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ABSTRACT
Motivation: Gene expression data clustering provides a
powerful tool for studying functional relationships of genes
in a biological process. Identifying correlated expression
patterns of genes represents the basic challenge in this
clustering problem.
Results: This paper describes a new framework for
representing a set of multi-dimensional gene expression
data as a Minimum Spanning Tree (MST), a concept from
the graph theory. A key property of this representation
is that each cluster of the expression data corresponds
to one subtree of the MST, which rigorously converts a
multi-dimensional clustering problem to a tree partitioning
problem. We have demonstrated that though the inter-data
relationship is greatly simplified in the MST representa-
tion, no essential information is lost for the purpose of
clustering. Two key advantages in representing a set of
multi-dimensional data as an MST are: (1) the simple
structure of a tree facilitates efficient implementations of
rigorous clustering algorithms, which otherwise are highly
computationally challenging; and (2) as an MST-based
clustering does not depend on detailed geometric shape
of a cluster, it can overcome many of the problems
faced by classical clustering algorithms. Based on the
MST representation, we have developed a number of
rigorous and efficient clustering algorithms, including two
with guaranteed global optimality. We have implemented
these algorithms as a computer software EXpression
data Clustering Analysis and VisualizATiOn Resource
(EXCAVATOR). To demonstrate its effectiveness, we
have tested it on three data sets, i.e. expression data
from yeast Saccharomyces cerevisiae, expression data in
response of human fibroblasts to serum, and Arabidopsis
expression data in response to chitin elicitation. The test
results are highly encouraging.
Availability: EXCAVATOR is available on request from the
authors.
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1 INTRODUCTION
As probably the most explosively expanding tool for
genome analysis, microchips of gene expression have
made it possible to simultaneously monitor the expression
levels of tens of thousands of genes under different
experimental conditions. This provides a powerful tool
for studying how genes collectively react to changes in
their environments, providing hints about the structures
of the involved gene networks. One of the basic problems
in interpreting the observed expression data is to cluster
genes with correlated expression patterns over some time
series and/or under different conditions.

A number of computer algorithms/software have been
developed for clustering gene expression patterns. The
most prevalent approaches include: (i) hierarchical clus-
tering (Eisen et al., 1998; Wen et al., 1998); (ii) K -means
clustering (Herwig et al., 1999); and (iii) clustering
through Self-Organizing Maps (SOMs; Tamayo et al.,
1999). While all these approaches have clearly demon-
strated their usefulness in applications (Sherlock, 2000),
some basic problems remain: (1) none of these algorithms
can, in general, rigorously guarantee to produce a globally
optimal clustering for any non-trivial objective function;
(2) both K -means and SOM heavily depend on the
‘regularity’ of the geometric shape of cluster boundaries;
they generally do not work well when the clusters cannot
be contained in some non-overlapping convex sets—just
to name a few. Figure 1a shows an example that none of
above algorithms generally do well.

Unlike a continuous optimization problem, finding a
globally optimal solution for a combinatorial optimization
problem is often possible. Consider the simple one-
dimensional (1D) optimization problem in Figure 2: we
want to cluster the nine data points into three groups so
that the total distance between each pair of adjacent points
of the same group is minimized. It should not be hard to
convince ourselves that by cutting the two longest lines
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Fig. 1. Two clustering problems. (a) A data set consists of three
clusters, each of which has a non-regular shape. (b) A data set of
three clusters contained in three non-overlapping rectangles.

Fig. 2. An example of clustering 1D data points. A three-way cut
between points 3 and 4 and between points 6 and 7 gives the optimal
solution to this clustering problem.

connecting two adjacent points, we will get a globally
optimal solution to this particular clustering problem.
Actually, the general 1D clustering problem of grouping
n data points into k clusters can be solved by finding the
k −1 connecting lines and cutting them. Can this approach
be generalized to multi-dimensional clustering problems?
This is the main question we will address in this paper.

We have developed a framework for representing a set
of multi-dimensional data as a Minimum Spanning Tree
(MST), a concept from the graph theory. A tree is a
simple structure for representing binary relationships, and
any connected component of a tree is called a subtree.
Through this MST representation, we can convert a multi-
dimensional clustering problem to a tree partitioning
problem, i.e. finding a particular set of tree edges (‘long’
edges from either local or global point of view) and then
cutting them. Representing a set of multi-dimensional data
points as a simple tree structure will clearly lose some of
the inter-data relationship. However we have rigorously
demonstrated that no essential information is lost for the
purpose of clustering. This is achieved through a rigorous
proof that each cluster corresponds to one subtree, which
does not overlap the representing subtree of any other
cluster. Hence a clustering problem is equivalent to a

problem of identifying these subtrees through solving a
tree partitioning problem. Because of the simplicity of a
tree structure, many tree-based optimization problems can
be solved efficiently in a similar but generalized fashion
to that of their corresponding 1D problems. We will
describe, in the following sections, a number of efficient
and rigorous tree-based clustering algorithms, some of
which have guaranteed global optimality.

In addition to being able to facilitate efficient clustering
algorithms, an MST representation also allows us to
deal with clustering problems that classical clustering
algorithms have problems with. As these algorithms rely
on either the idea of grouping data around some ‘centers’
or the idea of separating data points using some regular
geometric curve like a hyperplane, they generally do
not fare well when the boundaries of the clusters are
very complex (see Figure 1a). An MST, on the other
hand, is quite invariant to detailed geometric changes
in the boundaries of clusters. For example, the MST
representation of the data set of Figure 1b will be quite
stable even if we stretch the rectangular-shaped clusters
along different directions to make the data set look like
the one in Figure 1a as long as the relative distances
between clusters (versus the distances within a cluster)
do not change significantly. This implies that if our MST-
based clustering algorithms work well in the case of
Figure 1b, they should basically do equally well in the
seemingly more difficult case of Figure 1a. Hence the
shape complexity of a cluster has very little effect on the
performance of our MST-based clustering algorithms.

Based on the MST-representation, we have developed a
number of clustering algorithms. Each of these algorithms
finds the optimal clustering based on a different objective
function. For a simple case like the one in Figure 1a where
the inter-cluster distance is clearly larger than the intra-
cluster distance, a simple algorithm by finding and cutting
a set of long edges will solve the problem. For cases
where boundaries between clusters may not be very clear,
an objective function addressing more global properties
of a cluster may be needed. Three clustering algorithms
will be described. These algorithms, along with the MST
representation, have been implemented as a computer
program, called EXpression data Clustering Analysis and
VisualizATiOn Resource (EXCAVATOR).

Because of the computational efficiency of our cluster-
ing algorithms, we can check the optimal K -clustering for
many different K s, i.e. partitioning a data set into K clus-
ters. By examining how the clustering quality improves as
we use larger and larger K s, we should be able to detect
where the improvement levels off as K further increases.
This capability allows EXCAVATOR to select, for the
user, the most ‘natural’ number of clusters for a given
clustering problem. When clustering a set of expression
data, the user may have some a priori knowledge about
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which genes should or should not belong to the same
clusters. EXCAVATOR allows a user to specify this
type of information as clustering constraints, and it finds
optimal clustering results that are consistent with the
specified constraints.

MSTs have been used for data classification in the
field of pattern recognition (Duda and Hart, 1973) and
image processing (Gonzalez and Wintz, 1987; Xu and
Uberbacher, 1997; Xu et al., 1998). We have also seen
some limited applications in biological data analysis
(States et al., 1993). One popular form of these MST
applications is called the single-linkage cluster analysis
(Gower and Ross, 1969; Aho et al., 1974; Jain and Dubes,
1988; Mirkin, 1996). Our study on these methods has
led us to believe that all these applications have used the
MSTs in some heuristic ways, e.g. cutting long edges to
separate clusters, without fully exploring their power and
understanding their rich properties related to clustering. In
this paper, we will provide in-depth studies for MST-based
clustering. Our major contributions include a rigorous
formulation for general clustering problems, the discovery
of new relationship between MSTs and clustering, and
novel algorithms for MST-based clustering.

We have applied EXCAVATOR to a number of expres-
sion data sets. In this paper, we will show the clustering
results on three data sets, i.e. the gene expression data
(a) of the budding yeast Saccharomyces cerevisiae, (b) in
response of human fibroblasts to serum, and (c) of Ara-
bidopsis in response to chitin elicitation.

2 SYSTEMS AND METHODS
2.1 Spanning tree representation of a data set
We will use a MST to represent a set of expression data
and their significant inter-data relationships to facilitate
fast rigorous clustering algorithms.

Let D = {di } be a set of expression data with each
di = (e1

i , . . . , et
i ) representing the expression levels at

time 1 through time t of gene i . We define a weighted
(undirected) graph G(D) = (V, E) as follows. The
vertex set V = {di |di ∈ D} and the edge set E =
{(di , d j )| for di , d j ∈ D and i 	= j}. Hence G(D) is
a complete graph. Each edge (u, v) ∈ E has a weight
that represents the distance (or dissimilarity), ρ(u, v),
between u and v, which could be defined as the Euclidean
distance, the correlation coefficient, or some other distance
measures as we will discuss in Section 2.3.

A spanning tree T of a (connected) weighted graph
G(D) is a connected subgraph of G(D) such that (i) T
contains every vertex of G(D), and (ii) T does not contain
any cycle. A MST is a spanning tree with the minimum
total distance.

A MST of a weighted graph can be found by a greedy
method, as illustrated by the following strategy used in

Fig. 3. An MST representation of a set of data points. (a) A set of
2D points. (b) An MST connecting all the data points, using the
Euclidean distance. These data points form four natural clusters,
based on their relative distances.

the classical Kruskal’s algorithm (see p. 222 in Aho et
al., 1974): the initial solution is a singleton set containing
an edge with the smallest distance, and then the current
partial solution is repeatedly expanded by adding the
edge with next smallest distance (from the unconsidered
edges) under the constraint that no cycle is formed,
until all vertices are connected by the selected edges.
A simple implementation of the Kruskal’s algorithm
(Kruskal, 1956) runs in O(‖E‖ log(‖E‖)) time, where ‖·‖
represents the number of elements in a set. Figure 3 shows
an example of a MST of a 2D data set, consisting of four
‘natural’ clusters.

By examining Figure 3b, we observe that data points of
the same cluster are connected with each other by short
tree edges (without data points from other clusters in the
middle) while long tree edges link clusters together. We
found this is generally the case with an MST representa-
tion of any multi-cluster data set. To rigorously prove this,
we need a formal definition of a cluster. So what consti-
tutes a cluster in a data set? Though there is a large liter-
ature body of clustering algorithms, people have been try-
ing to avoid giving a general definition of a cluster, pos-
sibly due to the non-trivial nature of doing so. Without
such a definition, any rigorous discussion about clustering
algorithms is virtually impossible. Here we provide a nec-
essary condition for a subset of a set to be a cluster. Let D
be a data set and ρ represent the distance between two data
points of D.

C ⊆ D forms a cluster in D only if for any
arbitrary partition C = C1 ∪ C2, the closest
data point d to C1, d ∈ D − C1, is from C2.
Formally, this can be written as

arg min
d∈D−C1

{min{ρ(d, c)|c ∈ C1}} ∈ C2, (1)
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where D − C represents the subset of D by removing
all points of C . We call this the separability condition
of a cluster. In essence, by this definition, we are trying
to capture our intuition about a cluster; that is distances
between neighbors within a cluster should be smaller
than any inter-cluster distances. Clearly, each of the
four ‘natural’ clusters in Figure 3 satisfies this necessary
condition. So does the whole data set. However the subset
formed by the cluster in the up-left corner plus any proper
subset of the cluster in the up-right corner does not form a
cluster.

Now we can rigorously prove that any cluster, C , corre-
sponds exactly to one subtree of its MST representation.
That is

if c1 and c2 are two points of a cluster C, then
all data points in the tree path, P, connecting
c1 and c2 in the MST, must be from C.

This statement can be proved rigorously. We only give a
sketch of the proof here. Let’s assume that the statement is
incorrect. Hence there exists a point a in path P , which
does not belong to C (see Figure 4). Without loss of
generality, we assume that a is right next to c1 on P so
(c1, a) is an edge in P . We define a data set A as follows.
Initially A = {c1}. We then repeatedly expand A using
the following operation until A converges: select the data
point x from D − A, which is closest to A; if x ∈ C add x
to A. Apparently when A converges, A = C , based on the
separability condition (1) of C being a cluster. This means
that there exists a path, P ′, from c1 to c2 that consists
of only data points of C and all its edges have smaller
distances (ρ) than ρ(c1, a) (see Figure 4b). We know that
at least one edge of P ′ is not in the current MST. For
the simplicity of discussion, we assume that exactly one
edge, e, of P ′ is not in the current MST (the case with
multiple such edges can be reduced to the case with only
one edge). So P ∪ P ′ contains a cycle with one edge of P ′
not in the MST. By removing edge (c1, a) and adding e,
we get another spanning tree with smaller total distance.
This contradicts the fact that a MST has the minimum
total distance among all spanning trees. By having this
contradiction, we have proved the statement.

The above statement implies that clustering (of multi-
dimensional data) can be rigorously achieved through tree
partitioning. So to cluster, all we have to do is to find the
right set of edges of the MST representation of the data
set and cut them; the connected subtrees will give us the
desired clusters.

2.2 Comparison between two expression profiles
In our program EXCAVATOR, we provide a number
of different ways of measuring the ‘distance’ between
two expression profiles. Based on a user’s selection of
the distance measure, the program constructs the MST

Fig. 4. (a) A path connecting two vertices c1 and c2 of the same
cluster C (C’s boundary is given by the dashed line) with one
vertex a from a different cluster. (b) A schematic of the result of
the expansion operation.

representation of the data set. Let d1 = (e1
1, . . . , et

1) and

d2 = (e1
2, . . . , et

2) be two data points, where e j
i is a

log-transformed (base 2) fluorescence intensity ratio from
the microarray data. The distance measures supported in
EXCAVATOR include

• Euclidean distance

ρ(d1, d2) =
t∑

i=1

(di
1 − di

2)
2.

• Correlational distance

ρ(d1, d2) = 1 − correlation coefficient(d1, d2).

• Mahalanobis distance

ρ(d1, d2) =
∑
i, j

(di
1 − d1)(d

j
2 − d2)wi, j ,

where di represents the average of the vector di , i = 1, 2,
and {wi, j } is the inverse covariance matrix of the data
set D.

2.3 MST-based clustering algorithms
Apparently, different clustering problems may need differ-
ent objective functions, in order to achieve the best clus-
tering results. In this section, we describe three objective
functions and their corresponding clustering algorithms.
All algorithms presented here are for partitioning a tree
into K subtrees, for some specified integer K > 0. It is
worth mentioning that these algorithms become possible
only because of the MST framework that we are using.
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2.3.1 Clustering through removing long MST-edges.
One simple objective function is to partition an MST into
K subtrees so that the total edge-distance of all the K
subtrees is minimized. This objective function intends to
capture the intuition that two data points with a short
edge-distance should belong to the same cluster (subtree)
and data points with a long edge-distance should belong
to different clusters and hence be cut. It is not hard
to rigorously prove that by finding the K − 1 longest
MST-edges and cutting them, we get a K -clustering that
achieves the global optimality of the above objective
function. This simple algorithm works very well as long
as the inter-cluster (subtree) edge-distances are clearly
larger than the intra-cluster edge-distances. However,
when clusters are not connected through long edges rather
by a series of short edges or when there are many un-
clustered data points, i.e. data points that do not belong
to any apparent clusters, this simple algorithm may fail to
produce the best clustering results.

To determine automatically how many clusters there
should be, the algorithm examines the optimal K -
clustering for all K = 1, 2, . . ., up to some large number
to see how much improvement we can get as K goes
up. Typically after K reaches the ‘correct’ number (of
clusters), the quality improvement levels off, as we can
see in Figure 6a. By locating the transition point, our
program can automatically choose the number of the
clusters for the user.

2.3.2 An iterative clustering algorithm. We now give
another clustering algorithm that attempts to partition the
MST T into K subtrees, {Ti }K

i=1, to optimize a more
general objective function than the previous one:

K∑
i=1

∑
d∈Ti

ρ(d, center(Ti )), (2)

that is to optimize the K -clustering so that the total
distance between the ‘center’ of each cluster and its data
points is minimized—this is a typical objective function
for data clustering. When different distance measure is
used, the center has a different value. For example, when
the Euclidean distance is used, the average of a cluster is
its center; when the correlational distance is used, it can
be shown that the center of a cluster C is

center(C) =
∑
ci ∈C

ci

σi
,

where σi is the standard deviation of ci ∈ C .
Our iterative algorithm starts with an arbitrary K -

partitioning of the tree (selecting K − 1 edges and
removing them gives a K -partitioning). Then it repeatedly
does the following operation until the process converges:

For each pair of adjacent clusters (connected by a tree
edge), go through all tree edges within the merged cluster
of the two to find the edge to cut, which globally optimizes
the 2-partitioning of the merged cluster, measured by the
objective function (2). Our experience with this iterative
algorithm indicates that the algorithm converges to a local
minimum very quickly.

2.3.3 A globally optimal clustering algorithm. We now
present an algorithm that rigorously finds the globally
optimal solution of the clustering problem defined as
follows. We use a slightly different objective function than
the objective function (2). In the previous one, we want
to group data points around the center of each cluster
(to be clustered). Here we want to group data points
around the ‘best’ representatives from our data set. The
representatives are not pre-selected but rather they are the
results of the optimization process, i.e. our optimization
algorithm attempts to partition the tree into K subtrees and
simultaneously to select K representatives in such way to
optimize the objective function (3). More formally, for a
given MST T , we want to partition T into K subtrees,
{T1, . . . , TK }, and to find a set of data points d1, . . . , dK ∈
D such that the following objective function is minimized.

K∑
i=1

∑
d∈Ti

ρ(d, di ) (3)

where ρ( ) is the distance function used. The rationale
for using a ‘representative’ rather than the ‘center’ is
that a center may not belong to, or even be close to, the
data points of its cluster when the shape of the cluster
boundary is not convex, which may result in biologically
less meaningful clustering results. The representative-
based scheme provides an alternative when center-based
clustering does not generate desired results. When clusters
have shapes close to being convex sets, the selected
representative is generally the closest data point to the
center, and hence the two objective functions should lead
to similar results (assuming that the clustering algorithm
can find the global minimum solution). A good property
of the representative-based objective function is that it
facilitates an efficient global optimization algorithm.

The very basic idea of our algorithm can be explained
as follows. It first converts the MST into a rooted tree
(Aho et al., 1974) by arbitrarily selecting a tree vertex
as the root. Now the parent–child relationship is defined
among all tree vertices. At each tree vertex v, we define the
following: S(v, k, d) is defined to be the minimum value of
the objective function (3) on the subtree rooted at vertex v,
under the constraint that the subtree is partitioned into k
subtrees and the representative of the subtree rooted
at v is d. By definition, the following gives the global
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minimum of objective function (3):

min
d∈D

S(root, K , d). (4)

Our algorithm uses a Dynamic Programming (DP)
approach (Aho et al., 1974) to calculate the S( ) values at
each tree vertex v, based on the S( ) values of v’s children
in the rooted MST. The core of the algorithm is a set of
DP recurrences relating these S( ) values. The boundary
conditions of this DP system are given as follows: if a tree
vertex v does not have any child, then

S(v, k, d) =
{ +∞, for k > 1,

ρ(v, d), for k = 1.
(5)

For each v with children, S( ) of v is calculated as follows

S(v, k, d) = min
X⊆Cv

min∑‖Cv‖
i=1 ki =k+‖X‖−1,ki >0

 ∑
v j ∈Cv−X

S(v j , k j , d) +
∑

v j ∈X

S(v j , k j , d) + ρ(v, d)


, (6)

where

S(v j , k j , d) = min
x∈D,x 	=d

S(v j , k j , x),

and Cv represents the set of all children of vertex v.
Our algorithm calculates the S(v, k, d) values for all
combinations of v ∈ T , k ∈ [1, K ], and d ∈ D.

The correctness of these DP recurrences can be proved
based on the observation that S(v, k, d) can be decom-
posed as the sum of some combination of its children’s
S( ) values and that the above DP recurrences covers all
possible such combinations. We omit the detailed proof.

The computational time of this algorithm can be esti-
mated as follows. It is not hard to see that for each tree
vertex v, computing its DP recurrences takes

O

(
2‖Cv‖

(
K + ‖Cv‖ − 1

‖Cv‖ − 1

)
‖Cv‖

)

time, where
(X

Y

)
denotes the number of possible ways of

selecting Y elements out of X elements. Hence the total
time, T , for computing all the DP recurrences for the
whole tree T is

T � O

(∑
v∈T

2‖Cv‖
(

K + ‖Cv‖ − 1
‖Cv‖ − 1

)
‖Cv‖

)
.

Since (
K + ‖Cv‖ − 1

‖Cv‖ − 1

)
� (K + 1)s−1,

we have
T � 2s K s

∑
v

‖Cv‖,

where s is the maximum number of children of any tree
vertex. Since

∑
v∈T ‖Cv‖ = n − 1, we have shown that

it takes O(n(2K )s) time to compute all the S( ) values,
where n is the number of data points in our data set
and K is the maximum number of clusters we want to
consider. To get the actual clustering that achieves the
global minimum value, we need some simple bookkeeping
to trace back which tree edges are cut. This can be done
within the computational time needed for calculating the
S( ) values. We omit further discussions.

This algorithm runs in exponential time only in the
maximum number of children, s, of a tree vertex. To get a
sense about how large s could be for a typical application,
we have done a number of simulations to estimate s. In
the simulation, we have randomly generated a set of 60-
dimensional (60 is chosen arbitrarily) data points, and
constructed an MST representation of the set. Then we
count the number of children of each vertex in this MST.
Figure 5 summarizes these counts. This study shows that
this global optimization algorithm runs efficiently for a
typical clustering problem with a few hundred data points
consisting of a dozen or so clusters.

Note that our algorithm finds the optimal k-clustering
for all ks simultaneously, k � K , for some pre-selected K .
A user can choose the value of K in EXCAVATOR, and
the default value of K is a third of the total number
of genes. For a particular application, if we set K to,
say, 30 or to certain percentage of the total number of
vertices, we will get the optimal objective values for any
k = 1, 2, . . . , K . By comparing these values, we can
automatically select the number of clusters that is most
‘natural’ as we will discuss in Section 3.1.

3 RESULTS
3.1 Key features of EXCAVATOR
The core of the EXCAVATOR program is a set of MST-
based clustering algorithms. While detailed description of
EXCAVATOR will be discussed elsewhere (manuscript
in preparation), we now highlight a few key and unique
features of the EXCAVATOR program, in addition to the
MST-based rigorous and efficient clustering algorithms
that we have described above.

• For a user-selected objective function and an inte-
ger value K , EXCAVATOR calculates the optimal
k-clustering for all k ∈ [1, K ], and then compares
these values, as shown in Figure 6. Let Q(k) repre-
sent the objective value for the optimal k-clustering
for our selected objective function. It selects the
k ∈ [2, K − 1] with the highest following value (see
Figure 6b) as the most ‘natural’ number of clusters:

Q(k − 1) − Q(k)

Q(k) − Q(k + 1)
. (7)
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Fig. 5. (a) The distribution of the number of children of the MST representing a data set with 1000 random data points in 60-dimensional
Euclidean space. (b) The maximum number of children versus the total number of data points ranging from 50 to 9000.

This function defines a transition profile of Q( ).

• EXCAVATOR allows a user to specify if any genes
should (or should not) belong to the same cluster,
based on the user’s a priori knowledge, and finds the
optimal clustering that is consistent with the specified
constraints. This feature is implemented as follows. If
data points are specified to belong to the same cluster,
the algorithm marks the whole MST-path connecting
the two points as ‘cannot be cut’ when doing the
clustering. So every data points on this path will
be assigned to the same cluster of these two points.
Similar is done for two genes that should belong to
different clusters.

• EXCAVATOR provides different distance measures
and different clustering algorithms. For different clus-
tering results, the program has a capability for measur-
ing the similarity of two clustering results, for compar-
ison purposes. We derived a quantitative measurement,
using an approach similar to others (Jain and Dubes,
1988; Mirkin, 1996). Let D1 = {D1

1, D1
2, . . . , D1

N }
and D2 = {D2

1, D2
2, . . . , D2

M } be two clusterings of
data set D, one with N clusters and the other with M
clusters. We define the measure of similarity between
these two clusterings as

Pdiff(D1,D2) =
∑
i, j

‖D1
i

⋂
D2

j ‖
‖D1

i

⋃
D2

j ‖
[‖D1

i ‖ + ‖D2
j ‖].

(8)
It can be proved that Pdiff has the following upper and
lower bounds,

Pmin � Pdiff(D1,D2) � Pmax, (9)

where

Pmin = ‖D‖ + min
∑

i

‖D1
i ‖2

(M − 1)‖D1
i ‖ + ‖D‖ ,

∑
j

‖D2
j ‖2

(N − 1)‖D2
j ‖ + ‖D‖)


;

(10)

Pmax = 2‖D‖. (11)

The following quantity, which ranges from 0 to 1, gives
a good measurement on the (dis)similarity between the
two clustering results D1 and D2,

Pdiff(D1,D2) − Pmin

Pmax − Pmin
. (12)

The value is 1 if and only if the two partition results
are the same. The closer the value is to 0, the more
dissimilar the two partition results are.

3.2 Application results
We now describe the application results to three data sets.

3.2.1 Yeast data. Our first application is on a set of
gene expression data in the budding yeast S. cerevisiae
(Eisen et al., 1998), with each gene having 79 data points
(or 79 dimensions). We selected four clusters (68 genes in
total) determined in the paper (Eisen et al., 1998). These
are (1) protein degradation (cluster C), (2) glycolysis
(cluster E), (3) protein synthesis (cluster F), and chromatin
(cluster H). Genes in each of these four cluster share
similar expression patterns and are annotated to be in
the same biological pathway. The goal of this application
is to compare our clustering results with known cluster
information.
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Fig. 6. (a) Objective function values versus the number of clusters. (b) The transition profile value, calculated by function (7), versus the
number of clusters. The dashed line shows the transition profile for a set of random data.

Fig. 7. Expression profiles and clustering results of the yeast data.
Red indicates high expression and green indicates low expression.

For this application, we have applied all three clustering
algorithms, using both the Euclidean distance and the
correlation distance as the distance measure. The comput-
ering time on a PC for all the calculation from 2 clusters
to 34 clusters was less than 1 s for clustering through
removing long MST-edges, less than 7 s for the iterative
algorithm, and less than 20 s for the globally optimal
algorithm. We have achieved virtually identical clustering
results, using any combination of these algorithms and
functions. Here we show the clustering result obtained,
using our first clustering algorithm with the Euclidean
distance as the distance measure. Figure 6 shows how
the objective function values improve as the number of
clusters increases. This provides a profile similar to the
‘Scree Test’ (Cattell, 1966). Based on the transition profile
in Figure 6b, the program decides a 4-clustering gives
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Fig. 8. Objective function values versus the number of clusters, for
the gene expression data in response of human fibroblasts to serum.

the most ‘natural’ number of clusters for this problem.
Figure 7 gives the 4-clustering results, which is 100%
in agreement with the annotated results in Eisen et al.
(1998).

3.2.2 Human serum data. The second application is
on a set of temporal gene expression data in response
of human fibroblasts to serum (Iyer et al., 1999). The
data set consists of 517 genes, and each gene has 18
data points. We have used both the first and the second
of our clustering algorithms for this problem, with the
Euclidean distance as the distance measure. Figure 8
shows the optimal k-clustering quality values versus the
number of clusters, k, by our second algorithm. We
can see that a significant improvement in clustering
quality is being made when increasing k from 1 to 5,
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Fig. 9. Clustering results for the Arabidopsis data. (a) The transition profile versus the number of clusters; (b) clustering results for optimal
4-clustering and optimal 7-clustering.

and then the rate of improvements drops. Our program
suggests that an optimal 5-clustering gives the initial
coarse-grained clustering of the whole data set. Different
levels of finer-grained clusterings are then made. Detailed
clustering results can be found at http://compbio.ornl.
gov/structure/clustering/pnas-paper/. Verifications of our
clustering results will be done in a follow-up study. Not
surprisingly, our first clustering algorithm did not do
nearly as well as the second algorithm, based on our
visual inspection of the similarities of 517 gene expression
profiles, since unlike our first test case, cluster boundaries
here are far from being apparent.

3.2.3 Arabidopsis data. Our third application is on a
set of gene expression data of Arabidopsis in response
to chitin elicitation (Ramonel et al., 2001). The data
was averaged over two experiments. Each gene had six
data points (collected at 10 min, 30 min, 1 h, 3 h, 6 h,
and 24 h). 68 genes were selected for clustering, each
containing at least one data point with a 3-fold change
of expression level by chitin elicitation. We used both
the second and third algorithms for this problem. Here
we present the clustering results by the third algorithm,
with the Euclidean distance as the distance measure.
From Figure 9a, we can see there are two high peaks
in the transition profile, indicating that there are at least
two levels of clustering, one with four clusters and one
further dividing the four clusters into seven clusters.
Figure 9b shows the clustering results for both the optimal
4-clustering and optimal 7-clustering.

Through searching the regulatory regions of these genes,

we found that a known cis-acting element of chitin-
responsive genes, i.e. the W-box hexamer, was over-
represented in genes of one of 7 clusters. This suggests
that these genes are not only co-expressed, but also co-
regulated through the W-box motif (Ramonel et al., 2001).

4 DISCUSSION AND CONCLUSION
In this paper, we have described a rigorous compu-
tational framework for clustering multi-dimensional
gene-expression profiles. To the best of our knowledge,
the separability condition that we proposed here is the
first rigorous mathematical formulation for the gen-
eral clustering problem, although various mathematical
models for particular clustering problems have been
given previously by other researchers. Under such a
formulation, we have rigorously proved that an MST
representation captures all the essential information of a
multi-dimensional data set for the purpose of clustering.
Hence a multi-dimensional data clustering problem can
be solved as a tree partitioning problem. This realization
has led to the discovery of a number of both rigorous and
efficient clustering algorithms, particularly the ones with
guaranteed global optimality for some general objective
functions.

Based on this new data-representation framework and
the MST-based clustering algorithms, we have developed
a computer program EXCAVATOR for gene expression
data clustering. We believe that the various unique features
of EXCAVATOR will make the program a highly useful
tool in mining the large-scale gene expression data, in a
reliable and meaningful way.
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Our computational framework of clustering provides a
mathematical foundation, which, we believe, will open
the door for many clustering/classification problems.
Research is underway to apply our framework to various
biological data analysis problems, including phylogenetic
classification, motif recognition in biological sequences,
protein family classification, etc.
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