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Abstract: Nowadays, sensor-based air pollution sensing systems are widely deployed for fine-
grained pollution monitoring. In-field calibration plays an important role in maintaining sensory
data quality. Determining the model structure is challenging using existing methods of variable
global fitting models for in-field calibration. This is because the mechanism of interference factors is
complex and there is often insufficient prior knowledge on a specific sensor type. Although Artificial-
Neuron-Net-based (ANN-based) methods ignore the complex conditions above, they also have
problems regarding generalization, interpretability, and calculation cost. In this paper, we propose a
clustering-based segmented regression method for particulate matter (PM) sensor in-field calibration.
Interference from relative humidity and temperature are taken into consideration in the particulate
matter concentration calibration model. Samples for modeling are divided into clusters and each
cluster has an individual multiple linear regression equation. The final calibrated result of one sample
is calculated from the regression model of the cluster the sample belongs to. The proposed method is
evaluated under in-field deployment and performs better than a global multiple regression method
both on PM2.5 and PM10 pollutants with, respectively, at least 16% and 9% improvement ratio on
RMSE error. In addition, the proposed method is insensitive to reduction of training data and increase
in cluster number. Moreover, it may bear lighter calculation cost, less overfitting problems and better
interpretability. It can improve the efficiency and performance of post-deployment sensor calibration.

Keywords: air pollution sensing; particulate matter sensor; sensor calibration; clustering; multiple
regression

1. Introduction

Recently, serious issues concerning air pollution have raised public attention with the
development of urbanization and industrialization [1]. It presents a severe threat to not
only the ecological environment but also to human health. In order to improve the envi-
ronmental monitoring and governance capacity, high-precision air pollution monitoring
stations are established all over the world to obtain accurate air pollutant concentration
information [2]. However, monitoring stations cannot be deployed with a high-spatial
density to achieve high resolution because it is limited by large costs associated with
high-precision equipment [3,4].

For fine-grained monitoring, various forms of wireless sensor networks (WSN) have
been applied in air pollution monitoring as a complement [5–8]. Low-cost gas or particulate
sensors make fine-grained air pollution monitoring possible under large-scale deploy-
ment.Compared with existing monitoring architecture with high-precision equipment,
sensor-based air pollution monitoring has high resolution both spatially and temporally [9]
at the expense of accuracy and robustness [10], due to limitations regarding the sensor’s
characteristics and performance. First, sensor drift [11] and cross-sensitivity [11,12] in-
evitably cause measurement deviations after deployment. In addition, environmental
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factors such as temperature and humidity result in response fluctuations increasing mea-
surement deviation further [13]. Therefore to guarantee the performance of a sensor-based
air pollution monitoring system and make it closer to ground truth, it is essential to calibrate
the sensory data against varied interference.

In this paper, we focus on in-field calibration problem of particulate matter (PM)
sensor for PM2.5 and PM10 sensing and propose a clustering-based segmented regression
method. Interference from relative humidity and temperature are taken into consideration
in the particulate matter concentration calibration model. Instead of a global regression
model covering all situations of concentration, and humidity and temperature, samples
for modeling are divided into clusters by a clustering algorithm and each cluster has an
individual multiple linear regression equation. After the calibration modeling mentioned
above is finished, the final calibrated result of one sample is obtained from the regression
model of the cluster the sample belongs to. Our method is evaluated under a practical
in-field deployment and shown to perform better than a global multiple regression method
under different initial error levels. It demonstrates at least 16% and 9% improvement ratio
of calibration error on RMSE, respectively, for pollutants PM2.5 and PM10 than the baseline,
especially when relative humidity is involved.

The main contributions of the paper are as follows. First, the clustering-based seg-
mented regression method uses a combination of linear regression models to approximate
a complex function structure for the in-field sensor calibration problem. It only relies
on sensory data sampling with little prior knowledge of sensor characteristics. Second,
the proposed method may have lower calculation cost and relieve overfitting problems,
since its error is not overly sensitive to the cluster number and the ratio of training set
and testing set. Third, it demonstrates better performance with a better fitting degree and
a smaller calibration error both in mean value and variance, when compared with the
global multiple linear regression model. Furthermore, it is easier to explain than those
ANN-based methods.

This paper is organized as follows: Section 2 introduces the problem background
and method design. Section 3 presents an evaluation of the proposed method in practical
deployment. Section 4 gives further discussion on the method’s potential and Section 5
provides concluding remarks.

2. Materials and Methods
2.1. Problem Background

Nowadays, the sensor-based air pollution sensing system has become a key comple-
ment to standardized air pollution monitoring architecture. Compared to conventional
technologies with precision equipment, it provides fine-grained information in urban air
pollution monitoring because low-cost sensors can support large-scale deployment. Mean-
while, it is acknowledged that low-cost sensors suffer from measurement performance
limitations due to varied interference factors including sensor drift [14], working conditions
(such as temperature and humidity) and cross-sensitivity [15].

To guarantee the quality of sensory data quality continuously, kinds of system-level
sensor calibration methods are developed like collaborative calibration [16], blind calibra-
tion [17] and transfer calibration [18]. Although in-field calibration is a relatively basic
technology, it still plays an important role in sensing system deployment because it has
access to reliable reference from trusted standard monitoring station.

For example, as shown in Figure 1, in-field calibration can be conducted when the
sensor is deployed in close proximity to the station providing trusted measurements as
reference or ground truth. They are in co-location and bear common observation on
environmental conditions in the same time period. In-field calibration centers on finding a
fitting function or regression model that can estimate the ground truth from sensory data.

In detail, particulate matter monitoring is now a popular issue in urban atmosphere
environment monitoring and PM sensors are widely used for sensing system deployment.
Common PM sensors are based on optical principles and suffer from measurement devia-



Appl. Sci. 2022, 12, 12934 3 of 18

tions due to relative humidity and temperature. In-field calibration on PM sensors under
practical working conditions will enhance sensor measurement performance with efficient
deployment compared to pre-deployment calibration conducted under a laboratory setting.
In essence, regarding sensory data as a series of input variables, the target of in-field PM
sensor calibration is to find a function or model. It is then able to map these input variables
to a ground truth estimation given by a standard monitoring station.

Figure 1. In-field calibration is conducted when the sensor is in close proximity to the station. The
station data can be regarded as ground truth and a regression model is to be obtained from sensor
data to ground truth. The system for our research is deployed in Anji County, near Huzhou City in
Zhejiang Province.

2.2. Related Work

In practice, sensor calibration faces challenges posed by sensor type variety and
individual differences within the same sensor type [19]. Deployment of the sensing system
requires high efficiency, and it is difficult to fully learn sensor’s characteristics under a
controlled environment and figure out corresponding calibration model in laboratory
calibration before deployment. Instead in-field calibration [20] make it possible to calibrate
sensor under practical environment after deployment and improve sensor performance
continuously.

Regression methods are widely applied in in-field sensor calibration against a series
of measurement interference including drift [21], cross-sensitivity [19] and environment
factors such as temperature and relative humidity [19]. One of the major challenges of
in-field calibration is to determine the structure of regression model, since the mechanism
of interference factors is complex and it is difficult to directly design a global fitting function
for a specific sensor type based on prior knowledge, especially when there are non-linear
responding characteristics [22]. In this case, simple linear [23,24] or multivariate linear
regression [4,23] methods cannot perform well either on the whole range of the sensor
or under some working conditions. Some ANN-based methods such as [25] use multi-
layer back-propagation artificial neural network to consider the multiple environmental
factors that affect low-cost air temperature sensors. In addition, random forest model is
often used as a non-linear model for in-field calibration such as [26]. They may generate
non-linear fitting function for calibration or achieve a relatively satisfying result, and its
generalization performance, interpretability and calculation cost still remain bottlenecks
for use across various in-field sensor calibration scenarios. For in-field sensor calibration,
a regression is required to deal with sensor’s non-linear response characteristics under
variable interference factors with small-scale training data and simple model structure.

2.3. Methodology Design
2.3.1. Motivation

Our proposed method is targeted at PM sensor in-field calibration to reduce devi-
ations against relative humidity and temperature. Because the interference mechanism
is difficult to describe under practical working conditions and individual differences ex-
ist among sensors, it is challenging to determine a global regression model to cover the
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whole sensor range and all common temperature and humidity situations. Even some
methods such as ANN-based learning can fit any non-linear model theoretically, high
complexity, generalization performance risk and large requirement on data amount limit
their advantages.

Therefore, an intended in-field calibration model for PM sensor can compensate for
deviation even with non-linear characteristics caused by relative humidity and temperature
at a light calculation cost, together with interpretability and adaptability. Inspired by seg-
mented linear regression, although it is difficult to directly find a global regression model
to compensate varied deviation, linear regression still works in some local domains [26].
In fact, samples from sensory data can be divided into several parts and linear regres-
sion performs well in each part. The division can be realized via clustering algorithm
adaptability [27].

2.3.2. Input Variables

In our in-field calibration problem, input variables from the sensor taken into con-
sideration for the calibration model include PM concentration, relative humidity and
temperature, since we find the association between each variable and the error to be cali-
brated at an hourly scale. We define the ’error to be calibrated’ as the PM concentration
deviation between sensor and reference station in co-location on an average hourly scale.

As shown in Figure 2, sensory PM2.5 concentration samples share a strong association
with the error. That is because the sensor’s PM concentration reading shares a close
trend with that of reference station on hourly average scale. When it comes to variable
relative humidity and temperature, although their respective association with error is not
as remarkable as concentration in Figures 3 and 4, we also find that error’s upper bound
may bear association with relative humidity or temperature. With regard to PM10, we also
find a similar association. So based on these three input variables, the calibration model
has potential to compensate for sensory data errors.

Figure 2. Samples: Sensory PM2.5 concentration vs. error to be calibrated
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Figure 3. Samples: Sensory relative humidity vs. error to be calibrated (PM2.5)

Figure 4. Samples: Sensory temperature vs. error to be calibrated (PM2.5)

2.3.3. Calibration Model

For PM sensor in-field calibration, our proposed method is clustering-based segmented
regression. Sensory data of PM concentration, temperature and relative humidity are used
to compensate measurement deviation and hourly PM concentration data from a standard
monitoring station nearby are used as calibration reference. The method consists of two
stages, modeling and calibrating.

Modeling. Sensory data concerning PM concentration, temperature, and relative
humidity are firstly averaged hourly so that they have same interval with PM concentration
data from standard monitoring station. Then, normalization of sensory data according to
the sensor’s range is required for their range difference. We can combine PM concentration,
temperature and relative humidity into tuple X,

X(n) = (P(n), T(n), H(n)) (1)

where P represents PM concentration, T represents temperature, H represents relative
humidity and n is time. Each tuple X(n) has an hourly station PM concentration reference
Y(n) corresponding at time n. As shown in Figure 5, with clustering algorithm all samples
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of X(n) are divided into several clusters. For each cluster, a corresponding multiple linear
regression model can be calculated with (X(n), Y(n)) in the cluster,

Rk(n) = a1,kP(n) + a2,kT(n) + a3,k H(n) + a4,k (2)

where {a1,k, a2,k, a3,k, a4,k} are parameters calculated by least square fitting and Rk(n) repre-
sent calibrated value of sample X(n) in cluster k at time n.

Figure 5. Modeling stage : Clustering-based segmented regression

Calibrating. Steps of the calibration stage are shown in Figure 6. With the clusters
and their corresponding multiple linear regression models obtained in the modeling step,
sensory data of PM concentration can be calibrated. When new samples of sensory data
arrive, normalization and combining them into tuple X(t) as Equation (1) are preparation
steps. Based on the shortest distance under some metric (e.g., Euclidean Distance), tuple
X(t) can be used to find the cluster it belongs to. If tuple X(t) belongs to the cluster k,
according to Equation (2), Rt,k is the calibrated sensory PM concentration at time t and it
can be calculated as below:

Rt,k = a1,kP(t) + a2,kT(t) + a3,k H(t) + a4,k (3)

Figure 6. Calibrating stage : Clustering-based segmented regression

In practice due to seasonality, the modeling can describe the relationship between
deviation and factors (PM concentration, temperature and relative humidity) approximately
based on short-term sampled data. Thus, in long-term sensing system deployment, this
method needs to be executed periodically and cluster division and corresponding multiple
linear regression models require regular updating, in order to catch up with the calibration
performance.
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3. Results
3.1. Experiment Settings
3.1.1. System and Data

To justify the proposed method, we conduct evaluation with testing data from a
practical deployed air pollution sensing system in Anji County, an area near the Taihu
Lake, beside Huzhou City in Zhejiang Province as shown in Figure 1. The air pollution
sensing system design is shown in Figure 7. Both sensory data and reference data are
sampled continuously and saved in the database. Calibration algorithm is implemented on
raw in schedule and only calibrated data can be utilized in applications and presented on
user interface.

Figure 7. In the system design, raw data are calibrated via the calibration algorithm based on sensory
data and reference data are sampled and then utilized in various applications.

Sensory data are generated by PMS5003S laser particulate matter sensor. It can output
PM2.5 and PM10 concentration measurement (µg/m3) at one-second intervals together
with temperature (◦C) and relative humidity (%). The reference data for calibration are
provided at one-hour intervals from official standard atmospheric environment monitoring
station, including PM2.5 and PM10 concentration. For in-field calibration testing, the sensor
selected is deployed nearby the monitoring station within 30 m range to satisfy the co-
location condition.

We prepare three groups of data and each group contains sensory data and reference
data in the same three-month period including July–September 2021, October–December
2021 and January–March 2022. To justify the adaptability of the method, the three groups
are sampled, respectively, in three different seasons with distinct temperature and humidity
conditions, as well as different initial measurement error levels.

When the model calibrates the data set, it first uses the clustering algorithm to cluster
the data set, and then divides each cluster into a training set and a test set according to a
certain ratio and calculates. The division ratio of the training set is discussed in Section 3.2.5,
and it is found that the division ratio of the training set does not have a significant impact
on the calibration results.

3.1.2. Evaluation Indicator

In order to evaluate calibration performance, error is defined as the deviation between
calibrated sensory data and reference data from station on test set. Root mean square error
(RMSE) is selected as the evaluation index. The training set and test set were randomly
selected, and the average value of 1000 cycles is used as the benchmark RMSE to measure
the impact of various training parameters on the model. The formula is as follows, where
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Xobs is the observation data of the standard station, and Xmodel is the value of sensor data
after model calibration, N represents the number of data in the test set.

RMSE =

√
∑N

i=1 (Xobs,i − Xmodel,i)2

N
(4)

3.2. Evaluation

Sensory data of PM concentration are firstly averaged hourly so that they have same
interval with PM concentration data from standard monitoring station and compare the
sensor data with the standard station. As shown in Figure 8, raw sensory data of PM2.5 bear
a large initial error compared with standard station in co-location. That is because the sensor
has been deployed for a long period of time without adjustment and affected significantly
by sensor drift. Other possible causes of the problems are that the environmental conditions
will affect the sensor signal, and the sensor is cross sensitive to a variety of pollutants. Raw
sensory data of PM10 have a similar situation.

In our evaluation, a global multiple linear regression model is selected as the baseline
comparing with the proposed method. For baseline, we combine constant term, PM
concentration, temperature and relative humidity into tuple X, as a parameter of the global
multiple linear regression equation. Comparison and analysis involves many aspects.

Figure 8. Sensor PM2.5(red line) and in-field standard stations PM2.5(black line), data comparison
three-months post-deployment.

In Section 3.2.1, we provide a comparison with the original error and baseline proves
the effectiveness of our method. In Section 3.2.2, we compare the differences caused
by using different algorithms in the clustering stage of the model. In Section 3.2.3, we
test the impact of introducing different environment variables on the model clustering
and regression stages. Section 3.2.4 presents a comparison concerning the impact of the
number of clusters on the calibration results. Section 3.2.5 compares the effects of different
proportions of training set test set division on calibration results. In Section 3.2.6, we try
to apply the model to the same type of pollutant PM10 and verify the effect. Section 3.2.7
discusses the stability of the model and the fitting effect on the standard value.

3.2.1. Model Performance Measurement

In order to evaluate the performance of the calibration model, we calculate the error
between the three groups of sensor PM2.5 data and the standard station, respectively. The
global linear regression calibration of the sensor PM2.5 concentration, relative humidity,
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and temperature as regression parameters is used as a baseline to measure the performance
of our model.

The error between the sensor PM2.5 data and the standard station under the global
linear regression, is compared with the error between the PM2.5 data calibrated by our
method and the standard station. As shown in Figure 9, it is found that our method is
superior to traditional global regression in three groups of data. The K-means algorithm
is used in the data set partition phase of our method. Under K-means, we use X(n) =
(P(n), T(n), H(n)) as the division basis to divide 6 clusters, and set the ratio of training
set and test set to 9:1. For each cluster and global liner regression, we use: Rk(n) =
a1,kP(n) + a2,kT(n) + a3,k H(n) + a4,k as a training parameter of regression model.

Figure 9. Taking RMSE as the evaluation index, the initial error of PM2.5 concentration between the
sensor and the standard station, the error after global linear regression and the error processed by
our method are calculated.

3.2.2. Clustering Algorithm

In the clustering phase of the model, selecting different clustering algorithms to
partition the data set will have an impact on the effect of subsequent regression training.
In order to select an algorithm with low algorithm complexity and good clustering effect
and then apply it in the model, the effects of using K-means, Mean-shift [28] and Fuzzy C-
means [29,30] as calibration models in the data partitioning phase on the model calibration
performance are compared.

As shown in Figure 10, the RMSE of the three groups of data when using K-means
to partition the data set is lower than that of the other two algorithms. Compared with
Fuzzy C-means, the RMSE of the three groups of data is reduced by 2%, 1.6%, and 1%,
respectively; Compared with Mean-shift, the three groups of data decreased by 3.1%, 5.5%
and 2.2% respectively. Among them, Mean-shift is vulnerable to noise interference, and the
algorithm is affected by several data points with large offsets. Several similar data points
with large offsets are regarded as a cluster, resulting in a small amount of data in the cluster,
which cannot be fully trained and will cause large errors. The RMSE of Fuzzy C-means
is also slightly higher than that of the K-means, so the subsequent experiments use the
K-means algorithm to partition the data set.
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Figure 10. Taking RMSE as the evaluation index, the calibration performance of the model is
compared when K-means, Fuzzy c-means, and Mean-shift algorithms are used to partition data sets

3.2.3. Dimension of Clustering

In order to determine the environment variables used in the clustering basis and
regression equation, comparative experiments are conducted from two aspects: clustering
factor and regression factors. The PM2.5 concentration, temperature and humidity data
used in clustering are all normalized to ensure that the clustering effect will not be affected
by different data ranges.

Clustering factors. In order to partition the data set more reasonably and improve
the accuracy of the calibration phase, K-means algorithm is used to partition the data set
according to different sensor information. Three different dimensions of clustering tests
were conducted. The Figure 11 shows the intuitive effect of data samples clustering under
two-dimensional and three-dimensional case.

Figure 11. The normalized PM2.5 concentration, temperature and humidity are used as the clustering
basis for K-means. As (a) shows the result of six clusters based on PM2.5 concentration and humidity,
as (b) is the result of six clusters based on PM2.5 concentration, temperature and humidity.

As shown in Table 1, in the Group 1 data group, regression the divided data set to
obtain calibration parameters, and calculate the PM2.5 concentration after calibration on
the test set, after calibration, the RMSE values of the three different division methods and
the standard data are 4.63, 4.48 and 4.46, respectively. Compared with the clustering based
on concentration and temperature, two-dimensional clustering with concentration and
humidity, and three-dimensional clustering with both concentration and temperature and
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humidity were used. RMSE after regression decreased by 3.24% and 3.67%, which also
had the same effect on Group 2 and Group 3. RMSE in Group 2 decreased by 21.82%,
20.58%, and that in Group 3 decreased by 14.39%, 15.62%. It can be seen that whether it
is two-dimensional or three-dimensional clustering, introducing humidity as one of the
classification criteria can significantly improve calibration performance.

Table 1. Use RMSE as an indicator to evaluate the performance of different models for PM2.5

calibration, where P represents PM concentration, T represents temperature, H represents relative
humidity. Division basis for K-means clustering/Parameters used in regression equations in the
legend as: P+T/P+T means select P and T as clustering basis, select P and T as training parameters of
regression equation.

Combination Clustering
Factors

Regression
Factors Group 1 Group 2 Group 3

1 P+T P+T 4.63 9.69 11.33
2 P+T P+T+H 4.45 7.53 9.96
3 P+H P+H 4.48 7.56 9.7
4 P+H P+H+T 4.43 7.33 9.42
5 P+H+T P+H+T 4.46 7.68 9.56

Regression factors. In order to further compare the effects of humidity and tempera-
ture on the calibration performance of the sensor, humidity is introduced into the regression
equation in the two-dimensional division based on concentration temperature clustering. It
is found that the RMSE in the three groups of data decreased by 3.89%, 22.13% and 12.09%,
respectively, compared with those before the introduction, and all obtained objective im-
provement. Then, by comparing the concentration temperature humidity ternary as the
training parameter of the regression equation, it is determined that when the concentration
humidity is used as the clustering basis and the concentration, temperature and humidity
are used as the regression parameters, compared with baseline, the RMSE of the three
groups of data after calibration decreased by 16.89%, 17.27% and 20.37%, respectively, the
best calibration performance can be achieved in the three groups of data under the existing
conditions.

Based on the above experiments, the PM2.5 concentration, humidity are used as the
classification basis in the three groups of data, and the PM2.5 concentration, temperature,
humidity are used as the training parameters in the regression equation to obtain the best
effect. Compared with the three-dimensional K-means clustering, it can also have lower
overhead. Therefore, we suggest using the two-dimensional K-means clustering method
combined with the multiple linear regression equation.

3.2.4. Number of Clusters

After selecting the clustering factors and regional factors in the previous section, we
test the impact of the number of clusters on the calibration performance. As shown in
Figure 12, it is found that the RMSE of the three groups of data decreases with an increase
of the number of K-means clusters. However, when the number of clusters increases to a
certain range, the reduction of RMSE is limited.

Therefore, we can choose a moderate number of clusters, such as 6, as this can control
the amount of computation in a small range to obtain sufficient calibration performance.
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Figure 12. We use RMSE as an indicator to evaluate under the condition of determining the basis
for clustering of K-means and the training parameters of regression equation, the effect of selecting
different number of K-means clustering on the performance of calibration model.

3.2.5. Training Set and Testing Set Division

In order to evaluate the influence of different division ratios of training sets and test
sets on the calibration model, we compare the division methods from 3:7 to 9:1 in three
groups of data, with gradually increased the proportion of training sets. As shown in
Figure 13, it can be seen that RMSE decreases with the increase of training set partition
proportion, but the impact on RMSE decreases marginally with the increase of training set
partition.

Therefore, we prefer to use a smaller proportion of training sets to achieve the effect
not inferior to the high proportion of training set partition. In this way, we cannot only
obtain more test sets to verify the effect of model training, but also avoid the problem of
overfitting.

Figure 13. Taking RMSE as the evaluation index, we compare the influence of different training
set division ratios on the calibration results from 3:7 to 9:1 under the given clustering mode and
regression parameters of K-means.

3.2.6. Performance on PM10

In order to test the calibration effect of our model on the same type of pollutants,
the model is used on the PM10 concentration data. Similarly, after the data is normalized,
the model is divided according to the PM10 concentration, humidity, and then the PM10
concentration, temperature, humidity are trained as regression parameters. The calibration
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results are shown in Figure 14, the PM10 concentration measured by the sensor has a large
initial error before calibration. After calibration by our method, the RMSE of the three
groups of data is 13.42%, 9.68%, 14.15% lower than that of the global linear regression
calibration. These results show that our method is effective for calibrating data from
similar sensors.

Figure 14. Taking RMSE as the evaluation index, the initial error of PM10 concentration between the
sensor and the standard station, the error after global linear regression and the error processed by
our method are calculated.

Comparing the performance of our method applied to the calibration of PM2.5 and
PM10 pollutants, we can see that there is a good improvement in the data of three groups of
different periods. As shown in Table 2, our method is available for calibrating both PM2.5
and PM10 sensory data.

Table 2. Ratio of improvement: Compared with a global linear regression, the performance of
proposed method applied on both PM2.5 and PM10 calibration is improved.

Target Pollutant Group 1 Group 2 Group 3

PM2.5 16.89% 17.27% 20.37%
PM10 13.42% 9.68% 14.15%

3.2.7. Stability of the Model

The training set of model calibration segment is randomly selected from the data set
according to a certain proportion. In order to measure the stability of our method, we
test whether the calibration effect will fluctuate greatly due to the change of training set
selection. We record the RMSE between calibration value and standard station data due to
different training set selections when using global linear regression to calibrate PM2.5 data
and PM10 data of sensors on the same set of data for many times, and the RMSE caused by
different training set selections when using our method to calibrate PM2.5 data and PM10
data of sensors. The RMSE data in the two groups of tests are formed into a boxplot. As
shown in Figure 15, when applied to PM2.5 and PM10 pollutants, our method has lower
error than the global linear regression in addition to lower variance, and improvements in
stability of calibration performance are achieved.
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Figure 15. PM2.5 (a) and PM10 (b) are taken as the target calibration values, the global linear regression
and our method are tested repeatedly numerous times, respectively. The error of each calibration
value is recorded and formed into a boxplot. This boxplot reflects the stability and error range of
the model.

We take the target pollutant concentration of the sensor as the X-axis, and the target
pollutant concentration provided by the standard station as the Y-axis. The data before
the calibration of the sensor PM2.5 are displayed with red scatter points, the sensor PM2.5
data calibrated with our method are displayed with blue scatter points, and the data of
PM10 are also plotted with the same method. In an ideal case, the data measured by the
sensor should be equal to the reference value provided by the standard station. The scatter
diagram in this coordinate system is in the shape of X = Y. However as shown in Figure 16,
due to the influence of sensor performance and environment, the data before PM2.5 and
PM10 calibration contains a large error, that is far from X = Y. After our method calibration,
the data error is reduced, and the distribution is pulled back to the X = Y axis, which is
extremely effective in the application of PM2.5 and PM10 pollutants.

Figure 16. The X-axis represents the pollutant concentration measured by the sensor, and the Y-axis
is the pollutant concentration provided by the standard station. The scatter plot is constructed, which
shows that the PM2.5 (a) and PM10 (b) data of the sensor are pulled back to the standard value after
calibration.

In order to measure the fitting degree between the sensor concentration data processed
by the model and the data of the standard station, the determination coefficient is used
as an indicator. Compared with the baseline before calibration, our method is used for
calibration. As shown in Table 3, in these three cases, the R2 of the sensor PM2.5 and PM10
concentration and the standard station PM2.5 and PM10 concentration can be seen that the
sensor target pollutant concentration calibrated by our method has a higher fitting degree
to the standard station and is closer to the true value.
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Table 3. Coefficient of determination is used to measure the fitting degree of the sensor PM2.5 and
PM10 data calibrated by our method to the standard station data.

Target Pollutant Before Calibration Baseline Our Method

PM2.5 −0.726 0.704 0.814
PM10 −0.218 0.738 0.78

4. Discussion

Theoretically, in this regression calibration problem, the proposed method divides
the whole independent variable space into several parts and allocates one multiple linear
regression model for each part. It does not rely on prior knowledge of sensor characteristics
but is determined by practical sensory data sampling. This method uses a combination
of linear regression models to approximate a complex function structure, relieving the
underfitting problem caused by a rough global multiple linear regression model. Inspired
by this, the sensor’s cross-sensitivity calibration problem can also apply the proposed
method to divide its independent variable space with more dimensions and simplify
calibration model expression. Compared with a complex global regression model or ANN-
based learning model, the proposed method makes the calibration model much easier to
determine and explain.

In evaluation, we find that when factor relative humidity is involved in clustering
or regression, the performance improves more obviously than factor temperature. That
is because humidity has an influence in the mechanism of sensor response. The output
signals of laser particulate matter sensor depend on laser scattering caused by particulate
matter in the sensor responding chamber. Thus, when environment humidity is high or
increases sharply over a short period, numerous ambient floating micro-liquid drops will
form in the chamber together with particulate matter, affecting laser scattering and the
sensor’s response. This process is hard to model physically; however, data-driven methods
can describe the influence of humidity without knowing chamber structure design, laser
scattering or other hardware issues.

In total, three groups of data crossing different seasons including summer–autumn
(Group 1), autumn–winter (Group 2) and winter–spring (Group 3) are involved in evalua-
tion. Data in winter and spring achieved a larger calibration error than those in autumn.
That is because for the location our system was deployed, there are more particulate-matter-
related weather events or pollution events happening during the period of autumn to
spring the next year. Within such pollution processes, the particulate matter concentration
in atmosphere environment is greater. According to Figures 2 and 16, there are more
difficulties to reducing calibration error. Calibration error and coefficient of determina-
tion regarding PM2.5 are slightly better than that on PM10. Generally, PM10 has higher
concentration and wider dynamic range than PM2.5 on the sensor’s readings. This may
lead to larger calibration error mean value and error variance concerning PM10 readings.
In addition, PM10 is affected more by humidity than PM2.5 in PM sensor measurements.
When laser scattering is affected by numerous liquid drops, there will be a larger PM10
measurement deviation, which was observed in practice. This suggests that the in-field
calibration model for PM10 may be more sophisticated than that for PM2.5.

Better R2 of the proposed method than the global linear regression model might be
attributed to clustering. The whole independent variable space is divided by clustering
and each cluster possesses a number of samples. If each cluster has sufficient and typical
enough samples, it can reach a good fitting degree. However on the other hand, clustering
may also lead to some disadvantages in using our method. One such disadvantage is
extremely unbalanced sizes of clusters. A cluster with few samples cannot obtain a sat-
isfying regression model and will lead to a large error variance. Outliers and incorrect
classification will also bring negative influence on calibration performance. These are issues
worth further discussion.
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5. Conclusions

In general, we design a method using a clustering algorithm to realize segmented
regression for in-field sensor calibration. It can compensate for humidity and temperature
interference on PM sensor with statistical characteristics of samples and less prior knowl-
edge, using a combination of linear regression models. Samples for modeling are divided
into clusters via clustering algorithm and each cluster has its own individual multiple
linear regression model calculated from least square fitting. The final calibrated result of
one sensory sample is calculated from the regression model of the cluster the sample itself
belongs to. Theoretically, the proposed method divides the whole independent variable
space into several parts and allocates one multiple linear regression model for each part.
This provides a more meticulous function for sensory data calibration and to some extent,
can overcome the underfitting problem of using a global multiple linear regression model.

The proposed method is evaluated on a practical deployed air pollution sensing
system using official monitoring station as calibration reference, and a global multiple
linear regression model as the baseline. An evaluation on the data set of different initial error
levels indicates that the clustering-based calibration method produces a better performance.
It works on the sensory data of both PM2.5 and PM10, and provides at least 16% and 9%
improvement ratio of calibration error on RMSE, respectively, for pollutants PM2.5 and
PM10 compared with the baseline. Regarding error statistics, the error of our method has
both a smaller mean value and variance than the global linear regression model meaning
that our method produces superior stability among numerous random tests. Besides both
on PM2.5 and PM10, our method has a better fitting degree due to a better determination
coefficient than the baseline.

Our experiments consider different combinations of clustering factors and regression
factors. It is found that under existing conditions the best calibration effect is achieved
when clustering factors include PM concentration and humidity, and regression factors
include PM concentration, humidity and temperature. Relative humidity has an appreciable
influence and corresponds with usage experience and mechanism of the laser particulate
matter sensor.

The evaluation also shows that the proposed method may have a lower calculation
cost. Because the calibration error is not quite sensitive to cluster number and the ratio
of training set and testing set, this means that a moderate number of clusters is sufficient,
and the training data can be reduced to relieve over-fitting problem. These benefits can
improve the efficiency of post-deployment sensor calibration.

Furthermore, there are several aspects for future research regarding the proposed
method. In practical sensor deployment, calibration model updating warrants further
attention because the proposed method has seasonal limitation based on limited sampling.
The updating involves clustering updating and regression parameters updating, both
on accuracy and efficiency. Optimization on clustering algorithms is another attractive
issue and the selection of clustering algorithms may be related to multiple-dimension
sensory data distribution. In addition, the existing evaluation only involves the current
status of variables and does not consider delay items of the variables. If reflecting the
changing process of some environmental factors in the model, e.g., humidity, it can improve
calibration performance, delay items such as P(n− 1), H(n− 1) and H(n− 2) require to
be added in regression models. Last but not least, since the method works on PM2.5
and PM10 calibration against temperature and humidity, it also has potential value in
assisting the sensor’s cross-sensitivity calibration problem and may be more efficient than
pre-deployment laboratory calibration.
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