CLUSTERING CRITERIA AND MULTIVARIATE NORMAL MIXTURES

by
M.J. Symons

Department of Biostatistics
University of North Carolina at Chapel Hill

Institute of Statistics Mimeo Series No. 1258

December 1979



CLUSTERING CRITERIA AND MULTIVARIATE NORMAL MIXTURES

M.J. Symons*

 Department of Biostatistics
University of North Carolina
Chapel Hill, N.C. 27514, U.S.A,

SUMMARY

New clustering criteria are presented for use when a mixture of
multivariate normal distributions is an appropriate model. They are
derived from maximum likelihood and Bayesian approaches, corrésponding
to different assumptions about the covariance matrices of the mixture
components. Two of these are modifications of the determinant of the
within groups sum of squares criterion of Friedman and Rubin (1967).
These appear to be more sensitive to disparate cluster sizes. Two
others are appropriate for different shaped clusters.

The performance ofvthese criteria, and another one studied by
Maronna and Jacovkis (1974) for heterogeneous covariance matrices, is
compared in an example requiring the separation of two types of diabetic
patients from normal subjects. The results with the three criteria
appropriate for different shaped clusters were comparable to one another:

and preferable to those from three criteria for similar shaped clusters.
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variable metric.

*This research was completed while the author was on leave with
an Intergovernmental Personnel Act appointment with the Health Effects
Research Laboratory, U.S. Environmental Protection Agency, Research
Triangle Park, N.C. 27711.



-2~
. 1. INTRODUCTION AND MODEL
Several authors, including Wolfe (1967, 1969), Day (1969), Scott
and Symons (1971), and Binder (1978), have directed attention to solving
clustering problems with a mixture of multivariate normals as a |
statistical model. For the number of components in the mixture specified
as G, the clustering problem has been formulated as one of estimating
the mixture component origin of each of the n p-variate observations,
Y where i indexes the sample.

~

More specifically the density of Y3 is

G
£f(y. |7 ’s, ’s, ’s) = ™ N_(y. s s 1
(Xll 'S Mg'S Xg s) o4 P(legg Xg) 1)
where the ﬂg’s are the mixing parameters, each required to be

positive and that they sum to unity, and the notation Np(yilgg, Xg)

. '~ denotes that Yi is distributed as a p-variate normal with mean vector

p_ and covariance matrix Eg’

~!

The unknown mixture component origin for Y3 is denoted by z;.

~,

" From the mixture model we have that z; equals g, or equivalently

y; comes from the g-th component, with probability “g' The clustering

~

problem then can be viewed as one of estimating the n Z;.

2. CLUSTERING CRITERIA
For both the maximum likelihood and Bayesian approaches,-the
likelihood of the data is required in order to estimate the n
components in the vector 2z =(zl, z2,...,zn). Letting the matrix Y
denote the n observations s and § be the vector of parameters

(MyseeesTas Byoeresles 21""’2G)’ the likelihood of the data then is

given by
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where Cg is the collection of yi’s with z; =8, and ng is the
number of observations in C . 'This likelihood is conditional on the
parameters © and a specified vector 2z, allocating each Y5 to one
of the G components in the mixture (1). As there are Gn possible
allocations, approximate search routines are required to find the
optimal assignment of the observations to the groups and thereby to
determine the clusters Cl’ C2""’CG'

The maximum likelihood (ML) approach determines the ML estimate of
Z, 2, as the allocation that maximizes (2). The parameters are
replaced by their ML estimates givenAan allocation of the n Y5 to

~

the G components. These ML estimates are the standard ones, namely

T =n_/n, 3
My g/ (3)
gg =zg = 1_11.- 2C Zl’ (4)
. g g
and
T 1 SR YO s)
g ng g ng Cg i ~g L1 ~g ? :

for g =1,...,G.
' The Bayesian approach,discussed generally by Lindley (1966),

requires a specification of a prior distribution for_ 8, p(8).
Jeffreys’ (1961) priors were utilized in order to simply delineate the
bounds of the parameter space. As the parameters, §, are not of
central interest, the product of the likelihood (1) and prior p(8) is
avefaged over. Specifically,

L(Y|z) = fL(Ylg, z)p(8)ds, (6)
where the integration is over the parameter space of §. Geisser (1966)
refers to the normalization of (6) as the prédictiVe distribution of Y.

The mode of (6) is taken as the Bayes estimate of the optimal

allocation, Z.
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Clustering criteria for these two approaches are presented for
the cases when the mixture components in (1) have unknown covariance
matrices that are assumed to bé.homogeneous and when they are not
necessarily equal. The component origin of all observations is
presumed unknown. None of the parameters in (1) is presumed known. For
other cases and situations with some parametersrspecified and/or with
the component origin of some observations known, see Geisser (1966),
Scott and Symons (1971), Symons (1973) and Binder (1978)', These
references also contain more of the details of the Bayesian approach
to this problen. |

2.1 Covariance Matrices Homogeneous

When Zg =y for g=1,...,6 and ) is unknown, the ML approach

is to maximize the likelihood over G possible allocations. For

each allocation 2z, the ML estimators (3), (4) and
§.Lly- L
- n
g

replace the parameters 6. The ML optimal allocation, g, is

=)

G
leg , (7)

equivalent to the partition of the n observations into G groups

which minimizes the criterion
G
nfn[|W[] - 2}

. 1ng£n[ng]? - (8)

where |W| is the determinant of the within groups sum of squares and

£n[ ] denotes the natural logarithm.

The Bayesian approach utilizes a vague prior, namely,

-1
g |
TT '"g] 13175 (9

g=1

p(®) =p(m, .., IP G5« ol | DR (L)

to define the parameter space. The prior on ) is of the general form

used by Geisser and Cornfield (1963). The product of (1) and (9) is

-
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averaged over the parameter space of @, as described by (6). The
Bayesian optimal allocation, z, is equivalent to the partition of the

data into G groups that minimizes the criterion.

G
(n -G)en[|W|] +gzl{p£n[ng] -2£n[I‘(ng)]}. (10)

The ML criterion (8) and Bayes criterion (10) are modifications of
the determinant of the within groups sum of squares, a criterion
proposed by Friedman and Rubin (1967). It has been observed By Scott
and Symons (1971) and Binder (1978) that the |W| criterion tends to
favbr partitions of equal size. Criteria (8) and (10) can be shown to
be more sensitive to disparate group sizes for situations when the
shape of the clusters is similar. On the other hand, as can be seen
from the example in Section 3, these same two criteria may tend to
create different s$ized but more homogeneous clusters when applied to
heterogeneous clustering problems. Criteria (8) and (10) provide very
similar cluster results.

2.2 Covariance Matrices Unequal and Unknown

When the covariance matrices may differ from group to group, the
ML optimal allocation 2, is that partition of the n observations
into G groups which minimizes the criterion
G G
) ngﬁn[lwg|] -2y ngﬂn[ng] . ()
g=1 g=1 :
The difference between criteria (11) and (8) is that the within groups
sum of squares matrices, Wé from (3), are required to estimate an
elipsoidal shape for each of the G components in the mixture. So

that none of the Wg will be singular, each cluster must be required

to contain at least p +1 observations.
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The Bayesian approach for this case utilizes vague prior infromation
as in (9), but independently for each of the G [ . The optimal
allocation, Z, is determined by (6) and is equivalent to the partition

minimizing the criterion

G
gzl{(ng -l)ln[|Wé|] +p£n[ng] —p(ng +p)dn[2}

— P .
-2 )] + ¥ a[P%{n_ +p +1 —i})]]} ~. (12)
__ g i=1 g

1=

This Bayes criterion is considerably more complicated than the ML one
presented in (11). The additional detail comes from the normalization
by (6) of a Wishart density for each of the G components in (1). Only
~ with small samples would one expect a difference in the performance of
criteria (11) and (12) or (8) and (10).

One additional criterion for different shéped clusters is presented
and compared with (11) and (12) in the next Section. Maronna and
Jacovkis (1974) compared several multivariate clustering procedures
with variable metrics. Their study included numericai'experiments
using real data and Monte Carlo data simulating mixtures efv G normal
p-variate populations. The variable metric, based upon the suggestions
of Chernoff (1970) and especially Rohlf (1970), was the only one '"for
which the clustering method had reasonable properties". It was shown

to be equivalent to the clustering criterion

G
1 .
1w VP, (13)
g=1 &
and is based upon the within cluster covariance matrix normalized to

have unit determinant. By showing this equivalence between a metric
clustering procedure and optimization of a clustering criterion, or

"uncertainty functional", Maronna and Jacovkis have provided an




iy

important connection between quite different approaches to cluster

analysis.

.

3. EXAMPLE

The relationship between chemical diabetes and overt diabetes in
145 non-obese adult subjects was examined by Reaven and Miller (1977).
The degree of glucose intolerance, insulin response to oral glucose,
and insulin resistance in normal subjects and patients with ndn—ketotic
diabetes was determined. The three dimensional shape of the data set
was'that of a '"boomerang with two wings and a fat middle', and is
reproduced in Figure 1. The two wings were interpreted_as representing
patients with chemical diabetes and overt diaﬁetes, respectively. The
spherical middle corresponded to normal subjects.

The heterogeneity of the parts of this three dimensional shape
and their non-ellipsoidal nature provide a practical test for the
criteria presented in Section 2. Reaven and Miller (1977) utilized
the determinant of the within groups sum of squares as their clustering
criterion, supplemented by the means for three groups from an earlier
set of 125 patients, that were similar to those groups presented in

Figure 1. This a priori information was not used in the analyses

"reported here, as the capability of these clustering criteria alone was

of primary interest.

These criteria were all options in an approximate routine
constructed by McRae (1971) with slight modifications. After deter-
mining the partition that corresponded to a minimum value of the
criterion selected from among 32 randomly generated partitions, the
routine produces a relative minimum for the selected criterion in the

sense that any re-assignment of one observation results in a larger
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value. This algorithm does not guarantee an absolute minimum over

the G possible allocations, in fact numerous local minima were often
found. Because of this several runs were made with variations in the
algorithm. Also the partitions in the neighborhood of the clinical
classification, based upon the results of the glucose tolerance test
and reported by Reaven and Miller (1977), were examined.

Table 1 contains the results of the application of the determinant
of the within groups sum of squares, the ML and Bayesian modifications
of the same, (8) and (10), respectively, the ML (11) and Bayes (12)
criterion for heterogeneous clusters, and Maronna and Jacovkis vafiable
metric equivalent criterion (13). The notation: (73, 10,1)(3, 26,6)
(0, 0,26) gives the resulting composition of the three clusters found
by Reaven and Miller, relative to the clinical classification given at
the head of Table 1.  Specifically, the first cluster (73, 10,1) is:
composed of 73 normals, 10 chemical diabetics and one overt diabetic.
The second cluster is composed of three normals, 26 chemical diabetics
and six overt diabetics, while 26 overt diabetics form the third cluster,

There are four table entries for each of the six criteria.

First is the criterion value for the clinical classification. Second
is the clustering with a minimum criterion value found by starting at
the clinical classification.. The third and fourth entries are the
partitions corresponding to the two smallest criterion values located
by MéRae’s (1971) program.

The best solution is unknown for this data set. However, the
combined impression from Figure 1, the clinical classification, and
the results obtained by Reaven and Miller utilizing the results from

125 earlier patients, suggest that the criteria (11), (12) and (13)
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have produced reasonable clusters. These criteria are appropriate for
different shaped clusters. The results from the Bayes criterion (12)
and the variable metric criterion (13) appear slightly better than
those with the ML criterion (11) for this example. The result with IWI
is not nearly as good. The results with the ML (8) and Bayes (10)
modification of |[W| can be very poor. These latter three criteria
are appropriate for homonogeneous shaped clusters and their perforﬁance
can clearly be misleading when different shaped clusters are present.
There seems to be no simple recommendation to guide users of
these criteria. The determinant of the within groups sum of squares
can be insensitive to different sized clusters. The maximum likelihood
(8) and Bayes (10) modifications of IWI may produce very unbalanced
clusters when presented with heterogeneous:clusters. Some pre-
liminary empirical experiemnce with thevcriteriam(llag'(IZ)'and (13),
which are appropriate for different shaped clusters, suggests -
that these criteria may produce clusters of different shapes and sizes

when presented with homogeneous shaped clusters that are close together.

- Improved software may alleviate these difficulties in some instances,

but there are still multiple local minima present in many data sets.
There appears to be no substitute for careful evaluation of the results

obtained from different analyses with several two dimensional scatter
plots.

4. FURTHER DISCUSSION

It is worthwhile to note that

i=1

G
L(Y|9) = T_ngl“ng(XﬂRg’ L) | = Ltvle, 2, (14)
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where the summation of (1) at the right is over all G" allocations
of the n Y; to the G components. It is the likelihood (14) that is
maximized with respect to § by Wolfe (1967, 1969) and Day (1969).
Given the ML estimate of § then each of the n observations Yi Vis
assigned to the component for which ﬁng(xilgg’ ig) is largest.

With large samples this procedure is optimal and fortunately relieves
the concern for searches over G allocations to optimize criteria

~ such as those presented in Section 2. However these same criteria
appear to perform better with small samples and can profitably be used
to provide initial estimates, (3), (4), and (5) or (7), for a program
to maximize (14), as noted by Symons (1973).

Marriott (1975) has pointed out that such estimates of § from a
partition 2 or Z are inconsistent. Clearly the estimates (3), (4),
and (5) or (7) are conditional on g. Estimates based upon (14) are
then unconditidnal, as regards any partition. That these conditional
estimatesrare inconsistent is intuitively reasonable as one can see
that differences between means will be over-estimated and variances
under-estimated whenever there is overlap in the mixture components
and estimates are computed given such partitions of the data. It should
be kept in mind however, that in cluster analysis the interest is on
the estimation of the best allocation of the n observations to the
G groups, as noted by Scott and Symons (1971), Symons (1973) and
Binder (1978). If estimation of the parameters of the model (1) is
primarily of interest, then the likelihood in (14) is the cornerstone

of theoretically sound estimation of § from a maximum likelihood or

a Bayesian perspective.
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FIGURE 1

Artist’s rendition of data as seen in three dimensions
(Reaven and Miller (1977, p. 25))

i
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TABLE 1. CLUSTERING OF REAVEN AND MILLER’S DIABETES TRI-VARIATE DATA INTO THREE GROUPS .

Group® '
Classification Scheme Normals Chemical Diabetes Overt Diabetes Criterion Value
(76,0,0) (0,36,0) (0,0,33) '
Variant of |W| with a priori :
cluster means specified (73,10,1) (3,26,6) (0,0,26) not given
Reaven and Miller (1977)
T: (76,0,0) (0,36,0) (0,0,33) 0.2217 x'o;;
Deterninant of within Growps sam | %3 U317 B e w020 T .
of squares, |W|. See (7). 3: (73,17,3) (3,18,4) (0,0,26) 0.7416 x10'°
4: no other local minima found
. 1: (76,0,0) (0,36,0) (0,0,33) 0.4978 x10:
 Maximum 1ikelihood B 708 didu ©.0.29) .. O
modification of [W|. See (8). 3: (75,30,6) (1,6,1) (0,0,26) 0.4750 x10*
4: (76,36,7) (0,0,11) (0,0,15) 0.4754 x10%
1: (76,0,0) (0,36,0) . (0,0,33) 0.5182 x10:
Bayesian 208308 o @en O O e e
modification of |W|. See (10). 3: (76.30.6) (1.6.1) (0.0.26) 04951 x10°
4: (76,36,7) (0,0,11) (0,0,15) 0.4953 x10"
: 1: (76,0,0) (0,36,0) (0,0,33) 6.8141 x19°
Metric criterion 2: (73,10,0) (3,26,7) (0,0,26) 0.6123 x10°
with |w |. See (13). SRS SRR
g 3: (73,10,0) (3,26,7) (0,0,26) 0.6123 x10°
4; (73,12,1) (3,24,6) {0,0,26) 0.6134 x10°
1: (76,0,0) (0,36,0) (0,0,33) 0.4225 xlo:
Maxinun 1ikelihood criterion st 48,30 ©6sn |tHBE
with W [. See (11). 3: (63,0,0) (13,30,2) (0,6,31) 0.4128 x10*
g 3 3 » %
4: (68,5,0) (7,25,2) (1,6,31) 0.4130 x10
1: (76,0,0) 0,36,0) _ (0,0,33) - 0.3095 x10"
Bayesian criterion B One0. G275 . 028 . 0.3008 x10"
with W |. See (12). 3% (72,9,0) - (4,23,2) ©(0,4,31) 0.700457 x10"
4: (73,9,0) " (3,27,7) (0,0,26) 0.300528 x10"

: - 4
This division into three groups of the 145 patients was given in Reaven and Miller (1977) based upon

Glucose Tolerance Test.

o
The four table entries are 1:

2: .classification with minimum criterion value found by starting at the clinical class

classification and criterion value for the clinical classification;

ification; 3 and 4:

classification with minimum criterion value for the two smallest criteria values produced by McRae’s

(1971) program.



