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Abstract 

We show how to use tree clustering techniques to improve the time 
bounds for optimal pivot selection in the primal network simplex algo­
rithm for minimum cost fl.ow, and for pivot execution in the dual net­
work simplex algorithm for the same problem, from 0( m) to 0( Viii) 
per pivot. Our techniques can also speed up network simplex algo­
rithms for generalized flow, shortest paths with negative edges, maxi­
mum flow, the assignment problem, and the transshipment problem. 
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1 Introduction 

Many of the problems in graph and network optimization, including shortest 
paths, minimum spanning trees, and matchings, are subsumed in the topic of 
network flows. The literature on this subject is enormous, comprising many 
books and hundreds of journal articles. For a recent survey on network flow, 
see the comprehensive text by Ahuja, Magnanti, and Orlin (1]. 

Although polynomial time combinatorial algorithms are known for many 
types of flow problem, a commonly used alternate method for solving these 
problems is provided by the network simplex algorithm [2], a specialization 
of the simplex method from linear programming. Polynomial bounds are 
known for variants of this algorithm (e.g. see (8, 10]) but these bounds are 
generally asymptotically larger than those of the combinatorial algorithms 
(or of interior point linear programming algorithms (13]). Nevertheless net­
work simplex remains an important practical alternative [1, 10], apparently 
because its running time in practice is smaller than the theoretical bound. 

As in the standard linear programming simplex algorithm, network sim­
plex maintains a feasible solution known as a basis, which is gradually im­
proved in small steps known as pivots until optimality is reached. For the 
minimum cost flow problem, the basis is a flow satisfying all capacity con­
straints, and having the following tree-like structure: the arcs of the network 
are partitioned into three subsets (T, L, U). No flow passes across any arc in 
L. Each arc in U carries flow exactly equal to its capacity. The remaining 
arcs, in T, form an (undirected) spanning forest of the network. The flows 
on these a.res are within the capacities of the arcs, but are not necessarily 
a.t the upper or lower limits of those capacities. Since T has no circuits, the 
flows on its a.res can be m1iquely determined fr~om the partition (T, L, U ). A 
pivot consists of findii1g 'a {1ega.tiv~-cost circuit induced in T by an a.re a in 
L or U, a.nd passing flow,a.rouil,d tha.~ Circuit until some arc is saturated and 
no more flow is The saturated arc is placed 'either in L or U and a is added 
to T. If there are multiple 'satu~·k.ted a~·cs an appropriate tie-breaking rule is 
used. This results in a new flo;w of the same form, and the process repeats. 

It is a fundamental theorem of the network simplex method that for 
any minimum cost flow problem there is an optimal solution having the 
tree structure described, a.nd that the method described above will always 
terminate with an optimal solution. 

The time taken by the network simplex method is simply the number of 
pivots made, multiplied by the average time per pivot. However a.tea.ch step 
there may be many possible pivots to make, and the number of pivots will 
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provide an improvement, from 0( m) to 0( v'ffi) time per pivot. We thus 
reduce Plotkin and Tardos' bounds of O(m2nlog n) for the transshipment 
problem, and 0( m3 log n) for the min cost flow problem, to 0( m 312n log n) 
and 0( m 512 log n) respectively. 

We finally discuss an even more inclusive network simplex problem, gen­
eralized flow. The bases now consist of pseudo-forests rather than trees, but 
clustering can still apply to such structures. However it is less easy to use 
clustering to determine the optimal pivot, or even to find a possible pivot. 
We describe a method that combines clustering with a geometric convex 
hull algorithm to achieve bounds of 0( n213 log n) per pivot, with a pivot se­
lection rule that appropriately generalizes Dantzig's rule. A similar bound 
holds for selecting the pivot that achieves the maximum total decrease in 
overall cost, both for minimum cost flow and for generalized flow. 

2 Clustering 

Our algorithms use a technique of partitioning trees into smaller subtrees, 
or clusters of vertices introduced by Frederickson (6, 7]. 

We first transform the graph G into a new graph G' with degree at most 
three, so any tree in G' is binary. Let v be any edge of degree ~ > 3; 
replace v by ~ - 2 vertices connected by a path. Path endpoints receive two 
of the original edges of v, and each interior vertex receives one. Path edges 
have infinite bidirectional capacity and zero cost. Flows in G' correspond 
one-for-one with flows in G. All path edges will be included in T when we 
begin the simplex algorithm; they can never be saturated and so remain in 
T. Any network simplex algorithm on G' can be interpreted as a network 
simplex algorithm on G, and we can use our data structure on G' to choose 
and perform pivots for a network simplex algorithm running directly on G. 

Definition 1 (Frederickson [7]). A restricted partition of order z with 
respect to a. binary tree T is a. partition of t11e vertices of V such tha.t: 

1. Ea.ch set in the partition contains a.t most z vertices. 

2. Ea.ch set in the partition induces a. connected subtree of T . 

.'3. For ea.ch set 8 in the partition, if 8 contains more tha.n one vertex, 
tl1en there a.re a.t most two tree edges having one endpoint in 8. 

4. No two sets ca.n be combined and still sa.tisfy the otl1er conditions. 
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depend to a large extent on these choices. Many pivoting rules have been 
suggested, but one of the best in terms of its effect on the total number 
of pivots [1] is also one of the simplest and earliest. Dantzig's pivot rule 
chooses the induced circuit with the most negative total cost, ignoring the 
amount of flow that can pass through it. 

Unfortunately implementations of Dantzig's rule have been forced to test 
all induced circuits every time a pivot is chosen. We can test each circuit in 
constant time by using some simple vertex indices to measure the costs of 
paths in T. But this still results in 0( m) time per pivot and (even though the 
rule makes few pivots) a slow overall algorithm. Instead implementations of 
the network simplex algorithm have resorted to simpler pivot rules such as 
cyclically scanning the edges not in T, which tend to find pivots more quickly 
(although the worst case bound per pivot may still be 0( m) ), making up 
for the increase in the number of pivots. 

In this paper we show that a clustering technique developed by Freder­
ickson [6, 7] and applied in a variety of dynamic graph problems [.5, 6, 7, 11] 
can be used to speed up Dantzig's rule for the network simplex algorithm. 
We describe a method of implementing Dantzig's rule for which the time 
per pivot is 0( y'm), improving the previous 0( m) bound. 

To our knowledge this is the first sublinear time bound for pivot selection 
in the network simplex algorithm. For some pivot rules known bounds on to­
tal time and on pivots were within o( m) of each other, but we wish to instead 
bound the time per pivot so that if fewer than expected pivots are made the 
improvement will still exist. Perhaps with our improvement Dantzig's rule 
will again be competitive with other network simplex methods. 

Our technique extends to other pivot rules, including the candidate list 
method which generalizes both cyclic scanning and Dantzig's rule. Clearly it 
also applies to applications of the network simplex method in special cases 
of minimum cost flow, including shortest path trees, maximum flows, the 
assignment problem, and the transshipment problem. 

We describe an extension of our technique to the dual network simplex 
method, applied by Plotkin and Tardos in a strongly polynomial algorithm 
for the transshipment problem and for minimum cost flows [10]. In the dual 
simplex method the basis is a flow that is in some sense optimal but may not 
be feasible, again having a tree-like structure. Each pivot reduces the flow 
on some arc to the capacity of that arc. For this method the infeasible arcs 
on which to pivot are easier to find, and pivot selection is less of a problem. 
The difficulty is now finding the optimal circuit containing a tree arc, in 
which to perform the desired pivot. For this problem, also, clustering can 
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Such a partition can easily be found in linear time. There are at most 
O(n/ z) sets in a restricted partition of an n-vertex tree. If we change the 
tree by removing an edge and adding a new one, we can update the restricted 
partition in time O(z) by splitting and re-merging 0(1) partition sets [7]. 

Definition 2 (Frederickson [7]). A restricted multi-level partition of or­
der z is a sequence of partitions having the following properties. 

1. The finest partition in the sequence is a restricted partition of order 
z; its partition sets are known as basic clusters. 

2. Each successive partition is a restricted partition of order 2 of tl1e tree 
formed by contracting the clusters in the previous partition. 

3. In the coarsest partition a single cluster contains all vertices. 

A restricted multi-level partition has O(log n) levels. Each cluster in 
the partition is divided into at most two clusters in the next lower level of 
the partition, so we can define a binary topology tree giving the inclusion 
relations between clusters on adjacent levels. For any swap in the tree, we 
can update the multi-level partition and its topology tree by updating the 
basic clusters, and then merging and splitting 0( 1) clusters at each higher 
level, in total time 0( z +log n) [7]. 

Definition 3 (Frederickson [7]). A 2-dimensional topology tree consists 
of a node for every pair of clusters at the same level of a restricted multi-level 
partition. The children of each node are pairs of clusters at tlie next lower 
level that are contained in the clusters corresponding to the node. 

The 2-dimensional topology tree can be updated in O(z+ m/ z) time per 
change in the underlying tree, since the partition itself takes 0 ( z + log n) 
time and since O(m/z) nodes in the 2-dimensional topology tree must be 
updated [7]. We will typically balance the two portions of the bound by 
letting z =rm to achieve an overall 0( fo) bound. 

3 Dantzig's Rule 

Given a tree-structured flow (T, L, U), Dantzig's rule for the network simplex 
minimum cost flow algorithm selects that edge e E L U U for which the 
directed cost of the circuit induced by e in T, in the direction along which 
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e is not already saturated, is as negative as possible. If e is in L we look for 
the cost of augmenting flow through e and then back from its head to its 
tail along the path in T connecting them. If e is in U we look for the cost of 
augmenting flow backwards through e and forwards through the path in T. 

We keep a restricted multi-level partition of T, and a corresponding two­
dimensional topology tree. For each cluster at each level of the partition 
we store the distance (directed sum of edge costs) between the two possible 
points by which it can connect to the rest of T. We choose one such endpoint 
as a reference point for the cluster For each edge in LU U, we keep track of 
the distance to the reference point in the two basic clusters it connects. 

The two-dimensional topology tree for T contains a node N o:f3 for ea.ch 
pair of clusters a and f3 in a given level of the partition. First consider 
the case that a and f3 differ. For each such node we store a single a.re 
chosen among all arcs in L connecting from a to /3, and among all arcs 
in U connecting from f3 to a. Among all such a.res, we choose the one 
for minimizing the total cost of the path through that arc connecting the 
reference points of the clusters, and store along with that arc the cost of the 
path. Such an arc must clearly also have been chosen at the next lower level 
of the topology tree, so there are 0(1) candidate arcs to chose from at each 
non-basic level of the topology tree. For each candidates compute the path 
cost in constant time, by combining a similar cost at the next lower level 
with 0(1) distances between lower-level cluster endpoints. 

In the other case, a = (3. We then choose a single arc, inducing the 
minimum cost circuit within the cluster, and store with it the cost of the 
circuit. Either this circuit is entirely contained in one of the clusters at the 
next lower level, or the chosen arc connects two such clusters. In either case 
we can again choose the arc in constant time from the information stored 
at the next lower level. 

The pivot chosen by Dantzig's rule is then simply the arc chosen by the 
node at the root of the 2-dimensiona.l topology tree. 

Theorem 1. In the network simplex a.lgorithm for minimum cost flow, we 
can select a pivot according to Dantzig's rule, perform the pivot, and update 
our data. structures for the next pivot, in 0( ;rn) time. 

Proof: The pivot can be determined in constant time from the data 
structure we described. We now describe how to perform the pivot. The 
first thing that must be done is to determine the saturated edge of T that is 
replaced by the pivot edge. This can be done in time O(log n) per pivot using 
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the dynamic tree data structure of Sleator and Tarjan [8, 12], or alternatively 
in time O(m112

) using our tree partition data structure. 
Once we have determined the swap made in T by the pivot, we must 

update the data structures used to find the next pivot. As seen in the 
previous section, the restricted partition and topology tree take 0( Vm) time 
to update. The arcs chosen at higher levels of the 2-dimensional topology 
tree can be updated after a change in time 0(1) per affected node, or 0( Vm) 
total. The information stored in each arc about the distances to basic node 
vertices can be updated in 0( Vm) time, as can the information stored in 
each basic cluster about distances between endpoints. The endpoint distance 
at each higher level can be computed in constant time. The total number 
of candidate edges among leaf nodes of the 2-dimensional topology tree is 
0( Vm), since each such edge is in one of the 0(1) basic clusters affected 
by an update, so all such nodes can select their minimum cost arcs in total 
time 0 ( Vm); this bound also holds for propagating these selections to higher 
levels of the tree. D 

4 Candidate List Rule 

The candidate list pivot rule [1, 9] speeds up Dantzig's rule by reducing 
the number of edges that must be selected among. It operates in major and 
minor cycles. Every major cycle, a certain number k of candidate pivot edges 
in LUU are selected. Then the algorithm performs a series of minor cycles, 
each consisting of a pivot by the least cost circuit induced by a candidate 
edge. When no such pivots are possible, a new major cycle begins. 

We ignore the cost of a major cycle, and concentrate on the minor cycles. 
A naive implementation of this rule takes time 0( k + n) per minor cycle: 
O(k) to select a pivot, and O(n) to update the tree indices used to select 
the next pivot. This can be sped up further, to O(k), by observing that, 
within each major cycle, we can reduce the problem to one on a graph with 
O(k) edges and vertices, by ignoring the non-candidate edges in LUU, and 
contracting certain edges in T. More specifically, at most 2k vertices in T 
are adjacent to candidate edges. So T consists of at most 2k - 1 paths 
between these vertices, together with a number of side trees not connecting 
any candidate vertices. All edges in such side trees, and all but the edge of 
smallest residual capacity in each direction of each path, will remain in T for 
the duration of the algorithm and can safely be contracted. This contraction 
can be performed in time 0( n + k) per major cycle, which would typically 
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be dominated by the cost of finding the candidate list. 
In the contracted graph, the pivots performed are those of Dantzig's rule 

or a slight modification thereof, and can be performed naively in 0( k ). But 
our algorithm of Theorem 1 applies to give the following improvement: 

Theorem 2. In the network simplex algorithm for minimum cost flow, we 
can select and perform each pivot according to the candidate list rule, m 
0( Vk) time per minor cycle. 

If we (heuristically) assume that n( k) pivots are performed per major 
cycle, a good choice would be to let k = 0( m 213 ). The average time to select 
candidates in each major cycle would be O(m113 ) per pivot, balancing the 
time to perform pivots in each minor cycle. With similar assumptions, a 
pivot strategy with more than two levels of cycles could do even better. 
For example, in each cycle one might pick half the cycle's candidate edges 
as candidates for a lower-level cycle in a contracted graph, recursing until 
the graph has constant size. For a similar algorithm of repeated recursive 
selection and contraction (for a different problem, but with provable worst 
case time bounds) see [4]. 

5 Dual Network Simplex 

We next consider the dual network simplex algorithm, a version of which 
was shown by Plotkin and Tardos [10] to run in strongly polynomial time. 
In the minimum cost flow dual simplex algorithm, a basis consists of a tree­
structured flow which satisfies certain cost optimality conditions, but which 
may violate ca.pa.city constraints on arcs in T. An arc is infeasible if its 
capacity constraint is violated. A pivot consists of selecting an infeasible 
a.re, and making it feasible by pushing flow around a cycle containing that 
a.re. The cycle is chosen to be induced by a replacement arc for which the 
total cycle cost is minimum. 

Thus duality reverses the roles of pivot selection and execution. Pivot 
selection (e.g. of the most infeasible arc) can be performed quickly with 
a dynamic tree data structure [12], but pivot execution requires finding an 
optimal arc in L U U. 

\Ve use essentially the same data structure as that for Dantzig's rule. For 
ea.ch pair of cluster endpoints we keep the candidate replacement arc that 
w011 ld be optimal if the pivot a.re were on a pa.th in T connecting those two 
endpoints, together with the cost of the portion of the induced cycle that 
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would be within the two clusters. To perform a pivot, we split 0(1) clusters 
per level of the multi-level partition so that each endpoint of the pivot arc is 
alone in a trivial cluster. At the top level, there will be four clusters, the two 
trivial ones and two larger ones on each side of the cut formed by removing 
the pivot arc from T. We merge each trivial cluster with the corresponding 
larger cluster and update the 2-dimensional topology tree. The. desired arc 
will be chosen by the node in the 2-dimensional topology tree corresponding 
to the remaining top level pair of clusters. 

Theorem 3. In the dual network simplex algorithm for minimum cost 
flow, we can execute a given pivot and update our data structures for the 
next pivot, in 0( yTii) time. 

In particular this applies in Plotkin and Tardos' [10] algorithm for the 
transshipment problem (which they also use to solve the minimum cost flow 
problem). In this problem, there are flow demands at each vertex but no 
capacity constraints. The basis has a certain amount of flow on each tree 
arc, and no flow on other arcs. Infeasible arcs are those for which the 
total flow demand across the corresponding cut has not been met. Again, 
some such arc is selected as a pivot and we execute the pivot by finding 
the minimum cost induced cycle containing the pivot arc. In Plotkin and 
Ta.rdos' algorithm, a pivot arc must be selected in some subtree of T, but 
this is still straightforward with a dynamic tree data structure. Thus we 
can select and execute each pivot of their algorithm in time 0( yTii). The 
fact that G' has more vertices than G does not affect Plotkin and Tardos' 
0( mn log n) bound on the number of pivots, as we can perform the dual 
network simplex algorithm in G directly using the data structure in G' only 
to determine the replacement arc in each pivot. 

6 Generalized Flow 

We now return to pivot selection in the primal network simplex algorithm. 
We consider a more complicated flow problem, that of generalized flow in 
which the goal is to find a flow of minimum cost in a network for which 
each arc has three parameters: cost and capacity as before, but also a factor 
by which flow through the arc is multiplied. We use the network simplex 
formulation in [1]. A basis consists of a flow on arcs partitioned as before 
into three sets (T, L, U). L and U are as before but T now consists of arcs 
forming a spanning pseudo-forest, that is a graph such that each component 
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consists of a tree and a single additional edge inducing a cycle in the tree. 
We can expand the flow around such a cycle by pushing it one way, and 
contract the flow by pushing it the other way. 

A pivot consists of an edge in L or U. If the pivot connects two com­
ponents of the pseudoforest we can generate flow in the cycle from one 
component and absorb the flow in the cycle from the other component until 
some edge is saturated. We add the pivot edge to T and remove the sat­
urated edge, producing another pseudoforest. Similarly if the pivot is in a 
single component, there will now be two cycles in that component, and we 
can pass flow from one to another until an edge is saturated. The total cost 
improvement of the pivot is the cost to generate flow at one endpoint of the 
pivot arc, the cost of the arc itself, and the cost to absorb flow multiplied 
by the flow multiplier of the arc. We wish to find some arc for which this 
cost is negative or (as in Dantzig's rule) for which the cost is minimum. 

The fact that we are using pseudoforests instead of trees is not a major 
concern for the clustering method, nor for the dynamic trees used to execute 
each pivot. The difficulty stems rather from the fact that the choice of the 
optimal pivot arc connecting any two clusters cannot be determined from 
information internal to the two clusters, but depends also on the cost to 
absorb flow in the second cluster, which can be determined by parts of the 
pseudoforest far from the cluster itself. Therefore we cannot choose a single 
optimal arc per node in a 2-dimensional topology tree. 

Instead we use a single-level partition of the pseudo-forest, into 0( m 113 ) 

clusters of 0( m 213
) vertices each. There may also be a number of compo­

nents with fewer than 0( ni213 ) vertices each; these must be treated slightly 
differently. For each pair of clusters, we keep a data structure that can de­
termine quickly the best pivot arc. After each update we query all 0( m213 ) 

such data structures to determine the overall best pivot. 
For each arc connecting each pair of clusters we compute three values: 

first, the total cost c of the path through the arc connecting the reference 
points of the two clusters, measured per unit of flow at the arc; second, 
the flow multiplier µ1 of the path from the first reference point to the arc; 
and third, the flow multiplier µ2 of the path through the arc to the second 
reference point. When we wish to determine the best pivot among all a.res 
connecting a given pair of clusters, we first determine the cost g of generating 
flow at the reference point of the first cluster, and the cost a of absorbing 
flow at the reference point of the second cluster. The total cost of a pivot 
with para.meters ( c, µ1, p 2 ), is then g / µ1 + c + a1t2. This is a linear function 
of c, 1/!ti, and /L 2 so we can find the pivot with least total cost by finding an 
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ext rem um of the convex hull of the points ( c, 1 / µ 1 , µ 2 ) in Euclidean space 
using a point location algorithm. 

To handle the possibility of many small pseudo-forest components, we 
also group these into clusters. For each cluster we introduce an artificial 
reference point for which the cost of generating or absorbing flow is unity, 
connected to a point in each component by a zero cost edge with an appro­
priate flow multiplication factor'. 

Theorem 4. In the network simplex algorithm for generalized flow, we 
can select the minimum cost pivot, perform the pivot, and update our data 
structures for the next pivot, in 0( m213 log n) time. 

Proof: The clustering itself can be updated in 0( m213
) time. After each 

update we must compute convex hulls in a collection of point sets with total 
cardinality 0( m 213), and perform point locations in 0( m213 ) hulls. Pivot 
execution takes O(log n) time with a dynamic tree data structure. D 

A simpler algorithm with planar convex hulls can be used if we measure 
pivot costs per unit flow at the clusters' reference points. 

7 Greedy Pivot Rule 

In previous sections we chose a pivot with minimum cost per unit flow. 
Although th'is works well for minimum cost flow, we had some definitional 
difficulty with generalized flow because the amount of flow in a given pivot 
differs from edge to edge of the network. 

As an alternate pivot selection rule, we now consider the greedy pivot rule: 
find the pivot with minimum total cost, taking into account the amount of 
flow. As with generalized flow, the best pivot connecting a pair of clus­
ters will depend on factors external to the cluster, so we will again use a 
single-level partition. We use the ambivalent data structure technique of 
Frederickson [7]: Rather than keeping a data structure per cluster pair, as 
in the previous section, we instead keep a data structure for each pair of 
vertices connecting clusters to the rest of T, which will be used to deter­
mine the best arc whenever the path in T connecting the two clusters goes 
through those two vertices. 

We start with the minimum cost flow network simplex algorithm. There 
are at most two vertices connecting each cluster to the rest of T, so there 
are four possible combinations of such vertices. We treat each combination 
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separately. Thus we can fix a reference point in each cluster through which 
the path to the other cluster is assumed to pass. Suppose we wish to pivot 
by some given arc, connecting a pair of clusters. Let Ci be the cost of the 
path through the arc, ending at the two reference points, and let ri be the 
minimum remaining capacity on any edge in that path. Let ex be the cost 
of the path in T connecting the two clusters, and let rx be the minimum 
remaining capacity on any edge in that pa.th. Then the total cost of the 
pivot is simply (ci +ex) min( Ti, Tx)· We maintain a data structure that can 
find the pivot minimizing this value, among all arcs in LUU connecting the 
two clusters. The values of Ci and Ti will be known when we construct the 
data structure, and the values of Cx and Tx will be known when we query it. 

We find the minimum value of (ci +ex) min( Ti, Tx) in three steps. First, 
we determine those arcs for which Ti ~ Tx; for such arcs, we must merely 
minimize Ci. Second, among the remaining arcs, we minimize (ci + cx)Ti. 
This is a linear function of CiTi and of Ti a.lone, so it can be minimized 
by a binary search on the convex hull of the planar point set formed by 
ta.king a point (Ci Ti, Ti) for each potential pivot arc. Third, we compare 
the two values found in the first two steps, and choose the smaller of the 
two. We can perform these steps with a data structure formed a.s follows. 
Consider adding the points ( CiTi, Ti) to a convex hull data structure, one at 
a time, point i at time t = Ti, and simultaneously removing the points from 
a priority queue keyed by value of Ci. If we could recover the data structure 
as it existed at time t = T x, we could use the priority queue to perform the 
first step and the convex hull to perform the second step. But this recovery 
in the data structure history can be done using persistent data structure 
techniques [3]. Thus we can build in time 0( n log n) a data structure that 
can minimize (Ci+ Cx) min( Ti, Tx) in O(log n) time per query. 

Theorem 5. In tlie network simplex algoritl1m for minimum cost flow, 
we ca.11 select a pivot a.ccording to tlie greedy rule, perform tlie pivot, and 
update our data structures for the next pivot, in 0( m 213 log n) time. 

For generalized flows, the situation is more complicated: the cost of a 
pivot is a function of the costs of the edges within the cluster, the multi­
plication factors of those edges, the residual capacities of those edges, and 
several external factors. The capacity may be limited by edges external to 
the duster, by edges within the cluster but not on a flow-genera.ting cycle, 
or by edges on a flow-generating cycle. One must consider separate cases 
for pivots connecting two components of the pseudo-forest, and pivots con­
necting two points in the same component. The possibility of many small 
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components again gives rise to further difficulty. It seems likely that the 
type of capacity limiting edge can be determined in polylogarithmic time 
by orthogonal range searching techniques, after which the total cost could 
be computed using three-dimensional convex hull techniques applied to an 
appropriate formula linear in at most three terms specific to the pivot and 
depending on a number of other terms which are fixed per cluster pair. If 
so, it seems one should be able to compute greedy generalized flow pivots in 
time 0( m 213 logO(l) n ). However we have not worked out the details of such 
a.n algorithm. 
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