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ABSTRACT

A musical style or genre implies a set of common con-

ventions and patterns combined and deployed in different

ways to make individual musical pieces; for instance, most

would agree that contemporary pop music is assembled

from a relatively small palette of harmonic and melodic

patterns. The purpose of this paper is to use a database

of tens of thousands of songs in combination with a com-

pact representation of melodic-harmonic content (the beat-

synchronous chromagram) and data-mining tools (cluster-

ing) to attempt to explicitly catalog this palette – at least

within the limitations of the beat-chroma representation.

We use online k-means clustering to summarize 3.7 mil-

lion 4-beat bars in a codebook of a few hundred prototypes.

By measuring how accurately such a quantized codebook

can reconstruct the original data, we can quantify the de-

gree of diversity (distortion as a function of codebook size)

and temporal structure (i.e. the advantage gained by joint

quantizing multiple frames) in this music. The most popu-

lar codewords themselves reveal the common chords used

in the music. Finally, the quantized representation of mu-

sic can be used for music retrieval tasks such as artist and

genre classification, and identifying songs that are similar

in terms of their melodic-harmonic content.

1. INTRODUCTION

The availability of very large collections of music audio

present many interesting research opportunities. Given mil-

lions of examples from a single, broad class (e.g. con-

temporary commercial pop music), can we infer anything

about the underlying structure and common features of this

class? This paper describes our work in this direction.

What are the common features of pop music? There

are conventions of subject matter, instrumentation, form,

rhythm, harmony, and melody, among others. Our interest

here is in the tonal content of the music – i.e. the harmony

and melody. As a computationally-convenient proxy for a

richer description of the tonal content of audio, we use the

popular chroma representation, which collapses an acous-
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tic spectrum into a 12-dimensional description, with one

bin for each semitone of the western musical octave. In

addition, we simplify the time axis of our representation to

take advantage of the strong beat present in most pop mu-

sic, and record just one chroma vector per beat. This beat-

synchronous chromagram representation represents a typ-

ical music track in a few thousand values, yet when resyn-

thesized back into audio via modulation of octave-invariant

“Shepard tones”, the melody and chord sequences of the

original music usually remain recognizable [7]. To the ex-

tent, then, that beat-chroma representations preserve tonal

content, they are an interesting domain in which to search

for patterns – rich enough to generate musically-relevant

results, but simplified enough to abstract away aspects of

the original audio such as instrumentation and other stylis-

tic details.

Specifically, this paper identifies common patterns in

beat-synchronous chromagrams by learning codebooks from

a large set of examples. The individual codewords consist

of short beat-chroma patches of between 1 and 8 beats, op-

tionally aligned to bar boundaries. The additional temporal

alignment eliminates redundancy that would be created by

learning multiple codewords to represent the same motive

at multiple beat offsets. The codewords are able to rep-

resent the entire dataset of millions of patterns with min-

imum error given a small codebook of a few hundred en-

tries. Our goal is to identify meaningful information about

the musical structure represented in the entire database by

examining individual entries in this codebook. Since the

common patterns represent a higher-level description of

the musical content than the raw chroma, we also expect

them to be useful in other applications, such as music clas-

sification and retrieving tonally-related items.

Prior work using small patches of chroma features in-

cludes the “shingles” of [3], which were used to identify

“remixes”, i.e., music based on some of the same underly-

ing instrument tracks, and also for matching performances

of Mazurkas [2]. That work, however, was not concerned

with extracting the deeper common patterns underlying dif-

ferent pieces (and did not use either beat- or bar-synchronous

features). Earlier work in beat-synchronous analysis in-

cludes [1], which looked for repeated patterns within single

songs to identify the chorus, and [7], which cross-correlated

beat-chroma matrices to match cover versions of pop mu-

sic tracks. None of these works examined or interpreted

the content of the chroma matrices in any detail. In con-

trast, here we hope to develop a codebook whose entries
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Figure 1: A typical codeword from a codebook of size 200

(code 7 in Figure 4), corresponding to a tonic-subdominant chord
progression. The patch is composed of 2 bars and the pattern
length was set to 8 beats.

are of interest in their own right.

2. APPROACH

2.1 Features

The feature analysis used throughout this work is based on

Echo Nest analyze API [4]. For any song uploaded to their

platform this analysis returns a chroma vector (length 12)

for every music event (called “segment”), and a segmen-

tation of the song into beats and bars. Beats may span or

subdivide segments; bars span multiple beats. Averaging

the per-segment chroma over beat times results in a beat-

synchronous chroma feature representation similar to that

used in [7]. Echo Nest chroma vectors are normalized to

have the largest value in each column equal to 1.

Note that none of this information (segments, beats, bars)

can be assumed perfectly accurate. In practice, we have

found them reasonable, and given the size of the data set,

any rare imperfections or noise can be diluted to irrele-

vance by the good examples. We also believe that patch

sizes based on a number of beats or bars are more meaning-

ful than an arbitrary time length. This is discussed further

in Section 5.1.

2.2 Beat-Chroma Patches

We use the bar segmentation obtained from the Echo Nest

analysis to break a song into a collection of beat-chroma

“patches”, typically one or two bars in length. Because

the bar length is not guaranteed to be 4 beats, depending

on the meter of a particular song, we resample each patch

to a fixed length of 4 beats per bar (except where noted).

However, the majority (82%) of our training data consisted

of bars that were 4 beats long, so this resampling usually

had no effect. Most of the remaining bars (10%) were 3

beats in length. The resulting patches consist of 12 × 4 or

12× 8 matrices.

Finally, we normalize the patches with respect to trans-

position by rotating the pattern matrix so that the first row

contains the most energy. This can be seen in the example

codeword of Figure 1. Each patch within a song is normal-

ized independently, so reconstruction of the original song

requires knowledge of the rotation index for each patch.

The representation resulting from this process is invari-

ant to both the key and meter of the original song. This en-

ables the study of broad harmonic patterns found through-

out the data, without regard for the specific musical con-

text. In the context of clustering this avoids problems such

as obtaining separate clusters for every major triad for both

duple and triple meters.

2.3 Clustering

We use an online version of the vector quantization algo-

rithm [8] to cluster the beat-chroma patches described in

the previous section. For each sample from the data, the

algorithm finds the closest cluster in the codebook and up-

dates the cluster centroid (codeword) to be closer to the

sample according to a learning rate ℓ. The clusters are up-

dated as each data point is seen, as opposed to once per it-

eration in the standard k-means algorithm. The details are

explained in Algorithm 1. As in standard k-means clus-

tering, the codebook is initialized by choosing K random

points from our dataset. Note that this algorithm, although

not optimal, scales linearly with the number of patches

seen and can be interrupted at any time to obtain an up-

dated codebook.

Algorithm 1 Pseudocode for the online vector quantization
algorithm. Note that we can replace the number of iterations
by a threshold on the distortion over some test set.

ℓ learning rate

{Pn} set of patches

{Ck} codebook of K codes

Require: 0 < ℓ ≤ 1
for nIters do

for p ∈ {Pn} do

c← minc∈Ck
dist(p, c)

c← c+ (p− c) ∗ ℓ
end for

end for

return {Ck}

3. EXPERIMENTS

In this section we present different clustering experiments

and introduce our principal training and test data. Some

detailed settings of our algorithm are also provided. As for

any clustering algorithm, we measure the influence of the

number of codewords and the training set size.

3.1 Data

Our training data consists of 43, 300 tracks that were up-

loaded to morecowbell.dj, 1 an online service based on the

Echo Nest analyze API which remixes uploaded music by

adding cowbell and other sound effects synchronized in

1 http://www.morecowbell.dj/
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Figure 2: Distortion for a codebook of size 100 encoding one
bar at a time with by 4 columns. Therefore, each codeword has
12 × 4 = 48 elements. Distortion is measured on the test set.
Training data sizes range from 0 (just initialization) to 500, 000.
Patterns were selected at random from the dataset of approxi-
mately 3.7 million patterns.

time with the music. The 43.3K songs contain 3.7 mil-

lion non-silent bars which we clustered using the approach

described in the previous section.

For testing, we made use of low quality (32kbps, 8 kHz

bandwidth mono MP3) versions of the songs from the us-

pop2002 data set [5]. This data set contains pop songs from

a range of artists and styles. uspop2002 serves as test set

to measure how well a codebook learned on the Cowbell

data set can represent new songs. We obtained Echo Nest

features for the 8651 songs contained in the dataset.

3.2 Settings

We take one or two bars and resample the patches to 4 or

8 columns respectively. We learn a codebook of size K

over the Cowbell dataset using the online VQ algorithm

(Algorithm 1). We use a learning rate of ℓ = 0.01 for 200
iterations over the whole dataset. We then use the resulting

codebook to encode the test set. Each pattern is encoded

with a single code. We can measure the average distance

between a pattern and its encoding. We can also measure

the use of the different codes, i.e., the proportion of pat-

terns that quantize to each code.

We use the average squared Euclidean distance as the

distortion measure between chroma patches. Given a pat-

tern p1 composed of elements p1(i, j), and a similar pat-

tern p2, the distance between them is:

dist(p1, p2) =
∑

i,j

(p1(i, j)− p2(i, j))
2

size(p1)
(1)

We assume p1 and p2 have the same size. This is enforced

by the resampling procedure described in Section 2.

3.3 Codebook properties

This section presents some basic results of the clustering.

While unsurprising, these results may be useful for com-

parison when reproducing this work.

• Encoding performance improves with increasing train-

ing data (Figure 2). Distortion improvements plateau

by around 1000 samples per codeword (100, 000 sam-

ples for the 100-entry codebook of the figure).

Codebook size Distortion

1 0.066081
10 0.045579
50 0.038302
100 0.035904
500 0.030841

Table 1: Distortion as a function of codebook size for a fixed
training set of 50, 000 samples. Codebook consists of 1 bar (4
beat) patterns.

• Encoding performance improves with increasing code-

book size (Table 1). Computation costs scales with

codebook size, which limited the largest codebooks

used in this work, but larger codebooks (and more

efficient algorithms to enable them) are clearly a promis-

ing future direction.

• Larger patterns are more difficult to encode, thus re-

quiring larger codebooks. See Figure 3. The in-

crease is steepest below 4 beats (1 bar), although

there is no dramatic change at this threshold.

4. VISUALIZATION

4.1 Codebook

We trained a codebook containing 200 patterns sized 12×
8, covering 2 bars at a time. The results shown are on the

artist20 test set described in Section 5.2.

The 25 most frequently used codewords in the test set

are shown in Figure 4. The frequency of use of these code-

words is shown in Figure 5. The codewords primarily con-

sist of sustained notes and simple chords. Since they are

designed to be key-invariant, specific notes do not appear.

Instead the first 7 codewords correspond to a single note

sustained across two bars (codeword 0), perfect fifth (code-

words 1 and 2) and fourth intervals (codewords 3 and 6,

noting that the fourth occurs when the per-pattern transpo-

sition detects the fifth rather than the root as the strongest

chroma bin, and vice-versa), and a major triads transposed

to the root and fifth (codewords 5 and 4, respectively).

Many of the remaining codewords correspond to common
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Figure 3: Encoding patterns of different sizes with a fixed size
codebook of 100 patterns. The size of the pattern is defined by
the number of beats. Downbeat (bar alignment) information was
not used for this experiment.
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Figure 4: The 25 codes that are most commonly used for the
artist20 test set. Codes are from the 200-entry codebook trained
on 2 bar, 12 × 8 patches. The proportion of patches accounted
for by each pattern is shown in parentheses.
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Figure 5: Usage proportions for all 200 codewords on the
artist20 test set (which comprises 71, 832 patterns). Also shown
are the usage proportions for the training set (“cowbell”), which
are similar. Note that even though all codewords are initialized
from samples, some are used only once in the training set, or not
at all for test set. This explains why the curves drop to 0.

transitions from one chord to another, e.g. a V-I transition

in codes 7 and 9 (e.g., Gmaj → Cmaj, or G5 → C5 as a

guitar power chord) and the reverse I-V transition in code

21 (e.g., Cmaj→ Gmaj).

In an effort to visualize the span of the entire codebook,

we used Locally linear embedding (LLE) [9] 2 to arrange

the codewords on a 2D plane while keeping similar pat-

terns as neighbors. Figure 6 shows the resulting distribu-

tion along with a sampling of patterns; notice sustained

chords on the top left, chord changes on the bottom left,

and more complex sustained chords and “wideband” noisy

patterns grouping to the right of the figure.

Noting that many of the codewords reflect sustained

patterns with little temporal variation, Figure 7 plots the

average variance along time of all 200 patterns. Some 26%

of the codewords have very low variance, corresponding to

stationary patterns similar to the top row of Figure 4.

We made some preliminary experiments with codebooks

based on longer patches. Figure 8 presents a codewords

from an 8 bar (32 beat) codebook. We show a random

selection since all the most-common codewords were less

interesting, sustained patterns.

2 implementation: http://www.astro.washington.edu/

users/vanderplas/coding/LLE/
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Figure 6: LLE visualization of the codebook. Shown patterns
are randomly selected from each neighborhood.
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Figure 7: Average variance of codewords along the time dimen-
sion. The vertical axis cuts at the 53rd pattern, roughly the num-
ber of codewords consisting entirely of sustained chords. Repre-
sentative patterns are shown in each range.

4.2 Within-cluster behavior

In addition to inspecting the codewords, it is important to

understand the nature of the cluster of patterns represented

by each codeword, i.e., how well the centroid describes

them, and the kind of detail that has been left out of the

codebook. Figure 9 shows a random selection of the 639
patterns from the artist20 test set that were quantized to

codeword 7 from Figure 4, the V-I cadence. Figure 10 il-

lustrates the difference between the actual patterns and the

quantized codeword for the first three patterns; although

there are substantial differences, they are largely unstruc-

Code 0 (0.68%) Code 1 (0.68%)

Code 2 (1.01%) Code 3 (5.41%)

Code 4 (1.01%) Code 5 (3.72%)

Figure 8: Sample of longer codewords spanning 8 bars. Code-
words were randomly selected from a 100-entry codebook. Per-
centages of use are shown in parentheses. Most patterns consist
of sustained notes or chords, but code 0 shows one-bar alterna-
tions between two chords, and code 4 contains two cycles of a
1→1→1→2 progression.
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Figure 9: Cluster around centroid presented in Figure 1. Taken
from the artist20 dataset, the cluster size is actually 639. Shown
samples were randomly selected. This gives an intuition of the
variance in a given cluster.

Figure 10: First three patterns of figure 9 (2nd line) presented
with the centroid from Figure 1 (1st line) and the absolute differ-
ence between both (3rd line).

tured, indicating that the codebook has captured the impor-

tant underlying trend.

4.3 Example song encoding

Figure 11 gives an example of encoding a song using the

codebook, showing both the full, original data, and the re-

construction using only the quantized codewords (at the

correct transpositions). The quantized representation re-

tains the essential harmonic structure of the original fea-

tures, but has smoothed away much of the detail below the

level of the 2 bar codewords.

5. APPLICATIONS

We present two applications of the beat-chroma codebooks

to illustrate how the “natural” structure identified via un-

supervised clustering can provide useful features for sub-

sequent supervised tasks. We will discuss how the code-

words can be used in bar alignment, and artist recognition.

5.1 Bar Alignment

Since the clustering described in Section 2 is based on the

segmentation of the signal in to bars, the codewords should
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Figure 11: Good Day Sunshine by The Beatles. Original song
and encoding with a 200 entry codebook of 2 bar patterns.

Offset % of times chosen

0 62.6

1 16.5
2 9.4
3 11.5

Table 2: Bar alignment experiment: offsets relative to ground-
truth 4-beat bar boundaries that gave minimum distortion encod-
ings from the bar-aligned codebook.

contain information related to bar alignment, such as the

presence of a strong beat on the first beat. In this section

we investigate using the codebook to identify the bar seg-

mentation of new songs. We train a codebook of size 100
on bars resampled to 4 beats. Then, we take the longest

sequence of bars of 4 beats for each song in the test set

(to avoid the alignment skew that results from spanning

irregularly-sized bars). We then encode each of these se-

quences using an offset of 0, 1, 2 or 3 beats, and record

for each song the offset giving the lowest distortion. The

results in Table 2 show that the “true” offset of 0 beats

is chosen in 62% of cases (where a random guess would

yield 25%). Thus, the codebook is useful for identifying

bar (downbeat) alignments. A more flexible implementa-

tion of this idea would use dynamic programming to align

bar-length patterns to the entire piece, including the pos-

sibility of 3- or 5-beat bars (as are sometimes needed to

accommodate beat tracking errors) with an appropriate as-

sociated penalty.

5.2 Artist Recognition

We apply our codebook to a simple artist recognition task.

We use the artist20 data set, composed of 1402 songs from

20 artists, mostly rock and pop of different subgenres. Pre-

viously published results using GMMs on MFCC features

achieve an accuracy of 59%, whereas using only chroma

as a representation yields an accuracy of 33% [6].

Although beat-chroma quantization naturally discards

information that could be useful in artist classification, it

is interesting to investigate whether some artist use certain

patterns more often than others.

The dataset is encoded as histograms of the codewords

used for each song, with frequency values normalized by

the number of patterns in the song. We test each song in a
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Figure 12: Confusion matrix for the artist recognition task.
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Figure 13: Typical patterns for different artists.

leave-one-out setting, and represent each of the 20 artists

by the average of their (remaining) song-histograms. The

test song is matched to an artist based on minimum Eu-

clidean distance to these per-artist averages. This gives an

accuracy of 23.4%, where the random baseline is around

5%. The confusion matrix can be seen in Figure 12, show-

ing that certain artists are recognized at an accuracy far

above the average.

It is interesting to inspect the most “discriminative” pat-

terns for individual artists. To find these patterns, we com-

pare a pattern’s use by one artist and divide by its use

across all artists. Figure 13 shows the dominant patterns

for Metallica, and for Tori Amos and Suzanne Vega (who

shared a ‘favorite’ pattern). These three artists were eas-

ily identified. Artists like Metallica are characterized by

“wideband” patterns, with energy spread across multiple

adjacent chroma bins, indicative of noise-like transients in

the audio.

6. CONCLUSION AND FUTURE WORK

We have presented a practical method to perform large-

scale clustering of tonal patterns, and assessed the basic

properties of the method through experiments on a large

collection of music. We have explored several ways to in-

spect and interpret the data and suggested the merit of the

representation through further experiments. We have dis-

cussed the possibility to move to even larger scales and we

provide our source code for other interested researchers 3 .

Future work may include more sophisticated clustering

that moves beyond simple Euclidean-distance-based quan-

3 See Papers section at www.columbia.edu/˜tb2332/

tization, perhaps by separately modeling the spread within

each cluster (i.e., a Gaussian mixture or other generative

model). Summarizing patches with Gaussians, and then

comparing the distance between those Gaussians, could re-

duce the influence of the noise in the distance measure.

Moving on to larger scales, we would like to pursue a

scheme of incrementally splitting and merging codewords

in response to a continuous, online stream of features, to

create an increasingly-detailed, dynamic model. We could

also cluster codebooks themselves, in a fashion similar to

hierarchical Gaussian mixtures [10].
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