
Noname manuscript No.
(will be inserted by the editor)

Clustering-Based Preconditioning for Stochastic Programs

Yankai Cao · Carl D. Laird · Victor M. Zavala

Abstract We present a clustering-based preconditioning strategy for KKT systems arising in
stochastic programming within an interior-point framework. The key idea is to perform adap-
tive clustering of scenarios (inside-the-solver) based on their influence on the problem as op-
posed to cluster scenarios based on problem data alone, as is done in existing (outside-the-
solver) approaches. We derive spectral and error properties for the preconditioner and demon-
strate that scenario compression rates of up to 87% can be obtained, leading to dramatic com-
putational savings. In addition, we demonstrate that the proposed preconditioner can avoid
scalability issues of Schur decomposition in problems with large first-stage dimensionality.

Keywords preconditioning · interior-point · stochastic · large-scale · clustering.

1 Preliminaries

We consider two-stage stochastic programs of the form

min

(
1

2
xT
0 Q0x0 + dT0 x0

)

+
∑

s∈S

(
1

2
xT
s Qsxs + dTs xs

)

(1a)

s.t. W0x0 = b0, (y0) (1b)

Tsx0 +Wsxs = bs, (ys), s ∈ S (1c)

x0 ≥ 0, (ν0) (1d)

xs ≥ 0, (νs), s ∈ S. (1e)

Preprint Number ANL/MCS-P3050-1112

Yankai Cao · Carl D. Laird
School of Chemical Engineering, Purdue University
480 Stadium Mall Drive, West Lafayette, IN 47907
Tel.: +1-765-494-0085
Fax: +1-765-494-0805
E-mail: {cao142,lairdc}@purdue.edu

Victor M. Zavala
Mathematics and Computer Science Division, Argonne National Laboratory
9700 South Cass Avenue, Argonne, IL 60439
Tel.: +1-630-252-3343
Fax: +1-630-252-5986
E-mail: vzavala@mcs.anl.gov

vzavala
Rectangle

2 Yankai Cao et al.

Here, S := {1..nS}, where nS is the number of scenarios, x0, ν0 ∈ ℜn0 , xs, νs ∈ ℜns , y0 ∈ ℜm0 ,
and ys ∈ ℜms . The total number of variables is n := n0 +

∑

s∈S
ns, of equality constraints is

m := m0 +
∑

s∈S
ms, and of inequalities is n. We refer to (x0, y0, ν0) as the first-stage variables

and to (xs, ys, νs), s ∈ S , as the second-stage variables. We refer to equation (1a) as the cost
function. The data defining problem (1) is given by the cost coefficients d0, Q0, Qs, ds, the right-
hand side coefficients b0, bs, and the matrix coefficients Ts,Ws. We refer to Qs, ds, bs, Ts,Ws as
the scenario data.

As is typical in stochastic programming, the number of scenarios can be large and limits the
scope of existing off-the-shelf solvers. In this work, we present strategies that cluster scenarios
at the linear algebra level to mitigate complexity. We start by presenting some basic notation.

The Lagrange function of (1) is given by

L(x, y, ν) =
1

2
xT
0 Q0x0 + dT0 x0 + yT0 (W0x0 − b0)− νT0 x0

+
∑

s∈S

(
1

2
xT
s Qsxs + dTs xs + yTs (Tsx0 +Wsxs − bs)− νTs xs

)

. (2)

Here, x := [xT
0 , x

T
1 , ..., x

T
S], y

T := [yT0 , y
T
1 , ..., y

T
S], and νT := [νT0 , ν

T
1 , ..., ν

T
S]. In a primal-dual

interior-point (IP) setting we seek to solve nonlinear systems of the form

∇x0
L = 0 = Q0x0 + d0 +WT

0 y0 − ν0 +
∑

s∈S

TT
s ys (3a)

∇xs
L = 0 = Qsxs + ds +WT

s ys − νs, s ∈ S (3b)

∇y0
L = 0 = W0x0 − b0 (3c)

∇ys
L = 0 = Tsx0 +Wsxs − bs, s ∈ S (3d)

0 = X0V0e− µe (3e)

0 = XsVse− µe, s ∈ S, (3f)

with the implicit condition x0, ν0, xs, νs ≥ 0. Here, µ ≥ 0, e ∈ ℜn is a vector of ones, X0 :=
diag(x0), Xs := diag(xs), V0 := diag(ν0), and Vs := diag(νs). We define α0 := X0V0e − µe and
αs := XsVse− µe, s ∈ S . The search step is obtained by solving the linear system

Q0∆x0 +WT
0 ∆y0 +

∑

s∈S

TT
s ∆ys −∆ν0 = −∇x0

L (4a)

Qs∆xs +WT
s ∆ys −∆νs = −∇xs

L, s ∈ S (4b)

W0∆x0 = −∇y0
L (4c)

Ts∆x0 +Ws∆xs = −∇ys
L, s ∈ S (4d)

X0∆ν0 + V0∆x0 = −α0 (4e)

Xs∆νs + Vs∆xs = −αs, s ∈ S. (4f)

After eliminating the bound multipliers from the inear system we obtain

CPH0∆x0 +WT
0 ∆y0 +

∑

s∈S

TT
s ∆ys = −rx0

(5a)

Hs∆xs +WT
s ∆ys = −rxs

, s ∈ S (5b)

W0∆x0 = −ry0
(5c)

Ts∆x0 +Ws∆xs = −rys
, s ∈ S, (5d)

Clustering-Based Preconditioning for Stochastic Programs 3

where

∆ν0 = −X−1
0 V0∆x0 −X−1

0 α0 (6a)

∆νs = −X−1
s Vs∆xs −X−1

s αs, s ∈ S, (6b)

and

H0 := Q0 +X−1
0 V0 (7a)

Hs := Qs +X−1
s Vs, s ∈ S. (7b)

We also have that rx0
:= ∇x0

L−X−1
0 α0, rxs

:= ∇xs
Ls −X−1

s αs, ry0
:= ∇y0

L, and rys
:= ∇ys

L.
System (5) has the arrowhead form

K1 B1

K2 B2

. . .
...

KS BS

BT
1 BT

2 . . . BT
S K0

∆w1

∆w2

...
∆wS

∆w0

=

r1
r2
...
rS
r0

, (8)

where ∆wT
0 := [∆xT

0 , ∆yT0], ∆wT
s := [∆xT

s , ∆yTs], r
T
0 := [rTx0

, rTy0
], rTs := [rTxs

, rTys
], and

K0 :=

[
H0 WT

0

W0 0

]

, Ks :=

[
Hs WT

s

Ws 0

]

, Bs :=

[
0 0
Ts 0

]

. (9)

We refer to the linear system (8) as the KKT system. We assume that each scenario block
matrix Ks, s ∈ S is nonsingular.

We use the following notation to define a block-diagonal matrix M composed of blocks
M1,M2,M3, ... :

M = blkdiag{M1,M2,M3, ...}. (10)

In addition, we use the following notation to define a matrix B that stacks (row-wise) the blocks
B1, B2, B3... :

B = rowstack{B1, B2, B3, ...}. (11)

We apply the same rowstack notation for vectors. We use the notation v(k) to indicate the k− th
entry of vector v. We use vec(M) to denote the row-column vectorization of matrix M and we
define σmin(M) as the smallest singular value of matrix M . We use ‖ · ‖ to denote the Euclidean
norm for vectors and the Frobenius norm for matrices, and we recall that ‖M‖ = ‖vec(M)‖ for
matrix M .

2 Clustering Setting

In this section, we review work on scenario reduction and highlight the differences and contri-
butions of our work. We then present our clustering-based preconditioner for the KKT system
(8).

4 Yankai Cao et al.

2.1 Related Work and Contributions

Scenario clustering or aggregation is a strategy commonly used in stochastic programming to
reduce computational complexity. We can classify these strategies as outside-the-solver and
inside-the-solver strategies. Outside-the-solver strategies perform clustering on the scenario
data (right-hand sides, matrices, and gradients) prior to the solution of the problem [8,14,12,
5]. This approach can provide lower bounds and error bounds for linear programs (LPs) and
this feature can be exploited in branch-and-bound procedures [5,1,20,25].

Outside-the-solver clustering approaches give rise to several inefficiencies, however. First,
several optimization problems might need to be solved in order to refine the solution. Second,
these approaches focus on the problem data and thus do not capture the effect of the data on the
particular problem at hand. This is an important inefficiency because scenarios that are close to
each other (in terms of data) might have very different impact on the cost function if they are
close to the constraint boundary. Conversely, two scenarios that are far apart (in terms of data)
might have similar contributions to the cost function. We also highlight that many scenario gen-
eration procedures require knowledge of the underlying probability distributions [9,12] which
are often not available in closed form (e.g., weather forecasting) [24,16].

In this work, we seek to overcome these inefficiencies by performing clustering adaptively
inside-the-solver. In an interior-point setting this can be done by creating a preconditioner for
the KKT system (8) by clustering the scenario blocks. A key advantage of this approach is that
a single optimization problem is solved and the clusters are refined only if the preconditioner
is not sufficiently accurate. In addition, this approach provides a mechanism to capture the in-
fluence of the data on the particular problem at hand. Another advantage is that it can enable
sparse preconditioning of Schur complement systems. This is beneficial in situations where the
number of first-stage variables is large and thus direct Schur complement decomposition is
expensive. Moreover, our approach does not require any knowledge of the underlying proba-
bility distributions generating the scenario data. Thus, it can be applied to problems in which
simulators are used to generate scenarios (e.g., weather forecasting), and it can be applied to
problem classes that exhibit similar structures such as support vector machines [10,13] and
scenario-based robust optimization [4]. Our proposed clustering approach can also be used in
combination with outside-the-solver scenario aggregation procedures.

Related work on inside-the-solver scenario reduction strategies includes stochastic Newton
methods [3]. These approaches sample scenarios to create a smaller representation of the KKT
system. Existing approaches, however, cannot handle constraints. Scenario and constraint re-
duction approaches for IP solvers have been presented in [6,22,18,7]. In [6,22], scenarios that
have little influence on the step computation are eliminated from the KKT system. This influ-
ence is measured in terms of the magnitude of the constraint multipliers or in terms of the
products X−1

s Vs. In those works, it was found that a large proportion of scenarios or constraints
can be eliminated without compromising convergence. The elimination potential can be limited
in early iterations, however, because it is not clear which scenarios have strong or weak influ-
ence on the solution. In addition, these approaches eliminate the scenarios from the problem
formulation, and thus special safeguards are needed to guarantee convergence. Our proposed
clustering approach does not eliminate the scenarios from the problem formulation; instead, the
scenario space is compressed to construct preconditioners.

In [18] preconditioners for Schur systems are constructed by sampling the full scenario set.
A shortcoming of this sampling approach is that scenario outliers with strong influence might
not be captured in the preconditioner. In addition, this approach still requires a dense precon-
ditioner for the Schur complement, which hinders scalability in problems with many first-stage
variables. Our preconditioning approach enables sparse preconditioning and thus avoids form-

Clustering-Based Preconditioning for Stochastic Programs 5

ing and factorizing dense Schur complements. In addition, compared with approaches in [6,22,
18], our approach clusters scenarios instead of eliminating them (either by sampling or by mea-
suring strong/weak influence). This enables us to capture scenario redundancies and outliers.
In [7], scenarios are clustered to solve a reduced problem and the solution of this problem is
used to warm-start the problem defined for the full scenario set. The approach can reduce the
number of iterations of the full scenario problem; but the work per iteration is not reduced, as
in our approach.

2.2 Clustering-Based Preconditioner

To derive our clustering-based preconditioner, we partition the full scenario set S into C clus-
ters, where C ≤ S. For each cluster i ∈ C := {1..C} we define a subset Si ⊆ S with ωi := |Si|
scenarios satisfying

⋃

i∈S

Si = S (12a)

Si

⋂

Sj = ∅, i, j ∈ C, j 6= i. (12b)

For each scenario s ∈ S , we define an index pair (i, j), i ∈ C, j ∈ Ci := {1..ωi}, to indicate that
scenario s belongs to cluster i and is located at the local position j. We use this to define the
ordered scenario set

Ω := {(1, 1), (1, ω1), (2, 1), ..., (2, ω2), ..., (C, 1), (C, ωC)}. (13)

For each cluster i ∈ C we pick an index ji ∈ Si to represent the cluster and we use these indexes
to define the compressed set R := {j1, j2, .., jC}. Note that |R| = C.

We define the binary indicator κs,i, s ∈ S, i ∈ C, satisfying

κs,i =

{
1 if s ∈ Si

0 otherwise.
(14)

Using this notation, we have that for arbitrary vectors vji , v(i,j), i ∈ C, j ∈ Ci, the following
identities hold:

∑

i∈C

∑

j∈Ci

‖vji − v(i,j)‖ =
∑

s∈S

∑

i∈C

κs,i‖vji − vs‖ (15a)

∑

i∈C

∑

j∈Ci

v(i,j) =
∑

s∈S

vs (15b)

∑

i∈C

∑

j∈Ci

vji =
∑

i∈C

ωivji . (15c)

At this point, we have yet to define appropriate procedures for obtaining the cluster information
S,R,Si, Ci, ωi and κs,i. These are discussed in Section 3.

Consider now the ordered representation of the KKT system (8),

[
KΩ BΩ

BT
Ω K0

]

︸ ︷︷ ︸

:=K

[
qΩ
q0

]

︸ ︷︷ ︸

:=q

=

[
tΩ
t0

]

︸ ︷︷ ︸

:=t

, (16)

6 Yankai Cao et al.

where

KΩ := blkdiag
{
K(1,1),K(1,2), ...,K(1,ω1), ...,K(C,ωC)

}
(17a)

BΩ := rowstack
{
B(1,1), B(1,2), ..., B(1,ω1), ..., B(C,ωC)

}
(17b)

qΩ := rowstack
{
q(1,1), q(1,2), ..., q(1,ω1), ..., q(C,ωC)

}
(17c)

tΩ := rowstack
{
t(1,1), t(1,2), ..., t(1,ω1), ..., t(C,ωC)

}
. (17d)

Here, (t0, tΩ) are arbitrary right-hand side vectors and (q0, qΩ) are solution vectors. If the solu-
tion vector (q0, qΩ) does not exactly solve (16), it will induce a residual vector that we define as
ǫTr := [ǫTr0 , ǫ

T
rΩ] with

ǫr0 := K0q0 +BT
ΩqΩ − t0 (18a)

ǫrΩ := KΩqΩ +BΩq0 − tΩ . (18b)

The Schur system of (16) is given by

(K0 −BT
ΩK

−1
Ω BΩ)

︸ ︷︷ ︸

:=Z

q0 = t0 −BT
ΩK

−1
Ω tΩ

︸ ︷︷ ︸

:=tZ

. (19)

Because KΩ is block-diagonal, we have that

Z = K0 −
∑

i∈C

∑

j∈Ci

BT
(i,j)K

−1
(i,j)B(i,j) (20a)

tZ = t0 −
∑

i∈C

∑

j∈Ci

BT
(i,j)K

−1
(i,j)t(i,j). (20b)

We now define the following:

Kω
R := blkdiag {ω1Kj1 , ω2Kj2 , ..., ωCKjC} (21a)

K
1/ω
R

:= blkdiag {1/ω1Kj1 , 1/ω2Kj2 , ..., 1/ωCKjC} (21b)

BR := rowstack {Bj1 , Bj2 , ..., BjC} (21c)

qR := rowstack {qj1 , qj2 , ..., qjC} (21d)

tR := rowstack {tj1 , tj2 , ..., tjC} . (21e)

In other words, Kω
R is a block-diagonal matrix in which each block entry Kji is weighted by the

scalar weight ωi and K
1/ω
R

is a block-diagonal matrix in which each block entry Kji is weighted
by 1/ωi. Note that

(K
1/ω
R

)−1 = (K−1
R

)ω. (22)

We now present the clustering-based preconditioner (CP),

[

K
1/ω
R

BR

BT
R K0

] [
qR
q0

]

=

[
tR

t0 + tCP

]

(23a)

K(i,j)q(i,j) = t(i,j) −B(i,j)q0, i ∈ C, j ∈ Ci, (23b)

where

tCP :=
∑

i∈C

ωiB
T
jiK

−1
ji

tji −
∑

i∈C

∑

j∈Ci

BT
(i,j)K

−1
(i,j)t(i,j) (24)

Clustering-Based Preconditioning for Stochastic Programs 7

is a correction term that is used to establish consistency between CP and the KKT system. In
particular, the Schur system of (23a) is

Z̄q0 = t0 + tCP −BT
R(K

1/ω
R

)−1tR

= t0 + tCP −
∑

i∈C

ωiB
T
jiK

−1
ji

tji

= t0 −
∑

i∈C

∑

j∈Ci

BT
(i,j)K

−1
(i,j)t(i,j)

= tZ , (25)

with

Z̄ = K0 −
∑

i∈C

ωiB
T
jiK

−1
ji

Bji

= K0 −
∑

i∈C

∑

j∈Ci

BT
jiK

−1
ji

Bji . (26)

Consequently, the Schur system of the preconditioner and of the KKT system have the same
right-hand side. This property will be used to derive spectral properties and error bounds.

The use of the weighted matrix Kω
R and the correction term tCP induces consistency between

the right-hand sides of the Schur systems of the CP (25) and of the KKT system (19). In Section
3 we will see that this is key to establishing spectral and error properties for the preconditioner.

The main idea behind the CP is to compress the KKT system (16) into the smaller compressed
system (23a), which is cheaper to factorize (e.g., using an LBLT approach). We solve this smaller
system to obtain q0, and we recover qΩ from (23b) by factorizing the individual blocks K(i,j).
We refer to the coefficient matrix of (23a) as the compressed matrix.

In the following, we assume that the Schur complements Z and Z̄ are nonsingular. The non-
singularity of Z together with the assumption that all the blocks K(i,j) are nonsingular implies
(from the Schur complement theorem) that matrix K is nonsingular and thus the KKT system
has a unique solution. The nonsingularity of Z̄ together with the assumption that all the blocks
K(i,j) are nonsingular implies that the compressed matrix is nonsingular and thus the CP has
a unique solution. Note that we could have also assumed nonsingularity of matrix K directly
and this, together with the nonsingularity of the blocks K(i,j), would imply nonsingularity of Z
(this also from the Schur complement theorem). The same applies if we assume nonsingularity
of the compressed matrix, which would imply nonsingularity of Z̄.

Although Schur decomposition is a popular approach for solving structured KKT systems,
it suffers from poor scalability with the dimension of q0. The reason is that the Schur comple-
ment needs to be formed (this requires as many backsolves with the factors of K(i,j) as the
dimension of q0) and factorized (this requires a factorization of a dense matrix of dimension q0).
We elaborate on these scalability issues in Section 4. We thus highlight that the Schur system
representations are used only for analyzing the CP.

Our preconditioning setting is thus the following. At each IP iteration k, we seek to compute
a step by solving the KKT system (8). We do so by finding a solution vector (∆w0, ∆wΩ) of
the ordered KKT system (8) for the right-hand side (r0, rΩ) using an iterative linear algebra
solver such as GMRES, QMR, or BICGSTAB. Here, (r0, rΩ) are the right-hand side vectors of
the KKT system (8) in ordered form. Each minor iteration of the iterative linear algebra solver is
denoted by ℓ = 0, 1, 2, ..,. We denote the initial guess of the solution vector of (8) as (∆wℓ

0, ∆wℓ
Ω)

with ℓ = 0. At each minor iterate ℓ, the iterative solver will request the application of the CP
to a given vector (tℓ0, t

ℓ
Ω), and the solution vectors (qℓ0, q

ℓ
Ω) of (23) are returned to the iterative

8 Yankai Cao et al.

linear algebra solver. Perfect preconditioning occurs when we solve (8) instead of (23) with the
right-hand sides (tℓ0, t

ℓ
Ω).

3 Preconditioner Properties

In this section we establish properties for the CP, and we use these to guide the design of ap-
propriate clustering strategies.

We first note that any solution of the CP system (23a)-(23b) solves the perturbed KKT system,

[
KΩ BΩ

BT
Ω K0 + EZ

]

︸ ︷︷ ︸

:=K̄

[
qΩ
q0

]

=

[
tΩ
t0

]

, (27)

where

EZ :=
∑

i∈C

∑

j∈Ci

BT
(i,j)K

−1
(i,j)B(i,j) −

∑

i∈C

∑

j∈Ci

BT
jiK

−1
ji

Bji , (28)

and EZ satisfies Z̄ + EZ = Z. This mathematical equivalence between the CP system (23a)-
(23b) and (27) can be established by constructing the Schur system of (27) and noticing that
it is equivalent to (25). Moreover, the steps for the second-stage variables are the same. This
equivalence enables us to establish the following result.

Lemma 1 The preconditioned matrix K̄−1K has (n+m−n0−m0) unit eigenvalues, and the remaining
(n0 +m0) eigenvalues are bounded as

|λ(K̄−1K)− 1| ≤
1

σmin(Z̄)
‖EZ‖.

Proof: The eigenvalues λ and eigenvectors w := (wΩ , w0) of K̄−1K satisfy K̄−1Kw = λw, and
thus Kw = λK̄w. Consequently,

KΩwΩ +BΩw0 = λ(KΩwΩ +BΩw0)

BT
ΩwΩ +K0w0 = λBT

ΩwΩ + λ(K0 + EZ)w0.

From the first relationship we have n+m− n0 −m0 unit eigenvalues. Applying Schur decom-
position to the eigenvalue system, we obtain

Zw0 = λ(Z + EZ)w0

= λZ̄w0.

We can thus express the remaining n0 +m0 eigenvalues of K̄−1K as λ = 1 + ǫZ to obtain

|ǫZ | =
‖EZw0‖

‖Z̄w0‖

≤
1

σmin(Z̄)
‖EZ‖.

The proof is complete. �

Clustering-Based Preconditioning for Stochastic Programs 9

From the definition of EZ we note that the following bound holds:

|λ(K̄−1K)− 1| ≤
1

σmin(Z̄)

∑

i∈C

∑

j∈Ci

∥
∥
∥BT

(i,j)K
−1
(i,j)B(i,j) −BT

jiK
−1
ji

Bji

∥
∥
∥ . (30)

Thus, we can improve the spectrum of K̄−1K by choosing clusters that minimize ‖EZ‖. This
approach, however, would require expensive matrix operations. An interesting and tractable
exception occurs in the special case in which Q(i,j) = Q, W(i,j) = W , and T(i,j) = T, i ∈ C, j ∈
Ci. This case arises when the scenario data corresponds to the right-hand sides bs and the cost
coefficients ds of (1) and is common in applications. In this case we have that EZ reduces to

EZ =
∑

i∈C

∑

j∈Ci

BT
(

K−1
(i,j) −K−1

ji

)

B. (31)

We also have that K(i,j) and Kji differ only in the diagonal matrices X−1
(i,j)V(i,j) and X−1

ji
Vji . We

thus have,

K(i,j) −Kji =

[
(X−1

(i,j)V(i,j) −X−1
ji

Vji) 0

0 0

]

. (32)

We define the vectors,

γ(i,j) = vec(X−1
(i,j)V(i,j)), i ∈ C, j ∈ Ci (33a)

γji = vec(X−1
ji

Vji), i ∈ C, (33b)

and establish the following result.

Theorem 1 Assume that Q(i,j) = Q, W(i,j) = W , and T(i,j) = T, i ∈ C, j ∈ Ci holds. Let vectors
γ(i,j), γji be defined as in (33). The preconditioned matrix K̄−1K has (n+m−n0−m0) unit eigenvalues,
and there exists a constant cK > 0 such that the remaining (n0 +m0) eigenvalues are bounded as

|λ(K̄−1K)− 1| ≤
cK

σmin(Z̄)

∑

s∈S

∑

i∈C

κs,i‖γji − γs‖.

Proof: From Lemma 1 we have that n0 +m0 eigenvalues λ of K̄−1K are bounded as |λ − 1| ≤
1

σmin(Z̄)
‖EZ‖. We define the error matrix,

E(i,j) := K(i,j) −Kji ,

and use (31) and (32) to obtain the bound,

‖EZ‖ ≤
∑

i∈C

∑

j∈Ci

‖BTB‖‖K−1
(i,j) −K−1

ji
‖

=
∑

i∈C

∑

j∈Ci

‖BTB‖‖(Kji + E(i,j))
−1 −K−1

ji
‖.

We have that

(Kji + E(i,j))
−1 −K−1

ji
= −K−1

ji
(Kji + E(i,j))

−1E(i,j)

= −K−1
ji

K−1
(i,j)E(i,j).

10 Yankai Cao et al.

This can be verified by multiplying both sides by Kji + E(i,j) and by exploiting symmetry of
the matrices. We thus have

‖EZ‖ ≤
∑

i∈C

∑

j∈Ci

‖BTB‖‖(Kji + E(i,j))
−1 −K−1

ji
‖

≤
∑

i∈C

∑

j∈Ci

‖BTB‖‖K−1
(i,j)K

−1
ji

‖‖E(i,j)‖

≤ cK
∑

i∈C

∑

j∈Ci

‖vec(X−1
ji

Vji)− vec(X−1
(i,j)V(i,j))‖,

with cK :=
∑

i∈C

∑

j∈Ci
‖BTB‖‖(K(i,j)Kji)

−1‖. The existence of cK follows from the nonsingu-
larity of K(i,j) and Kji . The proof is complete. �

We now develop a bound of the preconditioning error for the general case in which the
scenario data also defines the coefficient matrices. Notably, this bound does not require the
minimization of the error ‖EZ‖. The idea is to bound the error induced by the CP on the exact
solution of the KKT system (16) (perfect preconditioner). This approach is used to characterize
inexact preconditioners such as multigrid and nested preconditioned conjugate gradient [21].
We express the solution of CP obtained from (23) as qT = [qTΩ , q

T
0] and that of the KKT system

(16) as q∗T = [q∗Ω
T , q∗0

T]. We define the error between q and q∗ as ǫ := q − q∗ and we seek to
bound ǫ. If we decompose the error as ǫT = [ǫTΩ , ǫ

T
0], we have that ǫ0 = q0−q∗0 and ǫΩ = qΩ−q∗Ω .

We recall that the Schur systems of (16) and of (23) and their respective solutions satisfy

Zq∗0 = tZ (34a)

Z̄q0 = tZ . (34b)

We also define the vectors,

γ(i,j) = (BT
(i,j)K

−1
(i,j)B(i,j))tZ , i ∈ C, j ∈ Ci (35a)

γji = (BT
jiK

−1
ji

Bji)tZ , i ∈ C. (35b)

We now establish a bound on the error ǫ = q − q∗.

Lemma 2 There exists cZK > 0 such that the preconditioner error ǫ is bounded as

‖ǫ‖ ≤ cZK‖ZtZ − Z̄tZ‖.

Proof: From ǫ0 = q0 − q∗0 we have Z̄ǫ0 = Z̄q0 − Z̄q∗0 . From (34) we have Z̄q0 = Zq∗0 = tZ and
thus Z̄ǫ0 = Zq∗0 − Z̄q∗0 . Multiplying this expression through by Z and exploiting symmetry of Z
and Z̄, we obtain

Z̄Zǫ0 = ZZq∗0 − Z̄Zq∗0

= ZtZ − Z̄tZ ,

where the second equality follows from (34). We recall that

q∗Ω = K−1
Ω (tΩ −BΩq

∗
0)

qΩ = K−1
Ω (tΩ −BΩq0)

Clustering-Based Preconditioning for Stochastic Programs 11

and thus

ǫΩ = K−1
Ω BΩ(q

∗
0 − q0)

= −K−1
Ω BΩǫ0.

We thus have

‖ǫ0‖ ≤ cZ‖ZtZ − Z̄tZ‖

‖ǫΩ‖ ≤ cKΩ
‖ǫ0‖,

with cZ := ‖(Z̄Z)−1‖ and cKΩ
:= ‖K−1

Ω BΩ‖. The existence of cZ follows from the assumption
that Z and Z̄ are nonsingular. The existence of cΩ follows from the assumption that the blocks
K(i,j) are nonsingular and thus KΩ is nonsingular. The result follows from ‖ǫ‖ ≤ ‖ǫ0‖ + ‖ǫΩ‖
and by defining cZK := cZ(1 + cKΩ

). �

Theorem 2 Let vectors γ(i,j), γji be defined as in (35). The preconditioner error ǫ is bounded as

‖ǫ‖ ≤ cZK

∑

s∈S

∑

i∈C

ks,i‖γji − γs‖,

with cZK defined in Lemma 2.

Proof: From (35) and (28) we have that

∑

i∈C

∑

j∈Ci

(γ(i,j) − γji) = ZtZ − Z̄tZ

= EZtZ .

This follows from

ZtZ − Z̄tZ =
∑

i∈C

∑

j∈Ci

BT
(i,j)K

−1
(i,j)B(i,j)tZ −

∑

i∈C

∑

j∈Ci

BT
jiK

−1
ji

BjitZ

=
∑

i∈C

∑

j∈Ci

(BT
(i,j)K

−1
(i,j)B(i,j)tZ −BT

jiK
−1
ji

BjitZ)

=
∑

i∈C

∑

j∈Ci

(γ(i,j) − γji).

Bounding, we have

‖ZtZ − Z̄tZ‖ =

∥
∥
∥
∥
∥
∥

∑

i∈C

∑

j∈Ci

(γji − γ(i,j))

∥
∥
∥
∥
∥
∥

≤
∑

i∈C

∑

j∈Ci

‖γji − γ(i,j)‖

=
∑

s∈S

∑

i∈C

κs,i‖γji − γs‖.

The result follows from Lemma 2. �

12 Yankai Cao et al.

Theorems 1 and 2 provide the necessary insights to derive clustering strategies. We can see
that the properties of CP are related to a metric of the form

DC :=
∑

s∈S

∑

i∈C

κs,i‖γji − γs‖. (36)

This is the distortion metric widely used in clustering analysis [2]. The distortion metric is (par-
tially) minimized by k-means and hierarchical clustering algorithms to determine κs,i and γji .
The vectors γs are called features, and γji is the centroid of cluster i ∈ C (we can also pick the
scenario that is closest to the centroid). The distortion metric is interpreted as the accumulated
distance of the elements of the cluster relative to the centroid. If the distortion is small, then the
scenarios in a cluster are similar. The distortion metric can be made arbitrarily small by increas-
ing the number of clusters and is zero in the limit with S = C because each cluster is given by
one scenario.

Theorem 1 states that in the special case where the scenario data enters only in the right-hand
sides and cost coefficients and if the features are defined as γs = vec(X−1

s Vs), the spectrum of
K̄−1K can be made arbitrarily close to one if the distortion is made arbitrarily small. This thus
guarantees that the definition of the features is consistent. The scenarios are clustered at each IP
iteration k because the matrices X−1

s Vs change along the search (even if the matrices Qs,Ws, Ts

do not). The clustering approach is therefore adaptive, unlike outside-the-solver scenario clus-
tering approaches. Note that even if the data enters only in the right-hand side, our proposed
clustering approach does not cluster the problem data. In fact, it does not seem possible to de-
rive spectral and error properties for preconditioners based on clustering of problem data. Our
approach focuses directly on the contributions X−1

s Vs and thus assumes that the problem data
enters indirectly through the contributions X−1

s Vs, which in turn affect the structural properties
of the KKT matrix.

The features γs = vec(X−1
s Vs) have an important interpretation: these reflect the contri-

bution of each scenario to the logarithmic barrier function. If ‖γs‖ ≈ 0, then this implies that
‖νs‖ ≈ 0; therefore there is weak activity in this scenario, and the scenario is not relevant. On
the other hand, when ‖γs‖ ≫ 0, we have that the scenario has strong activity and is thus rele-
vant. Instead of eliminating the scenarios with weak activity, as proposed in [22,11], we cluster
scenarios with similar activities. This approach allows us to eliminate redundancies in both ac-
tive and inactive scenarios and to capture outliers. In addition, this strategy bypasses the need
to specify a suitable threshold to classify weak and strong activity.

Theorem 2 provides a mechanism to obtain clusters for the general case in which the sce-
nario data also defines the coefficient matrices. The result states that we can bound the pre-
conditioning error using the Schur complement error EZ = Z − Z̄ projected on the right-hand
side vector tZ . Consequently, the error can be bounded by the distortion metric with features
defined in (35). This implies that the error can be made arbitrarily small if the distortion is made
arbitrarily small and it is not necessary to perform major matrix operations.

The error bound of Theorem 2 requires that clustering tasks and the factorization of the com-
pressed matrix be performed at each minor iteration ℓ of the iterative linear algebra solver. The
reason is that the features (35) change with tℓZ . Performing these tasks at each minor iteration,
however, is expensive. Consequently, we perform these tasks only at the first minor iteration
ℓ = 0. If the initial guess of the solution vector of the KKT system is set to zero (∆wℓ

0 = 0 and
∆wℓ

Ω = 0) and if GMRES, QMR, or BICGSTAB schemes are used, this is equivalent to perform-
ing by clustering using the features

γ(i,j) = (BT
(i,j)K

−1
(i,j)B(i,j))rZ , i ∈ C, j ∈ Ci (37a)

γji = (BT
jiK

−1
ji

Bji)rZ , i ∈ C. (37b)

Clustering-Based Preconditioning for Stochastic Programs 13

where

rZ = t0Z

= r0 −
∑

i∈C

∑

j∈Ci

BT
(i,j)K

−1
(i,j)r(i,j) (38)

is the right-hand side of the Schur system corresponding to the KKT system (8).

4 Numerical Results

In this section we discuss implementation issues of CP and present numerical results for bench-
mark problems in the literature and a large-scale stochastic market clearing problem.

We summarize the procedure for computing the step (∆xk, ∆yk, ∆νk) at each IP iteration k
in the following scheme.

Step Computation Scheme

1. Initialization. Given iterate (xk, yk, νk), number of clusters C, tolerance τk, and maximum
number of linear solver iterates mit.

2. Get Clustering Information.
2.0. Compute features γs, s ∈ S as in (33) or (37).
2.1. Obtain κs,i and γji using K-means or hierarchical clustering.
2.2. Use κs,i to construct C, R, Ω, Ci, and ωi.
2.3. Construct and factorize compressed matrix

[

K
1/ω
R

BR

BT
R K0

]

and factorize scenario matrices K(i,j), i ∈ C, j ∈ Ci.
3. Get Step.

3.1. Call iterative linear solver to solve KKT system (16) with right-hand sides (r0, rΩ), set
ℓ = 0, and initial guess ∆wℓ

0 = 0 and ∆wℓ
Ω = 0. At each minor iterate ℓ = 0, 1, ..., of the

iterative linear solver, DO:
3.1.1. Use factorization of compressed matrix and of KΩ to solve CP (23a)-(23b) for right-

hand sides (tℓ0, tℓΩ) and RETURN solution (qℓ0, q
ℓ
Ω).

3.1.2. From (18), get ǫℓr using solution vector (∆wℓ
0, ∆wℓ

Ω) and right-hand side vectors
(r0, rΩ). If ‖ǫℓr‖ ≤ τk, TERMINATE.

3.1.3. If ℓ = mit, increase C, and RETURN to Step 1.
3.2. Recover (∆xk, ∆yk) from (∆wℓ

0, ∆wℓ
Ω).

3.3. Recover ∆νk from (6).

We call our clustering-based IP implementation IP-CLUSTER. In this implementation we
use the primal-dual IP framework of Mehrotra [17]. We use the matrix templates and direct
linear algebra routines of the BLOCK-TOOLS library. This library is specialized to block ma-
trices such as the KKT matrices used in this work and greatly facilitated the implementation.
Within BLOCK-TOOLS, we use its MA57 interface to perform all direct linear algebra opera-
tions. We use the GMRES implementation within the PETSc library (http://www.mcs.anl.
gov/petsc) to perform all iterative linear algebra operations. We have implemented serial
and parallel versions of CP. The parallel version performs the factorizations of (23b) in paral-
lel and exploits the block-bordered-diagonal structure of the KKT matrix to perform matrix-
vector operations in parallel. We use the K-means and hierarchical clustering implementations

14 Yankai Cao et al.

of the C-Clustering library (http://bonsai.hgc.jp/˜mdehoon/software/cluster/
software.htm). To implement the market clearing models we use an interface to AMPL to cre-
ate individual instances (.nl files) for each scenario and indicate first-stage variables and con-
straints using the suffix capability.

4.1 Benchmark Problems

We consider stochastic variants of problems obtained from the CUTEr library and benchmark
problems (SSN, GBD, LANDS, 20TERM) reported in [15]. The deterministic CUTEr QP prob-
lems have the form

min
1

2
yTQy + dT y, s.t. Ay = b, y ≥ 0. (39)

We generate a stochastic version of this problem by defining b as a random vector. We create
scenarios for this vector bs, s ∈ S using the nominal value b as mean and a standard deviation
±σ = 0.5b. We then formulate the two-stage stochastic program:

min eT y0 +
∑

s∈S

1

2
yTs Qys + dT ys (40a)

s.t. Ays = bs, s ∈ S (40b)

ys + y0 ≥ 0, s ∈ S (40c)

y0 ≥ 0. (40d)

We first demonstrate the quality of CP in terms of the number of GMRES Iterations. For all
cases, we assume a scenario compression rate of 75% (only 25% of the scenarios are used in the
compressed matrix), and we solve the problems to a tolerance of 1 × 10−6. In all the numerical
experiments we do not adaptively modify the number of clusters. We set the maximum number
of GMRES iterations to 100 (if the preconditioner reaches this limit the IP solver is terminated).
This is done in order to profile scalability of the preconditioner in a more systematic manner.

For this first set of results, we cluster the scenarios using the features (35) and hierarchical
clustering. The results are presented in Table 1. The performance of CP is satisfactory in all in-
stances, requiring fewer than 20 GMRES iterations per IP iteration (this is labeled as GMRES/IP
Iter). We attribute this to the particular structure of CP, which enable us to pose it in the equiv-
alent form (27) and to derive favorable spectral properties and error bounds. To support these
observations, we have also experimented with a naive preconditioner of the form:

[
K̄Ω B̄Ω

B̄T
Ω K0

] [
qΩ
q0

]

=

[
tΩ
t0

]

, (41)

where,

K̄Ω := blkdiag {Kj1 , ...,Kj1 ,Kj2 , ...,Kj2 , ...,KjC , ...,KjC} (42a)

B̄Ω := rowstack {Bj1 , ..., Bj1 , Bj2 , ..., Bj2 , ..., BjC , ..., BjC} . (42b)

The naive preconditioner replaces the block matrix elements of the cluster with those of the
scenario representing the cluster. The right-hand sides of the naive preconditioner, however,
are consistent with those of the KKT system. The Schur system of the naive preconditioner has
the form

Z̄q0 = t0 −
∑

i∈C

∑

i∈Ci

BT
jiK

−1
ji

t(i,j). (43)

Clustering-Based Preconditioning for Stochastic Programs 15

Note that this system has the same Schur matrix as that of the Schur system of CP (25). The
naive preconditioner, however, does not have the same right-hand side of the Schur system of
CP and of the KKT system (see (34)). Moreover, the steps for the second-stage variables obtained
with the naive preconditioner are:

Kjiq(i,j) = t(i,j) −Bjiq0, i ∈ C, j ∈ Ci. (44)

By comparing (44) with (23b) we can see that the recovery of second-stage variables in the
naive approach does not use the actual second-stage matrices K(i,j), B(i,j) corresponding to
each scenario as is done in the CP approach. The structural deficiencies of the naive precondi-
tioner prevent us from obtaining the error bounds of Lemma 2 and Theorem 2 and highlight
the importance of CP structure. In Table 1 we can in fact see that the performance of the naive
preconditioner is not competitive. In particular, the naive approach only outperforms the CP
approach in a couple of instances.

Table 1 Performance of naive and CP preconditioners naive in benchmark problems.

Naive (75%) CP (75%)
Problem S n IP Iter GMRES Iter GMRES/IP Iter IP Iter GMRES Iter GMRES/IP Iter
HS53 100 1,010 27 911 33 19 113 5
LOTSCHD 100 1,212 24 626 26 25 203 8
HS76 100 707 19 152 8 23 98 4
HS118 100 5,959 47 1499 31 47 409 8
QPCBLEND 100 11,514 57 258 4 57 253 4
ZECEVIC2 100 606 27 451 16 29 111 3
QPTEST 100 505 23 569 24 23 108 4
SSN 100 70,689 114 738 6 114 1857 16
GBD 1000 10,017 24 627 26 24 144 6
LANDS 1000 12,004 29 481 16 29 115 3
20TERM 100 76,463 57 581 10 57 976 17

In Table 2 we compare the performance of CP with that of the unpreconditioned strategy
(compression of 100%) and naive strategy for a single problem instance. We perform this com-
parison to illustrate that the matrices of the benchmark problems are nontrivial and precon-
ditioning is indeed needed. We use the notation x% to indicate the compression rate (i.e., the
preconditioner uses 100-x% of the scenarios). A compression of 0% indicates the entire scenario
set is used for the preconditioner (ideal).

In Table 3 we compare the effect of the compression rate and the number of scenarios on the
performance of CP for problem 20TERM. For a fixed number of scenarios, the performance of
CP deteriorates as we increase the compression rate. The performance is improved, however,
for a fixed compression rate as we increase the number of scenarios. We have also found that
the deterioration of performance due to increasing compression rates becomes less pronounced
as we increase the number of scenarios. The reason is that more redundancy is observed as
we increase the number of scenarios and, consequently, compression potential increases. This
behavior has been found in several instances and indicates that once can deal with problems
with a large number of scenarios.

In Table 4 we isolate the effect of different clustering strategies on preconditioning perfor-
mance. We perform clustering using features (33) (we label this as X−1V) and (37) (we label
this as rZ). In these tests we also illustrate the computational performance of CP compared with
full factorization for two large instances. Instance QSC2015 has 63,717 variables, while instance

16 Yankai Cao et al.

Table 2 Performance of preconditioned and unpreconditioned strategies.

Problem S n Compression IP Iter GMRES Iter GMRES/IP Iter

HS53 100 1,010
100% 19 12861 676
75% (Naive) 27 911 33
75% (CP) 19 113 5

Table 3 Effect of compression rates on 20TERM problem.

S n Compression IP Iter GMRES/IP Iter

100 76,463
50% 57 10
75% 57 19
87% 57 17

200 152,863
50% 72 9
75% 72 14
87% 72 18

400 305,663
50% 92 20
75% 92 21
87% 92 23

800 611,263
50% 97 25
75% 97 25
87% 97 27

AUG3DC has 131,682 variables. We use θtot to denote the total solution time, θfact to denote the
time spent in factorizing the compressed matrix and the block matrices, θclus to denote the time
spent performing clustering operations, θgmres to denote the time spent in GMRES Iterations
(without considering factorization of preconditioner). As can be seen from Table 4, the perfor-
mance of CP is identical for both clustering strategies, and the solution times are dramatically
reduced.

Table 4 Performance of different clustering strategies for benchmark problems.

Problem Compress. Clustering IP Iter θtot θfact θclus θgmres GMRES Iter GMRES/IP Iter

QSC205 0% 110 1331 1321
50% X−1V 110 220 157 5 42 747 6
75% X−1V 110 91 25 6 45 933 8
50% rZ 110 229 161 5 43 747 6
75% rZ 110 89 24 5 43 924 8

AUG3DC 0% 11 1427 1423
50% X−1V 11 96 84 0.3 6 26 2
75% X−1V 11 24 13 0.3 6 27 2
50% rZ 11 93 80 0.3 6 26 2
75% rZ 11 25 13 0.3 6 27 2

4.2 Stochastic Market Clearing Problem

To demonstrate the computational efficiency of the preconditioner, we solve the stochastic market-
clearing model presented in [19] for the entire Illinois power grid system [23]. The system is

Clustering-Based Preconditioning for Stochastic Programs 17

−92 −90 −88

37

38

39

40

41

42

43

° Longitude W

°
 L

a
ti
tu

d
e
 N

Fig. 1 Illinois transmission system. Dark dots are generation nodes and blue dots are demand nodes.

illustrated in Figure 1. The stochastic programming formulation is given by

min
xi,Xi(ω)

∑

i∈G

(
pixi + Eω

[
p+i (Xi(ω)− xi)+ − p−i (Xi(ω)− xi)−

])

s.t. τn(f) +
∑

i∈G(n)

xi = dn, n ∈ N (45a)

τn(F (ω))− τn(f) +
∑

i∈G(n)

(Xi(ω)− xi) = 0, n ∈ N , ω ∈ Ω (45b)

f, F (ω) ∈ F , ω ∈ Ω (45c)

(xi, Xi(ω)) ∈ Xi(ω), i ∈ G, ω ∈ Ω. (45d)

Here, N denotes the set of network nodes and L the set of transmission lines. The set of all sup-
pliers is denoted by G. Subsets G(n) denote the set of players connected to node n. The forward
(first-stage) dispatched quantities for players are xi, and the spot (second-stage) quantities un-
der scenario ω are Xi(ω). The forward power flow through line ℓ ∈ L is denoted by fℓ, and f
denotes the vector of all line flows. Similarly, F (ω) denotes the vector of line flows Fℓ(ω) for
each scenario ω. The demand is assumed to be deterministic and inelastic and is represented by
dn, n ∈ N . The sets F and Xi(ω) are polyhedral and defined by lower and upper bounds for
the flows and dispatch quantities. The objective of the market clearing problem is to minimize
the forward dispatch cost plus the expected recourse dispatch cost. Here [y]+ = max{y, 0} and
[y]− = max{−y, 0}. The coefficients pi denote the bid price, and p+i and p−i are price bids for
corrections of the generators. A supplier i asks p+i > pi to sell additional power or asks p−i < pi
to buy power from the system (e.g., reduces output). The scenarios ω characterize the random-
ness in the model due to unpredictable supply capacities (in this case wind power). We use a
sample-average approximation of the problem to obtain a deterministic equivalent.

The market clearing model has large first-stage dimensionality. For the Illinois system we have
11,891 first-stage variables, 6,704 equality constraints, and 11,891 inequality constraints. This

18 Yankai Cao et al.

Table 5 Performance of Schur decomposition approach.

S n IP Iter θtot θfactschur θformschur θfactblock

1 30,472 55 31280 27236 4023 4

gives a Schur complement with saddle-point structure of dimension 64,199, which is sparse but
contains a dense block of dimension 11,891.

In Table 5 we present the solution times for this problem using a Schur decomposition strat-
egy for a single scenario. Here, θtot is the total solution time, θfactschur is the time spent factor-
izing the Schur complement, θformschur is the time spent forming the Schur complement, and
θfactblock is the time spent factorizing the scenario block. All times are reported in seconds. The
solution time for this problem is 3.61 hr, with 25% of the time spent forming the Schur comple-
ment and 75% spent factorizing the Schur complement. Note that if more scenarios are added,
the time spent forming and factorizing the Schur complement will dominate (even if the sce-
narios can be parallelized). Iterative strategies applied to the Schur complement system can
avoid the time spent forming the Schur complement but not the factorization time because a
preconditioner with a large dense block still needs to be factorized [18].

We now assess the serial performance of CP. The results are presented in Table 6. By com-
paring Tables 5 and 6 we can see that the full sparse factorization approach will be as efficient as
Schur decomposition for problems with up to 64 scenarios. In other words, it would be faster to
factorize the full sparse KKT system than forming and factorizing the large Schur complement.
The fast growth in solution time of the full factorization approach is remarkable, however. We
attribute this to the tight connectivity induced by the network constraints which introduce sig-
nificant fill-in. The CP reduces the solution times of full factorization by a factor of 2 for the
problem with 32 scenarios and by a factor of 8 for the problem with 64 scenarios. We highlight
that CP is highly effective, requiring on average 5 to 10 GMRES Iterations per IP iteration for
compression rates of 50% and 11 to 13 iterations for compression rates of 75%. We also observe
that the performance of different clustering strategies is similar.

For the problem with 64 scenarios we can see that the solution time of CP increases as we
increase the compression rate from 75% to 87% even if the factorization time is dramatically
reduced. This is because the time spent in GMRES to perform backsolves and matrix-vector op-
erations dominates the factorization time. This is mitigated by using a parallel implementation
of CP. The results are presented in Table 7. We can see that the solution time spent in GMRES
to perform backsolves and matrix-vector operations is dramatically reduced by exploiting the
block-bordered-diagonal structure of the KKT matrix. This enables us to solve a market clearing
problem with over 1.2 million variables in 10 minutes as opposed to 9 hours using the full factorization
approach. This represents a speed up factor of 42. By comparing the parallel results with those of
Table 5 we can also see that the Schur complement approach is not competitive because of the
time needed to form and factorize the Schur complement (this holds even for a single scenario).

From Table 7 we can see that scalability slows down as we increase the number of processes.
This is because the remaining serial components (beyond backsolves and matrix-vector oper-
ations) of CP start dominating. This mainly include operations inside the GMRES algorithm
itself. We are currently investigating ways to parallelize these operations.

In Table 7 we also present experiments using a compression rate of 94%. We performed
these experiments to explore the performance limit of CP. We can see that the performance of
CP deteriorates in terms of total solution time because the number of GMRES Iterations (and
thus time) increases. Consequently, it does not pay off to cluster the KKT system further. We
highlight, however, that the deterioration of CP in terms of GMRES Iterations is graceful. In

Clustering-Based Preconditioning for Stochastic Programs 19

Table 6 Serial performance of CP preconditioner against full factorization for stochastic market clearing problem.

S n Compress. Cluster. IP Iter θtot θfact θclus θgmres GMRES Iter GMRES/IP Iter

16 309,187
0% 57 473 452

50% X−1V 57 544 119 0.4 325 631 11
50% rZ 57 508 117 0.15 296 519 9

32 606,483

0% 65 3480 3414
50% X−1V 65 1477 661 8 606 574 8
75% X−1V 65 1479 145 8 1141 1194 18
50% rZ 65 1347 672 3 459 398 6
75% rZ 65 1131 150 3 769 804 12

64 1,201,075

0% 64 28022 27883
50% X−1V 64 5163 3513 29 1292 660 10
75% X−1V 64 2878 656 29 1844 902 14
87% X−1V 64 2499 135 29 1990 1040 16
50% rZ 64 5238 3492 12 1349 666 10
75% rZ 64 3003 659 12 1924 937 14
87% rZ 64 2440 115 12 1944 1147 17

Table 7 Parallel performance of CP preconditioner against full factorization for stochastic market clearing problem.

S n Processors Compress. Cluster. IP Iter θtot θfact θclus θgmres GMRES Iter GMRES/IP Iter

64 1,201,075

1 0% 64 28022 27883
1 87% rZ 64 2440 115 12 1944 1147 17
2 87% rZ 64 1211 116 12 892 1025 16
4 87% rZ 64 817 134 12 592 919 14
8 87% rZ 64 658 152 12 398 905 14
1 94% rZ 64 3223 49 12 2764 1489 23
2 94% rZ 64 1558 43 12 1306 1471 22
4 94% rZ 64 993 49 12 801 1420 22
8 94% rZ 64 733 54 12 570 1409 22

particular, it is remarkable that, on average, the linear system can be solved in 22 GMRES
Iterations even if only four scenarios are used. This behavior indicates that the computation
of the second-stage variables in (23b) plays a key role in the performance of CP. The naive
preconditioner does not work in any of the market clearing cases presented (reaches the GMRES
iteration limit of 100).

5 Conclusions and Future Work

We have presented a preconditioning strategy for stochastic programs using clustering tech-
niques. This inside-the-solver clustering strategy can be used as an alternative to (or in combina-
tion with) outside-the-solver scenario aggregation and clustering strategies. A practical feature
of performing inside-the-solver clustering is that no information on probability distributions is
required and a single problem is solved. We have demonstrated that the preconditioners can
be implemented in sparse form and dramatically reduce computational time compared to full
factorizations of the KKT system. We have also demonstrated that the sparse form enables the
solution of problems with large first-stage dimensionality that cannot be addressed with Schur
decomposition. Scenario compression rates of up to 87% have been observed in large problem
instances. As part of future work, we will investigate the performance of the preconditioner in
a nonlinear programming setting and we will investigate extensions to multi-stage stochastic
programs.

20 Yankai Cao et al.

Acknowledgements This material was based upon work supported by the U.S. Department of Energy, Office of Sci-
ence, under Contract No. DE-AC02-06CH11357. Funding from the Office of Science under the Early Career program is
acknowledged. Victor M. Zavala thanks Jacek Gondzio for providing feedback on a previous version of the manuscript.

References

1. J. Birge. Aggregation bounds in stochastic linear programming. Mathematical Programming, 31:25–41, 1985.

2. C.M. Bishop et al. Pattern recognition and machine learning, volume 4. Springer, New York, 2006.

3. R. H Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic hessian information in optimization
methods for machine learning. SIAM Journal on Optimization, 21(3):977–995, 2011.

4. G. C. Calafiore and M. C. Campi. The scenario approach to robust control design. Automatic Control, IEEE Transac-
tions on, 51(5):742–753, 2006.

5. M.S. Casey and S. Sen. The scenario generation algorithm for multistage stochastic linear programming. Mathemat-
ics of Operations Research, 30(3):615–631, 2005.

6. N. Chiang and A. Grothey. Solving security constrained optimal power flow problems by a structure exploiting
interior point method. Submitted For Publication, 2012.

7. M. Colombo, J. Gondzio, and A. Grothey. A warm-start approach for large-scale stochastic linear programs. Math-
ematical Programming, 127(2):371–397, 2011.

8. W. L. de Oliveira, C. Sagastizábal, D. Penna, M. Maceira, and J. M. Damázio. Optimal scenario tree reduction for
stochastic streamflows in power generation planning problems. Optimization Methods and Software, 25(6):917–936,
2010.

9. J. Dupačová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in stochastic programming. Mathematical
programming, 95(3):493–511, 2003.

10. M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector machines. SIAM Journal on
Optimization, 13(3):783–804, 2002.

11. J. Gondzio and A. Grothey. Reoptimization with the primal-dual interior point method. SIAM Journal on Optimiza-
tion, 13:842–864, 2003.

12. H. Heitsch and W. Römisch. Scenario tree reduction for multistage stochastic programs. Computational Management
Science, 6:117–133, 2009.

13. J. Jung, D. P. Oleary, and A. L. Tits. Adaptive constraint reduction for training support vector machines. Electronic
Transactions on Numerical Analysis, 31:156–177, 2008.

14. J. M. Latorre, S. Cerisola, and A. Ramos. Clustering algorithms for scenario tree generation: Application to natural
hydro inflows. European Journal of Operational Research, 181(3):1339 – 1353, 2007.

15. J. Linderoth, A. Shapiro, and S. Wright. The empirical behavior of sampling methods for stochastic programming.
Annals of Operations Research, 142(1):215–241, 2006.

16. M. Lubin, C. G. Petra, M. Anitescu, and V. M. Zavala. Scalable stochastic optimization of complex energy systems.
In International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pages 1–10. IEEE,
2011.

17. S. Mehrotra. On the implementation of a primal-dual interior point method. SIAM Journal on Optimization, 2:575–
601, 1992.

18. C. Petra and M. Anitescu. A preconditioning technique for schur complement systems arising in stochastic opti-
mization. Computational Optimization and Applications, 52:315–344, 2012.

19. G. Pritchard, G. Zakeri, and A. Philpott. A single-settlement, energy-only electric power market for unpredictable
and intermittent participants. Operations Research, 58(4-part-2):1210–1219, 2010.

20. C. M. Shetty and R. W. Taylor. Solving large-scale linear programs by aggregation. Computers & Operations Research,
14(5):385 – 393, 1987.

21. D. B. Szyld and J. A. Vogel. Fqmr: A flexible quasi-minimal residual method with inexact preconditioning. SIAM
Journal on Scientific Computing, 23(2):363–380, 2001.

22. A. Tits, P. Absil, and W. Woessner. Constraint reduction for linear programs with many inequality constraints.
SIAM Journal on Optimization, 17(1):119–146, 2006.

23. V. M. Zavala, A. Botterud, E. M. Constantinescu, and J. Wang. Computational and economic limitations of dispatch
operations in the next-generation power grid. IEEE Conference on Innovative Technologies for and Efficient and Reliable
Power Supply, 2010.

24. V. M. Zavala, E. M. Constantinescu, T. Krause, and M. Anitescu. On-line economic optimization of energy systems
using weather forecast information. Journal of Process Control, 19(10):1725–1736, 2009.

25. P.H. Zipkin. Bounds for row-aggregation in linear programming. Operations Research, 28(4):903–916, 1980.

Clustering-Based Preconditioning for Stochastic Programs 21

The submitted manuscript has been created by the University of Chicago as
Operator of Argonne National Laboratory (“Argonne”) under Contract No.
DE-AC02-06CH11357 with the U.S. Department of Energy. The U.S. Gov-
ernment retains for itself, and others acting on its behalf, a paid-up, nonex-
clusive, irrevocable worldwide license in said article to reproduce, prepare
derivative works, distribute copies to the public, and perform publicly and
display publicly, by or on behalf of the Government.

