
rel

) is given by equation (5).

Similarly the other relative parameters may be computed.

 (5)

Here Cros
abs

(1) is the initial crossover rate. The maxcros is the maximum

percentage increase in the crossover rate with generations. In case any parameter (e.g

crossover rate itself) decreases with generation, Cros is measured from the final

generation G rather than initial generation 1. The various parameters increase or decrease

along with the number of generations (g) of the master GA. The number of individuals of

master GA (nclus) or the number of clusters decreases uniformly with time along with the

rise in generations. This is given by equation (6)

 (6)

Here nclus(1) is the maximum number of clusters that can appear in the master

GA. These are the number of clusters at the first generations. G is the maximum number

of generations in the GA.

The other parameters i.e Number of iterations (Iterz), Mutation Rate (Mutz),

Crossover Rate (Crosz) and Number of Individuals (Indz) change due to two factors.

These are absolute and relative. The absolute is a general increase or decrease in the

parameter value along with the master GA. The relative is the fine tuning done by the

relative measures of these parameters to optimize the overall performance of the

algorithm. For the number of iterations, this may be given by equation (7)

 (7)

Here Iters
abs

(g) is the absolute or a general increase in the total number of

iterations along with time. This is given by equation (7).

 (8)

Here maxinc is the maximum percentage increase in the number of iterations as

discussed earlier.

Itersz
rel

(g) is given by equation (8).

4 Various Genetic Parameters
The parameters that we have added and would like to study are the initial number of

clusters, initial number of individuals, total generations, initial mutation, initial crossover,

initial number of iterations, and percentage increase in mutation, crossover and iterations.

The initial number of clusters denotes the localized nature of the algorithm. The

more the number of clusters, the more is the approach of the algorithm to return local

optima as the final answer assuming a limited constant computation. It closely resembles

the number of individuals in the conventional GA where more individuals add

randomness. For most real life applications, which require a very fast results we may

keep the number of clusters high. For applications that are not much time restrictive, the

clusters may be kept low for more time to be spent on the global exploratory nature of the

algorithm. Similar trend may be observed in total number of individuals used by local

GA. The more the number of individuals, the more is the randomness or convergence to

local optima which may be desirable in real life scenarios.

The initial mutation and initial crossover are kept sufficiently low and high

respectively for easy search for the local optima by the local GA. These generalize the

notion of crossover and mutation over the entire GA. A high initial mutation results in a

lot of exploration outside the allotted search space in the initial iterations as well. This

may be an attempt not to converge to local optima, but to search the global optima. As a

result we take longer to generate good solutions, but the chances of being near the global

optima are high. In contrast a high initial crossover rate means a desire to converge

straight into the local optima which might be the case when good solutions are needed

early in the algorithm run. The initial number of iterations further follows the tends of

initial number of individuals where more iterations mean a better exploration in a local

GA and the solutions returned being more locally searched in nature. This is unlike when

the search space in search was large.

The percent increases of the mutation, crossover and iterations denote the

dynamic changes in the local GA or the local search algorithm. It denotes the speed with

which the algorithm intends to work over the global picture. This further adapts the local

GAs as per their local landscapes. Every GA is hence enabled to perform better in the

scenario it is presently in when compared to the entire algorithm. It may be recalled that

since the landscape is complex, we increase the randomness in the larger generations and

the percentage increases denotes the rate of increase of randomness. In this algorithm

trying to find a global solution is quite analogous to making the algorithm more random.

Very high percent increases would make the algorithm very random at a very

early stage. This would not be useful if a good result needs to be generated at early

stages. Similarly small percentage increases may not be able to find global optima. They

are likely to be struck at some local optima.

5 Results
The algorithm was implemented and tested using JAVA as a platform. For the purpose of

testing we studied the various functions used in literature. We finally selected a set of 11

test functions. Some of them were taken from the work of Garai and Chaudhuri (2007)

and the others were taken from the work of Shi et al (2005). These functions along with

the ranges and optima points are given in table 1. Each of these was executed and

analyzed separately. The value of the parameters was fixed same for all these functions.

All simulations were made on a 4 GB RAM, 3.0 3.0 GHz Core 2 Duo processor. The

parameters used for the simulations were 10 as the initial number of clusters, I (problem

specific) individuals, G generations (problem specific) of the master GA. The initial

mutation rate was fixed as 0.03 and crossover rate as 0.8. The initial number of iterations

of the slave GA was 100. The percentage increases were 1 for mutation and generations

and 0.5 for crossover. All simulations took 2 to 4 seconds running time as per the set

parameters except the last function which took approximately 5, 7 and 15 seconds for the

three runs with different dimensions.

We used Particle Swarm Optimization (PSO) and standard Genetic Algorithm

(GA) to compare the proposed algorithms. All simulations were carried out 20 times. The

parameters of these algorithms were kept following the best practices at the same time

keeping the runtime of all the algorithms similar. The mutation rate was fixed to 0.03 and

crossover was fixed to 0.7. Individuals and generation could vary from 600 to 800 and

1500 to 7500 respectively for various problems. This meant a very large number of

populations as generations due to low overheads of these algorithms. The means and

standard deviation of the results obtained from the simulation results along with number

of individual and generations for proposed algorithm is given in Table 2. The table also

lists the points of optima in the fitness space as recorded with the best run.

Table 2 showcases the performances of the proposed algorithms compared to

standard GA and PSO. The 11 functions given to the algorithm to optimize represent a

range of simple to complex functions.

Table 1: The benchmark objective functions used for the testing of the algorithm

S.

No.

Function Dimension Range Minima

F1 [

][

]

2 -2 ≤ x1,

x2 ≤ 2

3

F2

 (

)

2 -10 ≤

x1, x2 ≤

10

0

F3

 2 -2 ≤ x1,

x2 ≤ 2

0

F4

 ∑

4 -2 ≤ xi

≤ 2

0

F5

 ∑

6 -1 ≤ xi

≤ 1

0

F6

 ∑

 ∏ (

√
)

10 -1 ≤ xi

≤ 1

-10

F7

 ∑

3 -10 ≤ xi

≤ 10

-300

F8

 ∑

5 -1 ≤ xi

≤ 1

-8.30

F9
 ∑

 ∑

4 -10 ≤ xi

≤ 10

-4.

F10

2 -5 ≤ xi

≤ 5

-1.031628

F11
 ∑

 ∏

5, 8, 12 -10 ≤ xi

≤ 10

0.0

In order to facilitate a judicious comparison between the algorithms, all the

algorithms were executed for the same time durations. The time was 2 to 4 seconds for all

functions except the last one for which the time was 5, 7 and 15 seconds for the three

runs with different dimensions. The parameters of all the algorithms were fixed such that

the optimization takes place to the largest possible extent in the allocated time duration.

This is especially important to decide the convergence of the algorithm, as the various

individuals need to converge after the desired time. Too early or late convergence would

lead to sub-optimal results. The proposed algorithm, because of complex hierarchical

operators would execute lesser number of fitness evaluations as compared to the other

algorithms within the same time. However, as discussed, it is capable of giving better

results in complex fitness landscape. Results show a better performance of the proposed

algorithm for the same execution time which advocates the overall improvement by this

algorithm in optimization.

Table 2: Comparative analysis of working of the proposed algorithm with GA and

PSO on the objective functions

S. No. Optimal

Value

Proposed Algorithm GA PSO

I, G Mean St

Deviation

Mean St

Deviation

Mean St

Deviation

F1 3 100,
500

3.000038 0.000089 142.0500* 301.4589 3.000000 3.79e-8

F2 0 100,

500

0.000000 4.571e-9 0.000000 1.63e-23 0.000000 4.63e-9

F3 0 100,
500

0.000000 9.99e-5 0.000000 2.24e-20 0.000000 7.35e-9

F4 0 200,

1000

0.047769 0.04429 0.000000 1.40e-8 0.000158 0.000108

F5 0 100,
500

0.007559 0.014469 0.000000 1.83e-10 0.000000 3.15e-7

F6 -10 100,

500

-

9.997000

0.002323 -10.00000 8.991e-9 -10.0000 2.03e-7

F7 -300 100,
500

-
298.7401

0.671932 -269.462 20.45611 -299.917 0.03725

F8 -8.30 100,

500

-

8.243602

6.7094e-6 -8.24361 3.70e-10 -8.24360 1.029e-6

F9 -4 100,

500

-

3.997382

0.008396 -4.00000 3.15e-5 -4.00000 5.12e-9

F10 -

1.031628

100,

500

-

1.031628

2.5538e-4 -0.11236# 1.02411 -1.03163 7.81e-9

F11(i)

(ii)

(iii)

0

0

0

200,

1000

350,

3000

400,

4000

0.028758

0.025957

0.157634

0.048754

0.033986

0.369671

-0.95720$

6.50802

31.3468

2.94720

4.50280

24.6291

0.01465

0.072406

1.051142

0.00300

0.01316

1.49311

*
 At a few runs the algorithm was trapped in the minima corresponding to value 839 and

30
#
 At a few runs the algorithm was trapped in the minima corresponding to value -0.21546

and 2.10425
$
 At a few runs the algorithm was trapped in the minima corresponding to value 9.41

We separately discuss the results in heads of simple and complex functions. The

functions in table 1 numbered F1 to F9 are relatively simple functions with limited

dimensionalities or simpler fitness landscape. These functions were given to the various

algorithms to have a clearer comparison on the general functions between the three

algorithms. Looking at the results we can clearly see that all the 3 algorithms were easily

able to optimize these functions. The optimal values were significant in regard to the

execution time which was intentionally kept small to judge the real-time performance in

simpler functions. The convergence or optimality of the GA and PSO seem to be much

higher for these functions. GA and PSO lead to more optimal values as compared to the

proposed algorithms. Also the low values of standard deviation illustrate the stableness of

these algorithms as compared to the proposed algorithm. But still the performance of the

proposed algorithm may be stated significant. Recall that our aim was not the perfect

global minima, but a good performance in complex landscapes. In other words, we did

not intend to converge deep inside the global minima, but rather appreciated the

exploratory nature as well which acts as an overhead to keep the final value sub-optimal.

Function F1 somehow did not show a good performance in the use of GA where the GA

sometimes got trapped in local minima corresponding to 83 and 839 at some of the runs.

In most cases however, the GA could converge to global minima in F1.

The scenario keeps changing as we start increasing the complexity. This is when

the proposed algorithm starts depicting useful characteristics as while the other

algorithms start facing problems. This was when we gave the inputs F10 and F11 with the

dimensionalities of 5, 8 and 12. The proposed algorithm was able to generate optimal

solutions in all the scenarios. The optimality may be stated satisfactory looking at the

complexity of the landscape. However, the GA completely failed to find optimal

solutions in these inputs. For F10 the GA could do reasonably well when it got optimal

values at most of the runs, with non-optimal solutions at few runs. Similar was the case

with the run of F11 with a dimensionality of 5. The optimal value was fetched most of the

times with a few non-optimal solutions. However, the optimality was very poor for the

other runs of F11. The PSO behaved decent with F10 and gave good solution at par with

the proposed algorithm. However the scenario with F11 was different. The optimality

was fine for the first run with dimensionality of 5, but kept deteriorating. PSO lost to the

proposed algorithm in higher dimensions of 5 and 12. In dimensionality of 12, it mostly

failed to give the correct solutions.

Based on the simulation with F11, it may be extrapolated that all three

algorithms would pose problems of high complexity as we keep increasing the

dimensionality. However, GA and PSO in a dimensionality of 12 lag behind the proposed

algorithm. Continuing the simulation at higher dimensions would make the difference

even larger. Many of the real life applications like evolution of ANN (Yao 1993) is a

highly dimensional problem that takes a lot of time. At such high complexities, it may

easily be generalized that the proposed algorithm would serve better.

In order to visually analyze the complexity of the function we draw the function

F11 in 2-dimensions given in figure 4. It may again be seen that this extended over

multiple dimensions pose a very complex problem because of which many algorithms

fail.

Figure 4: Fitness landscape (in 2 dimensions) of F11 objective function

The next thing of interest to study is the convergence. In order to see the

algorithmic behavior, we see the performance of the algorithm with regard to the best

individual. Since a large portion of the population is always randomly generated, we

disregard the performance of average and worst individual which may carry a lot of

random characteristics that is not of our interest. The performance may be studied

separately for the master and the slave GA. Figure 5(a) shows the graph between the best

individual in population v/s generations for the master GA when simulated for F11 with

dimensionality of 12. It may be seen that the graph has a discrete behavior. Every plot of

the master GA corresponds to a number of cycles of the slave GA that optimize the

objective function. Hence the master GA is discrete in little nature. The slave GA on the

contrary behaves differently. This is a typical GA with high crossover rate and low

mutation rate to allow fast convergence. The graph between the fitness and generations

for the first run of the first slave GA is given in figure 5(b).

Figure 5(a): Convergences in master GA

Figure 5(b): Convergences in slave GA

0

5

10

15

20

25

30

35

1 1001 2001 3001

Fu
n

ct
io

n
al

 V
al

u
e

 o
f

B
e

st

In
d

iv
id

u
al

Generations

0

200

400

600

800

1000

1200

1400

1 11 21 31 41 51 61 71 81 91

Fu
n

ct
io

n
al

 V
al

u
e

 o
f

B
e

st

In
d

iv
id

u
al

Generations

6 Conclusions
In this paper we proposed a hierarchical implementation of the GA. The entire GA was

implemented in two hierarchies of master GA and slave GA. The role of the slave GA

was simply to converge to some local minima. This was done to give optimal results in

low times. The master GA was supposed to carry forward the task of coordination and

parameter setting of the local GA.

The testing of the algorithm was done using the benchmark functions available

in literature (Garai and Chaudhuri 2007; Shi et al 2005). 11 such functions were

identified. These functions ranged in their complexity and dimensionality. We tested the

performance of the algorithm in comparison to the conventional GA and PSO. The results

revealed that the conventional GA and PSO were able to give a good performance in

most of the simple objective functions. They penetrated deep into the optimization of the

fitness value and returned a solution that was highly close to the global optima. The

proposed algorithm also gave a decent performance but could not penetrate that deep in

search of the global minima. The scenario started changing when we used functions of

high complexity. Results denote that as the complexity increased, the GA and PSO

started facing problems. Since most of the real life problems are much complex to the

tested problem, it may be inferred that the proposed algorithm wit better scalability

factors would perform much better in real-time situations or elsewhere.

The proposed algorithm gave a decent performance to complex functions. The

real scalability test of the proposed algorithm lies in its use in most real life complex

applications. These applications present a fitness landscape that is much more complex

than the objective functions used. The work of testing and comparing the proposed

algorithm in these domains may be done in future. The algorithm further makes an

attempt to use the global GA as a means of parameter setting of the local GA by using the

metrics of local GA as guides and relating and absolute changes for general

improvement. This is a much complex relationship between parameters that require a

much formal modeling and study. The improvement in this segment may have a deep

impact on the algorithmic performance. Another important aspect of the algorithm is its

tradeoff between the local and global characteristics. While we present many parameters

to adapt the algorithm to any of these characteristics, a formal study in various specific

scenarios and runtimes may be conducted in future.

References
 [1] António, C. A. Conceição (2006), ‘A hierarchical genetic algorithm with age

structure for multimodal optimal design of hybrid composites’, Structural and

Multidisciplinary Optimization, Vol 31, pp 280-294

[2] António, C. A. Conceição (2006), ‘A study on synergy of multiple crossover

operators in a hierarchical genetic algorithm applied to structural optimisation’,

Structural and Multidisciplinary Optimization, Vol 38, pp 117-135

[3] Arnold, Dirk V, and Castellarin, Anthony, S (2009), ‘A Novel Approach to Adaptive

Isolation in Evolution Strategies’, In Proceedings of Genetic and Evolutionary

Computation Conference, GECCO-2009, New York, pp. 491-498

[4] Deb, Kalyanmoy (1999), ‘An Introduction to Genetic Algorithms’, In Sadhana, Vol

24, No 4, pp 205–230.

[5] Deb, Kalyanmoy, and Agrawal, Samir (1999), ‘Understanding interactions among

genetic algorithm parameters’, In Foundations of Genetic Algorithms 5, Morgan

Kaufmann Publications, pp 265-286

[6] Eberhart, Russell C., and Shi, Yuhui (2006), ‘Comparison between genetic algorithms

and particle swarm optimization’, In Evolutionary Programming VII, Vol 1447, pp 611-

616

[7] Fogarty, Terence C. (1989) , ‘Varying the Probability of Mutation in the Genetic

Algorithm’, In Proceedings of the 3rd International Conference on Genetic Algorithms,

Morgan Kaufmann Publishers , pp 104 - 109

[8] Garai, Gautam, and Chaudhury, BB (2007), ‘A distributed hierarchical genetic

algorithm for efficient optimization and pattern matching’, Pattern Recognition, Vol 40,

pp 212 – 228

[9] Gordon, VS, Whitley, D, and Böhn A (1992), ‘Dataflow parallelism in genetic

algorithms’, In: MännerR,ManderickB(eds) Parallel problem solving from nature 2.

Elsevier, Amsterdam, pp 533–542

[10] Hu, J., Goodman, E., Seo, K., and Pei, M. (2002), ‘Adaptive Hierarchical Fair

Competition (AHFC) Model for parallel evolutionary algorithms’ In Proceedings of

Genetic and Evolutionary Computation Conference, GECCO-2002, New York, pp. 772–

779

[11] Hu, J., Goodman, E., Seo, K., Fan, Z., and Rosenberg, R. (2005), ‘The Hierarchical

Fair Competition (HFC) framework for continuing evolutionary algorithms’,

Evolutionary Computation, Vol. 13, no. 2, The MIT Press, pp. 241–277.

[12] Jong, Edwin D De, Thierens, Dirk, and Watson, Richard A (2004), ‘Hierarchial

Genetic Algorithms’, In Springer Lecture Notes in Computer Science, Vol 3242, pp 232-

241

[13] Jong, Kenneth A. De , and Spears, William M. (1991), ‘An analysis of the

interacting roles of population size and crossover in genetic algorithms’, In Springer

Lecture Notes in Computer Science, Vol 496, pp 38-47

[14] Jong, Kenneth A. De , and Spears, William M. (1992), ‘A formal analysis of the role

of multi-point crossover in genetic algorithms’, Annals of Mathematics and Artificial

Intelligence, Vol 5, No 1, pp 1-26

[15] Kala, Rahul, Shukla, Anupam, and Tiwari, Ritu (2009), Fusion of Evolutionary

Algorithms and Multi-Neuron Heuristic Search for Robotic Path Planning, Proceedings

of the IEEE 2009 World Congress on Nature & Biologically Inspired Computing (NABIC

'09), Coimbatote, India

[16] Kala, Rahul, Shukla, Anupam, Tiwari, Ritu, Roongta, Sourabh, and Janghel, RR

(2009), Mobile Robot Navigation Control in Moving Obstacle Environment using

Genetic Algorithm, Artificial Neural Networks and A* Algorithm, Proceedings of the

IEEE World Congress on Computer Science and Information Engineering, Los

Angeles/Anaheim, USA, pp 705-713,

[17] Kumar, Ranjan, Izui, Izui, Kazuhiro, Masataka, Yoshimura, and Nishiwaki, Shinji

(2008), ‘Multilevel Dependency Allocation Optimization Using Hierarchical Genetic

Algorithms’, IEEE Transactions on Reliability, Vol 57, No 4

[18] Lim, Dudy, Ong, Yew-Soon, Jin, Yaochu, Sendhoff, Bernhard, and Lee, Bu-Sung

(2007), ‘Efficient Hierarchical Parallel Genetic Algorithms Using Grid Computing’,

Future Generation Computer Systems, Vol 23, No 4, pp 658-670

[19] Lobo, Fernando C, Lima, and Claudio F, and Michalewics, Zbigniew (Eds.)(2007),

Parameter Setting in Evolutionary Algorithms, Springer

[20] Lohmann, R (1992), ‘Structure evolution and incomplete induction Parallel Problem

Solving from Nature’, Proceedings of the 2
nd

 International Conference on Parallel

Problem Solving from Nature, Brussels, Amsterdam, Elsevier, pp 175–85

[21] Manderick, B, Weger, M de, Spiessens, P (1991), ‘The genetic algorithm and the

structure of the fitness landscape’, In Proceedings of the Fourth International Conference

on Genetic Algorithms, Morgan Kaufmann Publishers

[22] Mitchell, Melanie (1998), An Introduction to Genetic Algorithms, MIT Press

[23] Muhlenbein, Heinz (1992), ‘How genetic algorithms really work I. Mutation and

Hill Climbing’, Parallel Problem Solving from Nature,

[24] Oh, Sung-Kwun, Jung, Seung-Hyun, and Pedrycz, Witold (2009), ‘Design of

optimized fuzzy cascade controllers by means of Hierarchical Fair Competition-based

Genetic Algorithms’, Expert Systems with Applications, Vol 36, pp 11641-11651

[25] Rechenberg, I. (1973), Evolutionsstrategie: Optimierung technischer Systeme nach

Prinzipiender biologischen Evolution, Frommann-Holzboog, Stuttgart.

[26] Rudolph, Gunter (1997), Evolutionary Strategis, In Evolutionary Algorithms and

Their Standard Instances, Handbook on Evolutionary Computation, IOP Publishing Ltd

and Oxford University Press

[27] Schwefel, H.P. (1995), Evolution and Optimum Seeking, John Wiley.

[28] Sefrioui, Mourad, and Periaux, Jacques (2000), ‘A Hierarchical Genetic Algorithm

Using Multiple Models for Optimization’, In Springer Lecture Notes in Computer

Science, Vol 1917, pp 879-888

[29] Shi, XH, Liang, YC, Lee, HP, Lu, C, Wang, LM (2005), ‘An improved GA and a

novel PSO-GA-based hybrid algorithm’, Information Processing Letters, Vol 93, pp

255–261

[30] Shukla, Anupam, Tiwari, Ritu, and Kala, Rahul (2010), Real Life Applications of

Soft Computing, CRC Press

[31] Srinivas, M. Patnaik, L.M. (1994) , ‘Adaptive Probabilities of Crossover and

Mutation in Genetic Algorithms’, IEEE Transaction on Systems, Man and Cybernetics,

Vol 24, Issue 4, pp 656-667

[32] Syswerda, Gilbert (1989), ‘Uniform Crossover in Genetic Algorithms’, In

Proceedings of the 3rd International Conference on Genetic Algorithms, Morgan

Kaufmann Publishers, pp 2 - 9

[33] Wang, Chunmiao, Soh, Y C, Wang, Han, and Wang, Hui (2002), ‘A Hierarchical

Genetic Algorithm for Path Planning in a Static Environment with Obstacles’, In

Proceedings of the 2002 Congress on Evolutionary Computation CEC’02, Vol 1, pp 500-

505

[34] Wolpert, David H, and Macready, William G (1997), ‘No Free Lunch Theorems for

Optimization’, IEEE Transaction on Evolutionary Computation, Vol 1, No 1, pp 67-82

[35]Yao, Xin (1993), ‘Evolutionary Artificial Neural Networks’, In International Journal

of Neural Systems, Vol 4, No 3, pp 203-222

[36] Yen, Gary C, and Lu Haiming (2000), ‘Hierarchal Genetic Algorithm Based Neural

Network Design’, In 2000 IEEE Symposium on Combinations of Evolutionary

Computation and Neural Networks, pp 168-175

Author Biographies

Mr. Rahul Kala

Mr. Rahul Kala is a student of Integrated Post Graduate Course

(BTech + MTech in IT) in Indian Institute of Information Technology

and Management Gwalior. His fields of research are hybrid system

design, robotic planning, design of algorithms, artificial intelligence

and soft computing. He has published 10 papers in various national and international

journals/conferences including Journal of Mobile Robotics and Intelligent Systems

(JAMRIS), Springer LNCS, International Journal of Computer Science and Network

Security (IJCSNS), IEEExplore conferences, ANNIE, etc.He secured All India 8th

position in Graduates Aptitude Test in Engineeging-2008 with a percentile of 99.84. He

is the winner of Lord of the Code Scholarship Contest organized by KReSIT, IIT

Bombay and Red Hat. He secured 7
th

 position in ACM-International Collegiate

Programming Contest Kanpur Regional.

Dr. Anupam Shukla

Dr. Anupam Shukla is an Associate Professor in the IT Department of

the Indian Institute of Information Technology and Management

Gwalior. He has 20 years of teaching experience. His research interest

includes Speech processing, Artificial Intelligence, Soft Computing,

Biometrics and Bioinformatics. He has published around 80 papers in

various national and international journals/conferences. He is Editor

and reviewer in various journals. He received Young Scientist Award

from Madhya Pradesh Government and Gold Medal from Jadavpur University.

Dr. Ritu Tiwari

Dr. Ritu Tiwari is an Assistant Professor in the IT Department of Indian

Institute of Information Technology and Management Gwalior. Her

field of research includes Biometrics, Artificial Neural Networks,

Speech Signal Processing, Robotics and Soft Computing. She has

published around 30 papers in various national and international

journals/conferences. She has received Young Scientist Award from

Chhattisgarh Council of Science & Technology and also received Gold

Medal in her post graduation.

