
UC Irvine
ICS Technical Reports

Title
Clustering for faster network simplex pivots

Permalink
https://escholarship.org/uc/item/4x82k6zw

Author
Eppstein, David

Publication Date
1993-04-15

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4x82k6zw
https://escholarship.org
http://www.cdlib.org/

Clustering for Faster Network Simplex Pivots
~

David Eppstei:g_*
,::::;::::::::;. ~~-

Department of Information and Computer Science
University of California, Irvine, CA 92717

Tech. Report 93-19

April 15, 1993

Abstract

We show how to use tree clustering techniques to improve the time
bounds for optimal pivot selection in the primal network simplex algo­
rithm for minimum cost fl.ow, and for pivot execution in the dual net­
work simplex algorithm for the same problem, from 0(m) to 0(Viii)
per pivot. Our techniques can also speed up network simplex algo­
rithms for generalized flow, shortest paths with negative edges, maxi­
mum flow, the assignment problem, and the transshipment problem.

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

*Work supported in part by NSF grant CCR-9258355.

0?'1
(~,

1 Introduction

Many of the problems in graph and network optimization, including shortest
paths, minimum spanning trees, and matchings, are subsumed in the topic of
network flows. The literature on this subject is enormous, comprising many
books and hundreds of journal articles. For a recent survey on network flow,
see the comprehensive text by Ahuja, Magnanti, and Orlin (1].

Although polynomial time combinatorial algorithms are known for many
types of flow problem, a commonly used alternate method for solving these
problems is provided by the network simplex algorithm [2], a specialization
of the simplex method from linear programming. Polynomial bounds are
known for variants of this algorithm (e.g. see (8, 10]) but these bounds are
generally asymptotically larger than those of the combinatorial algorithms
(or of interior point linear programming algorithms (13]). Nevertheless net­
work simplex remains an important practical alternative [1, 10], apparently
because its running time in practice is smaller than the theoretical bound.

As in the standard linear programming simplex algorithm, network sim­
plex maintains a feasible solution known as a basis, which is gradually im­
proved in small steps known as pivots until optimality is reached. For the
minimum cost flow problem, the basis is a flow satisfying all capacity con­
straints, and having the following tree-like structure: the arcs of the network
are partitioned into three subsets (T, L, U). No flow passes across any arc in
L. Each arc in U carries flow exactly equal to its capacity. The remaining
arcs, in T, form an (undirected) spanning forest of the network. The flows
on these a.res are within the capacities of the arcs, but are not necessarily
a.t the upper or lower limits of those capacities. Since T has no circuits, the
flows on its a.res can be m1iquely determined fr~om the partition (T, L, U). A
pivot consists of findii1g 'a {1ega.tiv~-cost circuit induced in T by an a.re a in
L or U, a.nd passing flow,a.rouil,d tha.~ Circuit until some arc is saturated and
no more flow is The saturated arc is placed 'either in L or U and a is added
to T. If there are multiple 'satu~·k.ted a~·cs an appropriate tie-breaking rule is
used. This results in a new flo;w of the same form, and the process repeats.

It is a fundamental theorem of the network simplex method that for
any minimum cost flow problem there is an optimal solution having the
tree structure described, a.nd that the method described above will always
terminate with an optimal solution.

The time taken by the network simplex method is simply the number of
pivots made, multiplied by the average time per pivot. However a.tea.ch step
there may be many possible pivots to make, and the number of pivots will

1

provide an improvement, from 0(m) to 0(v'ffi) time per pivot. We thus
reduce Plotkin and Tardos' bounds of O(m2nlog n) for the transshipment
problem, and 0(m3 log n) for the min cost flow problem, to 0(m 312n log n)
and 0(m 512 log n) respectively.

We finally discuss an even more inclusive network simplex problem, gen­
eralized flow. The bases now consist of pseudo-forests rather than trees, but
clustering can still apply to such structures. However it is less easy to use
clustering to determine the optimal pivot, or even to find a possible pivot.
We describe a method that combines clustering with a geometric convex
hull algorithm to achieve bounds of 0(n213 log n) per pivot, with a pivot se­
lection rule that appropriately generalizes Dantzig's rule. A similar bound
holds for selecting the pivot that achieves the maximum total decrease in
overall cost, both for minimum cost flow and for generalized flow.

2 Clustering

Our algorithms use a technique of partitioning trees into smaller subtrees,
or clusters of vertices introduced by Frederickson (6, 7].

We first transform the graph G into a new graph G' with degree at most
three, so any tree in G' is binary. Let v be any edge of degree ~ > 3;
replace v by ~ - 2 vertices connected by a path. Path endpoints receive two
of the original edges of v, and each interior vertex receives one. Path edges
have infinite bidirectional capacity and zero cost. Flows in G' correspond
one-for-one with flows in G. All path edges will be included in T when we
begin the simplex algorithm; they can never be saturated and so remain in
T. Any network simplex algorithm on G' can be interpreted as a network
simplex algorithm on G, and we can use our data structure on G' to choose
and perform pivots for a network simplex algorithm running directly on G.

Definition 1 (Frederickson [7]). A restricted partition of order z with
respect to a. binary tree T is a. partition of t11e vertices of V such tha.t:

1. Ea.ch set in the partition contains a.t most z vertices.

2. Ea.ch set in the partition induces a. connected subtree of T .

.'3. For ea.ch set 8 in the partition, if 8 contains more tha.n one vertex,
tl1en there a.re a.t most two tree edges having one endpoint in 8.

4. No two sets ca.n be combined and still sa.tisfy the otl1er conditions.

3

depend to a large extent on these choices. Many pivoting rules have been
suggested, but one of the best in terms of its effect on the total number
of pivots [1] is also one of the simplest and earliest. Dantzig's pivot rule
chooses the induced circuit with the most negative total cost, ignoring the
amount of flow that can pass through it.

Unfortunately implementations of Dantzig's rule have been forced to test
all induced circuits every time a pivot is chosen. We can test each circuit in
constant time by using some simple vertex indices to measure the costs of
paths in T. But this still results in 0(m) time per pivot and (even though the
rule makes few pivots) a slow overall algorithm. Instead implementations of
the network simplex algorithm have resorted to simpler pivot rules such as
cyclically scanning the edges not in T, which tend to find pivots more quickly
(although the worst case bound per pivot may still be 0(m)), making up
for the increase in the number of pivots.

In this paper we show that a clustering technique developed by Freder­
ickson [6, 7] and applied in a variety of dynamic graph problems [.5, 6, 7, 11]
can be used to speed up Dantzig's rule for the network simplex algorithm.
We describe a method of implementing Dantzig's rule for which the time
per pivot is 0(y'm), improving the previous 0(m) bound.

To our knowledge this is the first sublinear time bound for pivot selection
in the network simplex algorithm. For some pivot rules known bounds on to­
tal time and on pivots were within o(m) of each other, but we wish to instead
bound the time per pivot so that if fewer than expected pivots are made the
improvement will still exist. Perhaps with our improvement Dantzig's rule
will again be competitive with other network simplex methods.

Our technique extends to other pivot rules, including the candidate list
method which generalizes both cyclic scanning and Dantzig's rule. Clearly it
also applies to applications of the network simplex method in special cases
of minimum cost flow, including shortest path trees, maximum flows, the
assignment problem, and the transshipment problem.

We describe an extension of our technique to the dual network simplex
method, applied by Plotkin and Tardos in a strongly polynomial algorithm
for the transshipment problem and for minimum cost flows [10]. In the dual
simplex method the basis is a flow that is in some sense optimal but may not
be feasible, again having a tree-like structure. Each pivot reduces the flow
on some arc to the capacity of that arc. For this method the infeasible arcs
on which to pivot are easier to find, and pivot selection is less of a problem.
The difficulty is now finding the optimal circuit containing a tree arc, in
which to perform the desired pivot. For this problem, also, clustering can

2

Such a partition can easily be found in linear time. There are at most
O(n/ z) sets in a restricted partition of an n-vertex tree. If we change the
tree by removing an edge and adding a new one, we can update the restricted
partition in time O(z) by splitting and re-merging 0(1) partition sets [7].

Definition 2 (Frederickson [7]). A restricted multi-level partition of or­
der z is a sequence of partitions having the following properties.

1. The finest partition in the sequence is a restricted partition of order
z; its partition sets are known as basic clusters.

2. Each successive partition is a restricted partition of order 2 of tl1e tree
formed by contracting the clusters in the previous partition.

3. In the coarsest partition a single cluster contains all vertices.

A restricted multi-level partition has O(log n) levels. Each cluster in
the partition is divided into at most two clusters in the next lower level of
the partition, so we can define a binary topology tree giving the inclusion
relations between clusters on adjacent levels. For any swap in the tree, we
can update the multi-level partition and its topology tree by updating the
basic clusters, and then merging and splitting 0(1) clusters at each higher
level, in total time 0(z +log n) [7].

Definition 3 (Frederickson [7]). A 2-dimensional topology tree consists
of a node for every pair of clusters at the same level of a restricted multi-level
partition. The children of each node are pairs of clusters at tlie next lower
level that are contained in the clusters corresponding to the node.

The 2-dimensional topology tree can be updated in O(z+ m/ z) time per
change in the underlying tree, since the partition itself takes 0 (z + log n)
time and since O(m/z) nodes in the 2-dimensional topology tree must be
updated [7]. We will typically balance the two portions of the bound by
letting z =rm to achieve an overall 0(fo) bound.

3 Dantzig's Rule

Given a tree-structured flow (T, L, U), Dantzig's rule for the network simplex
minimum cost flow algorithm selects that edge e E L U U for which the
directed cost of the circuit induced by e in T, in the direction along which

4

e is not already saturated, is as negative as possible. If e is in L we look for
the cost of augmenting flow through e and then back from its head to its
tail along the path in T connecting them. If e is in U we look for the cost of
augmenting flow backwards through e and forwards through the path in T.

We keep a restricted multi-level partition of T, and a corresponding two­
dimensional topology tree. For each cluster at each level of the partition
we store the distance (directed sum of edge costs) between the two possible
points by which it can connect to the rest of T. We choose one such endpoint
as a reference point for the cluster For each edge in LU U, we keep track of
the distance to the reference point in the two basic clusters it connects.

The two-dimensional topology tree for T contains a node N o:f3 for ea.ch
pair of clusters a and f3 in a given level of the partition. First consider
the case that a and f3 differ. For each such node we store a single a.re
chosen among all arcs in L connecting from a to /3, and among all arcs
in U connecting from f3 to a. Among all such a.res, we choose the one
for minimizing the total cost of the path through that arc connecting the
reference points of the clusters, and store along with that arc the cost of the
path. Such an arc must clearly also have been chosen at the next lower level
of the topology tree, so there are 0(1) candidate arcs to chose from at each
non-basic level of the topology tree. For each candidates compute the path
cost in constant time, by combining a similar cost at the next lower level
with 0(1) distances between lower-level cluster endpoints.

In the other case, a = (3. We then choose a single arc, inducing the
minimum cost circuit within the cluster, and store with it the cost of the
circuit. Either this circuit is entirely contained in one of the clusters at the
next lower level, or the chosen arc connects two such clusters. In either case
we can again choose the arc in constant time from the information stored
at the next lower level.

The pivot chosen by Dantzig's rule is then simply the arc chosen by the
node at the root of the 2-dimensiona.l topology tree.

Theorem 1. In the network simplex a.lgorithm for minimum cost flow, we
can select a pivot according to Dantzig's rule, perform the pivot, and update
our data. structures for the next pivot, in 0(;rn) time.

Proof: The pivot can be determined in constant time from the data
structure we described. We now describe how to perform the pivot. The
first thing that must be done is to determine the saturated edge of T that is
replaced by the pivot edge. This can be done in time O(log n) per pivot using

5

the dynamic tree data structure of Sleator and Tarjan [8, 12], or alternatively
in time O(m112

) using our tree partition data structure.
Once we have determined the swap made in T by the pivot, we must

update the data structures used to find the next pivot. As seen in the
previous section, the restricted partition and topology tree take 0(Vm) time
to update. The arcs chosen at higher levels of the 2-dimensional topology
tree can be updated after a change in time 0(1) per affected node, or 0(Vm)
total. The information stored in each arc about the distances to basic node
vertices can be updated in 0(Vm) time, as can the information stored in
each basic cluster about distances between endpoints. The endpoint distance
at each higher level can be computed in constant time. The total number
of candidate edges among leaf nodes of the 2-dimensional topology tree is
0(Vm), since each such edge is in one of the 0(1) basic clusters affected
by an update, so all such nodes can select their minimum cost arcs in total
time 0 (Vm); this bound also holds for propagating these selections to higher
levels of the tree. D

4 Candidate List Rule

The candidate list pivot rule [1, 9] speeds up Dantzig's rule by reducing
the number of edges that must be selected among. It operates in major and
minor cycles. Every major cycle, a certain number k of candidate pivot edges
in LUU are selected. Then the algorithm performs a series of minor cycles,
each consisting of a pivot by the least cost circuit induced by a candidate
edge. When no such pivots are possible, a new major cycle begins.

We ignore the cost of a major cycle, and concentrate on the minor cycles.
A naive implementation of this rule takes time 0(k + n) per minor cycle:
O(k) to select a pivot, and O(n) to update the tree indices used to select
the next pivot. This can be sped up further, to O(k), by observing that,
within each major cycle, we can reduce the problem to one on a graph with
O(k) edges and vertices, by ignoring the non-candidate edges in LUU, and
contracting certain edges in T. More specifically, at most 2k vertices in T
are adjacent to candidate edges. So T consists of at most 2k - 1 paths
between these vertices, together with a number of side trees not connecting
any candidate vertices. All edges in such side trees, and all but the edge of
smallest residual capacity in each direction of each path, will remain in T for
the duration of the algorithm and can safely be contracted. This contraction
can be performed in time 0(n + k) per major cycle, which would typically

6

be dominated by the cost of finding the candidate list.
In the contracted graph, the pivots performed are those of Dantzig's rule

or a slight modification thereof, and can be performed naively in 0(k). But
our algorithm of Theorem 1 applies to give the following improvement:

Theorem 2. In the network simplex algorithm for minimum cost flow, we
can select and perform each pivot according to the candidate list rule, m
0(Vk) time per minor cycle.

If we (heuristically) assume that n(k) pivots are performed per major
cycle, a good choice would be to let k = 0(m 213). The average time to select
candidates in each major cycle would be O(m113) per pivot, balancing the
time to perform pivots in each minor cycle. With similar assumptions, a
pivot strategy with more than two levels of cycles could do even better.
For example, in each cycle one might pick half the cycle's candidate edges
as candidates for a lower-level cycle in a contracted graph, recursing until
the graph has constant size. For a similar algorithm of repeated recursive
selection and contraction (for a different problem, but with provable worst
case time bounds) see [4].

5 Dual Network Simplex

We next consider the dual network simplex algorithm, a version of which
was shown by Plotkin and Tardos [10] to run in strongly polynomial time.
In the minimum cost flow dual simplex algorithm, a basis consists of a tree­
structured flow which satisfies certain cost optimality conditions, but which
may violate ca.pa.city constraints on arcs in T. An arc is infeasible if its
capacity constraint is violated. A pivot consists of selecting an infeasible
a.re, and making it feasible by pushing flow around a cycle containing that
a.re. The cycle is chosen to be induced by a replacement arc for which the
total cycle cost is minimum.

Thus duality reverses the roles of pivot selection and execution. Pivot
selection (e.g. of the most infeasible arc) can be performed quickly with
a dynamic tree data structure [12], but pivot execution requires finding an
optimal arc in L U U.

\Ve use essentially the same data structure as that for Dantzig's rule. For
ea.ch pair of cluster endpoints we keep the candidate replacement arc that
w011 ld be optimal if the pivot a.re were on a pa.th in T connecting those two
endpoints, together with the cost of the portion of the induced cycle that

7

would be within the two clusters. To perform a pivot, we split 0(1) clusters
per level of the multi-level partition so that each endpoint of the pivot arc is
alone in a trivial cluster. At the top level, there will be four clusters, the two
trivial ones and two larger ones on each side of the cut formed by removing
the pivot arc from T. We merge each trivial cluster with the corresponding
larger cluster and update the 2-dimensional topology tree. The. desired arc
will be chosen by the node in the 2-dimensional topology tree corresponding
to the remaining top level pair of clusters.

Theorem 3. In the dual network simplex algorithm for minimum cost
flow, we can execute a given pivot and update our data structures for the
next pivot, in 0(yTii) time.

In particular this applies in Plotkin and Tardos' [10] algorithm for the
transshipment problem (which they also use to solve the minimum cost flow
problem). In this problem, there are flow demands at each vertex but no
capacity constraints. The basis has a certain amount of flow on each tree
arc, and no flow on other arcs. Infeasible arcs are those for which the
total flow demand across the corresponding cut has not been met. Again,
some such arc is selected as a pivot and we execute the pivot by finding
the minimum cost induced cycle containing the pivot arc. In Plotkin and
Ta.rdos' algorithm, a pivot arc must be selected in some subtree of T, but
this is still straightforward with a dynamic tree data structure. Thus we
can select and execute each pivot of their algorithm in time 0(yTii). The
fact that G' has more vertices than G does not affect Plotkin and Tardos'
0(mn log n) bound on the number of pivots, as we can perform the dual
network simplex algorithm in G directly using the data structure in G' only
to determine the replacement arc in each pivot.

6 Generalized Flow

We now return to pivot selection in the primal network simplex algorithm.
We consider a more complicated flow problem, that of generalized flow in
which the goal is to find a flow of minimum cost in a network for which
each arc has three parameters: cost and capacity as before, but also a factor
by which flow through the arc is multiplied. We use the network simplex
formulation in [1]. A basis consists of a flow on arcs partitioned as before
into three sets (T, L, U). L and U are as before but T now consists of arcs
forming a spanning pseudo-forest, that is a graph such that each component

8

consists of a tree and a single additional edge inducing a cycle in the tree.
We can expand the flow around such a cycle by pushing it one way, and
contract the flow by pushing it the other way.

A pivot consists of an edge in L or U. If the pivot connects two com­
ponents of the pseudoforest we can generate flow in the cycle from one
component and absorb the flow in the cycle from the other component until
some edge is saturated. We add the pivot edge to T and remove the sat­
urated edge, producing another pseudoforest. Similarly if the pivot is in a
single component, there will now be two cycles in that component, and we
can pass flow from one to another until an edge is saturated. The total cost
improvement of the pivot is the cost to generate flow at one endpoint of the
pivot arc, the cost of the arc itself, and the cost to absorb flow multiplied
by the flow multiplier of the arc. We wish to find some arc for which this
cost is negative or (as in Dantzig's rule) for which the cost is minimum.

The fact that we are using pseudoforests instead of trees is not a major
concern for the clustering method, nor for the dynamic trees used to execute
each pivot. The difficulty stems rather from the fact that the choice of the
optimal pivot arc connecting any two clusters cannot be determined from
information internal to the two clusters, but depends also on the cost to
absorb flow in the second cluster, which can be determined by parts of the
pseudoforest far from the cluster itself. Therefore we cannot choose a single
optimal arc per node in a 2-dimensional topology tree.

Instead we use a single-level partition of the pseudo-forest, into 0(m 113)

clusters of 0(m 213
) vertices each. There may also be a number of compo­

nents with fewer than 0(ni213) vertices each; these must be treated slightly
differently. For each pair of clusters, we keep a data structure that can de­
termine quickly the best pivot arc. After each update we query all 0(m213)

such data structures to determine the overall best pivot.
For each arc connecting each pair of clusters we compute three values:

first, the total cost c of the path through the arc connecting the reference
points of the two clusters, measured per unit of flow at the arc; second,
the flow multiplier µ1 of the path from the first reference point to the arc;
and third, the flow multiplier µ2 of the path through the arc to the second
reference point. When we wish to determine the best pivot among all a.res
connecting a given pair of clusters, we first determine the cost g of generating
flow at the reference point of the first cluster, and the cost a of absorbing
flow at the reference point of the second cluster. The total cost of a pivot
with para.meters (c, µ1, p 2), is then g / µ1 + c + a1t2. This is a linear function
of c, 1/!ti, and /L 2 so we can find the pivot with least total cost by finding an

9

ext rem um of the convex hull of the points (c, 1 / µ 1 , µ 2) in Euclidean space
using a point location algorithm.

To handle the possibility of many small pseudo-forest components, we
also group these into clusters. For each cluster we introduce an artificial
reference point for which the cost of generating or absorbing flow is unity,
connected to a point in each component by a zero cost edge with an appro­
priate flow multiplication factor'.

Theorem 4. In the network simplex algorithm for generalized flow, we
can select the minimum cost pivot, perform the pivot, and update our data
structures for the next pivot, in 0(m213 log n) time.

Proof: The clustering itself can be updated in 0(m213
) time. After each

update we must compute convex hulls in a collection of point sets with total
cardinality 0(m 213), and perform point locations in 0(m213) hulls. Pivot
execution takes O(log n) time with a dynamic tree data structure. D

A simpler algorithm with planar convex hulls can be used if we measure
pivot costs per unit flow at the clusters' reference points.

7 Greedy Pivot Rule

In previous sections we chose a pivot with minimum cost per unit flow.
Although th'is works well for minimum cost flow, we had some definitional
difficulty with generalized flow because the amount of flow in a given pivot
differs from edge to edge of the network.

As an alternate pivot selection rule, we now consider the greedy pivot rule:
find the pivot with minimum total cost, taking into account the amount of
flow. As with generalized flow, the best pivot connecting a pair of clus­
ters will depend on factors external to the cluster, so we will again use a
single-level partition. We use the ambivalent data structure technique of
Frederickson [7]: Rather than keeping a data structure per cluster pair, as
in the previous section, we instead keep a data structure for each pair of
vertices connecting clusters to the rest of T, which will be used to deter­
mine the best arc whenever the path in T connecting the two clusters goes
through those two vertices.

We start with the minimum cost flow network simplex algorithm. There
are at most two vertices connecting each cluster to the rest of T, so there
are four possible combinations of such vertices. We treat each combination

10

separately. Thus we can fix a reference point in each cluster through which
the path to the other cluster is assumed to pass. Suppose we wish to pivot
by some given arc, connecting a pair of clusters. Let Ci be the cost of the
path through the arc, ending at the two reference points, and let ri be the
minimum remaining capacity on any edge in that path. Let ex be the cost
of the path in T connecting the two clusters, and let rx be the minimum
remaining capacity on any edge in that pa.th. Then the total cost of the
pivot is simply (ci +ex) min(Ti, Tx)· We maintain a data structure that can
find the pivot minimizing this value, among all arcs in LUU connecting the
two clusters. The values of Ci and Ti will be known when we construct the
data structure, and the values of Cx and Tx will be known when we query it.

We find the minimum value of (ci +ex) min(Ti, Tx) in three steps. First,
we determine those arcs for which Ti ~ Tx; for such arcs, we must merely
minimize Ci. Second, among the remaining arcs, we minimize (ci + cx)Ti.
This is a linear function of CiTi and of Ti a.lone, so it can be minimized
by a binary search on the convex hull of the planar point set formed by
ta.king a point (Ci Ti, Ti) for each potential pivot arc. Third, we compare
the two values found in the first two steps, and choose the smaller of the
two. We can perform these steps with a data structure formed a.s follows.
Consider adding the points (CiTi, Ti) to a convex hull data structure, one at
a time, point i at time t = Ti, and simultaneously removing the points from
a priority queue keyed by value of Ci. If we could recover the data structure
as it existed at time t = T x, we could use the priority queue to perform the
first step and the convex hull to perform the second step. But this recovery
in the data structure history can be done using persistent data structure
techniques [3]. Thus we can build in time 0(n log n) a data structure that
can minimize (Ci+ Cx) min(Ti, Tx) in O(log n) time per query.

Theorem 5. In tlie network simplex algoritl1m for minimum cost flow,
we ca.11 select a pivot a.ccording to tlie greedy rule, perform tlie pivot, and
update our data structures for the next pivot, in 0(m 213 log n) time.

For generalized flows, the situation is more complicated: the cost of a
pivot is a function of the costs of the edges within the cluster, the multi­
plication factors of those edges, the residual capacities of those edges, and
several external factors. The capacity may be limited by edges external to
the duster, by edges within the cluster but not on a flow-genera.ting cycle,
or by edges on a flow-generating cycle. One must consider separate cases
for pivots connecting two components of the pseudo-forest, and pivots con­
necting two points in the same component. The possibility of many small

11

components again gives rise to further difficulty. It seems likely that the
type of capacity limiting edge can be determined in polylogarithmic time
by orthogonal range searching techniques, after which the total cost could
be computed using three-dimensional convex hull techniques applied to an
appropriate formula linear in at most three terms specific to the pivot and
depending on a number of other terms which are fixed per cluster pair. If
so, it seems one should be able to compute greedy generalized flow pivots in
time 0(m 213 logO(l) n). However we have not worked out the details of such
a.n algorithm.

References

[1] R. K. Ahuja, T. L. Magnanti, and J.B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice Hall, 1993.

[2] G. B. Dantzig. Application of the simplex method to a transportation
problem. Activity Analysis and Production and Allocation, ed. T. C.
Koopmans. Wiley, 1951.

[3] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan. Making data
structures persistent. J. Comput. Syst. Sci. 38 (1989) 86-124.

[4] D. Eppstein. Offiine algorithms for dynamic minimum spanning tree
problems. 2nd Worksh. Algorithms and Data Structures. Springer
LNCS 519 (1991) 392-399.

[5] D. Eppstein, Z. Galil, G. F. Italiano, and A. Nissenzweig. Sparsifica­
tion, a technique for speeding up dynamic graph algorithms. 33rd IEEE
Symp. Foundations of Computer Science (1992) 60-69.

[6] G. N. Frederickson. Data structures for on-line updating of minimum
spanning trees. SIAM J. Comput. 14 (1985) 781-798.

[7] G. N. Frederickson. Ambivalent data structures for dynamic 2-edge­
connectivity and k smallest spanning trees. 32nd IEEE Symp. Founda­
tions of Computer Science (1991) 632-641.

[8] A. V. Goldberg, M. D. Grigoriadis, and R. E. Tarjan. Use of dynamic
trees in a network simplex algorithm for the maximum flow problem.
Mathenwtical Programming 50 (1991) 277-290.

12

[9) J. Mulvey. Pivot strategies for primal-simplex network codes. J. Assoc.
Comput. Mach. 25 (1978) 266-270.

[10) S. A. Plotkin and E. Tardos. Improved dual network simplex. 1st ACM­
SIAM Symp. Discrete Algorithms (1990) 367-376.

[11) M. Rauch. Fully dynamic biconnectivity in graphs. 33rd IEEE Symp.
Foundations of Computer Science (1992) 50-59.

[12) D. D. Sleator and R. E. Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci. 24 (1983) 362-381.

[13) P. M. Vaidya. Speeding up linear programming using fast matrix mul­
tiplication. 30th IEEE Symp. Foundations of Computer Science (1989)
332-337.

13

