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SUMMARY : A new methodology is proposed for clustering datasets in the presence of scattered observations. Scattered
observations are defined as unlike any other, so traditional approaches that force them into groups can lead to erroneous
conclusions. Our suggested approach is a scheme which, under assumption of homogeneous spherical clusters, iteratively
builds cores around their centers and groups points within each core whileidentifying points outside as scatter. In the
absence of scatter, the algorithm reduces tok-means. We also provide methodology to initialize the algorithm and to
estimate the number of clusters in the dataset. Results in experimental situations show excellent performance, especially
when clusters are elliptically symmetric. The methodology is applied to the analysis of the United States Environmental
Protection Agency (EPA)’s Toxic Release Inventory (TRI) reports onindustrial releases of mercury for the year 2000.
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1. Introduction

Clustering or finding groups of similar observations in datasets is
a well-studied issue in the statistics literature (Everittet al, 2001;
Fraley and Raftery, 2002; Hartigan, 1985; Kaufman and Rousseeuw,
1990; Kettenring, 2006; McLachlan and Bashford, 1988; Murtagh,
1985; Ramey, 1985). Some approaches are hierarchical (either ag-
glomerative orbottom-up, or divisive or top-down) while others
are non-hierarchical, optimally partitioning data using parametric
assumptions and maximizing a loglikelihood function or minimizing
some measure of distortion – such as the trace or determinant of
the within-sum-of-squares-and-cross-products (W ) matrix (Freid-
man and Rubin, 1967; Scott and Symons, 1971) – of identified
clusters. Implementation is usually via locally optimal algorithms
such ask-means or its generalizations such ask-medoids (Chapter 2
of Kaufman and Rousseeuw, 1990), or by applying the expectation-
maximization (EM) of a specified (typically Gaussian) mixture
model (Celeux and Govaert, 1995; Fraley and Raftery, 1998; Fraley
and Raftery, 2002; McLachlan and Peel, 2000).

Most common partitioning algorithms group all observations, an
undesirable feature in datasets withscatter points(defined to be
observations unlike any other in the dataset). Identifying such ob-
servations may be of scientific interest and including them in clusters
with other observations may bias group summaries (such as means or
variability measures) and other conclusions. Tseng and Wong (2005)
give several examples of poor performance when clustering algo-
rithms forcefully cluster every observation. The implications can be
important, such as in the public health application which we discuss
next.

1.1 Categorizing Industrial Facilities that Release Mercury

Public health officials have long been concerned about the adverse
effects of prenatal mercury exposure on physiological and neurolog-
ical development in children (Grandjeanet al, 1997; Kjellstromet al,
1986; National Academy of Sciences, 2000; Sörensenet al, 1999).
The element is believed to originate in the environment through
releases from industrial facilities and to travel long distances on
atmospheric air currents, contaminating even distant areas (Fitzger-
ald et al, 1998). Bacteria convert some mercury to the even more
lethal methylmercury which is transferred to humans through the
consumption of contaminated fish and seafood. There is no safe
limit for the latter chemical and it is more easily absorbed by the
body. Developing effective policies that limit mercury releases is
thus crucial, but requires a detailed understanding of what and how
industries release mercury.

The TRI database for the year 2000 contains data on releases, in
pounds, of mercury and mercury compounds to fugitive and stack
air emissions, water, land, underground injection into wells and off-
site disposals as reported by 1,409 eligible facilities from twenty-
four different kinds of industries. A large proportion (33%) of these
facilities combust fossil fuels to generate electricity while another
12% manufacture or process chemicals.

An unsupervised method of grouping similar facilities is an im-
portant tool for studying the characteristics of mercury releases.
Facilities with similar patterns can be grouped together to better
understand their effects on the environment and public health and
lead to the framing of public policy targeted for maximum effect.
However, a striking feature of the dataset is the number of reports
that are unlike any other. Including them in other groups could
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skew results, obscure common characteristics and undermine the
effectiveness of devised policies: there is thus a crucial need for an
algorithm that accounts for scatter while clustering.

1.2 Background and Related Work

There are few existing methods that address the issue of clustering
in the presence of scatter. A model-based approach using EM on a
mixture-of-Gaussians augmented with a Poisson Process component
for scatter (Banfield and Raftery, 1993; Dasgupta and Raftery, 1998;
Fraley and Raftery, 1998) is implemented as part of theR package
MCLUST (Fraley and Raftery, 2006). Unfortunately, the EM algo-
rithm can be notoriously slow and difficult to apply to larger datasets.
The density-based hierarchical clustering method (DHC) of Jianget
al (2003) extracts interesting patterns from noisy datasets without
actually identifying scatter. The adaptive quality-based clustering
(Adapt Clust) of De Smetet. al (2002) iteratively finds cluster cores
in zero-mean-unit-variance standardized data up to some terminating
criterion, whereupon it classifies the remaining observations as scat-
ter. Tseng and Wong (2005) developed Tight Clustering (hereafter,
TCTW) by using resampling to sequentially determine cluster cores
up to a targeted number(KT ) or until no furthertight and stable
cluster can be identified, at which point the rest are labeled as scatter.
Along withKT , the algorithm requires specifications for tightness (α
in their paper, but we useαT here), stability (β) and another tuning
parameter (k0) which severely influences performance. The last is
set at one- to two-fold the true number of clusters, which is usually
not known a priori. A data-driven approach to parameter estimation
is not natural to implement because unlike model-based methods,
the algorithm has no obvious objective function. Another drawback
of this algorithm is that the sequential cluster identification does
not account for already identified groupings, which can result in
partitions that violate the distance assumption of the metric used (see
Figure 1e for an illustration).

The optimal number of clusters (K) in a dataset often needs to
be estimated in many practical settings. Several methods (Marriott,
1971; Milligan and Cooper, 1985; Tibshiraniet al, 2001; Tibshirani
and Walther, 2005) exist, but no method is viewed as clearly superior
to the others. Additionally, many of them are inapplicable in the
presence of scatter. For instance, the calculation ofW – needed in
the context of minimizingK2|W | over different partitions for each
K (Marriott, 1971), or intr(W ) of the Gap statistic (Tibshiraniet al,
2001) – is then not clear. For model-based approaches, the problem
is sometimes reformulated in terms of model selection (McLachlan
and Peel, 2000), with Schwarz’s (1978) Bayes Information Criterion
(BIC) as a popular choice. TCTW determinesK algorithmically,
terminating atK = KT or when no further tight and stable clus-
ter is possible. In our experience however, the algorithm continues
building clusters far beyond the trueK. Hence, a good estimate of
K is needed. In some cases, this may be provided by the researcher,
however even experienced researchers often have no way of knowing
what would be reasonable.

In this paper, we propose ak-means-type algorithm for “Cluster-
ing in the Presence of Scatter” (abbreviated ask-clips). Section 2
develops an iterative methodology together with an approach for
its initialization. We estimateK using an adaptation of BIC which
reduces to Marriott’s criterion in the absence of scatter. While we
use k-means with scatter for our algorithmic development, other
algorithms using a central measure of tendency of a cluster (such
ask-medoids with scatter) could also be developed similarly. Our
algorithm is general enough to permit other strategies for initializa-

tion and estimation ofK. The different elements of our proposed
methodology are extensively evaluated and compared in Section 3
and Web Appendix Section 2 through simulation experiments with
varying amounts of scatter and cluster separation. The mercury re-
lease dataset introduced in Section 1.1 is analyzed in Section 4. The
paper concludes with some discussion.

2. Methodology

Let X1, X2, . . . , Xn be p-variate observations from the mixture

distribution g(x) =
K
P

k=1

ζk[ 1
σ
f(x−µk

σ
)] +

ζK+1

V
whereV is the

volume of a bounded regionB with uniform density,σ > 0 is a scale
parameter,ζk is an identification parameter andf(y) = ψ(y′y)
with ψ(·) a real positive-valued function such thatf(·) is ap-variate
density. Forhard clusteringmethods such ask-means,ζk is the
observation’s class indicator, while forsoft clusteringalgorithms,
ζk represents the probability of its inclusion in thekth cluster.
The above formulation provides a convenient way to fix ideas in a
statistical framework, stipulating thatX i comes from one of theK
homogeneous populations or the(K + 1)th group which comprises
uniformly-distributed scatter and can not be summarized beyond this
property. Our goal is to estimateK (if unknown), the meansµk, the
number of clustered observations (n∗), V and more importantly to
classify observations into groups and scatter. We propose algorithms
to achieve these objectives next.

2.1 k-clips: A modified k-means algorithm for data with scatter

GivenK and initial cluster centers{µk; k = 1, . . . , K}, our strategy
is to build K p-dimensional uniform-volumed spheres (or cores)
around each: these cores represent dense parts (i.e. clusters) of the
dataset with their complement the domain of the scattered points.
Points inside a core are assigned to the corresponding cluster, those
outside all cores are nominated as scatter, and the cluster centers and
the cores are updated. This procedure is iterated until convergence.
The exact algorithm is as follows:

(1) Building the cores.Assign each observationX i to clusterk =
arg min16κ6K ‖ X i − µκ ‖ and denote thisX i asX i(k).
Obtain a robust estimate (sbw) of the standard deviation (SD) of
the observations, common for all dimensions, using the biweight
estimator of Hoaglinet al (2000). Letµ̃k,j be the median of the
kth cluster andjth dimension (k = 1, . . . , K; j = 1, . . . , p),
andYi(k),j = Xi(k),j − µ̃k,j be the median-centered observa-
tions. Denote the common median absolute deviation (MAD) of
theseYi(k),j ’s ass̃. For some constantw, let ui(k),j =

Yi(k),j

ws̃
.

Then the robust biweight estimator of the SD is given by
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Next, createK p-dimensional spheres of common radius
rK = sbw

p

χ2
p,α, each centered at the currentµk ’s, whereχ2

p,α

is the(1 − α)th quantile of theχ2−distribution withp degrees
of freedom,0 < α < 1.

(2) Assignments.Observations outside all cores are labeled scatter;
the rest are assigned to those clusters whose centers are closest
to them.
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(3) Updates.Recalculate{µk; k = 1, . . . , K} using the centers of
the points currently in each cluster. Note that scatter points are
not used to update theµs.

(4) Repeat until convergence, upon which final cluster centers and
classifications into groups or scatter are obtained.

Comments.

(1) Our algorithm locally minimizes, upon convergence, the ap-
proximate objective function given byn

∗p
2

log(σ2 + 2π) +
1

2σ2 tr (W ∗) + (n − n∗) log (V ) wheretr (W ∗) is the trace of
the within-sums-of-squares-and-products matrix (SSPW ) based
on then∗ clustered observations. A model-based interpretation
for the above is provided in the hard-clustering context when
each cluster density is assumed to be Gaussian with dispersion
matrixσ2I (see Web Appendix Section 1). Further, for knownσ
and in the absence of scatter, this objective function reduces to
that fork-means. Note also that while our algorithm converged
in all our experiments, convergence has not been rigorously
proved, and needs to be established. Such development however,
is perhaps beyond the scope of this paper.

(2) Hoaglin et al. (2000) show thatsbw is an efficient and robust
scale estimator in several non-Gaussian situations. Our cluster-
ing scenario has scatter points and outliers; sosbw is reasonable
in determining the radius of the cores.

(3) The estimatesbw uses a parameterw to modulate the influence
of scatter points currently misclassified as clustered. Intuitively,
higher choices ofw correspond to higher (less robust) values of
sbw while lower choices result in estimates forσ that are biased
downwards. Under Gaussian distributional assumptions,w = 9
means that observations more than 6 SD’s from every cluster
median in each dimension are ignored in the calculation ofsbw.
In the absence of additional information, one may optimize the
objective function overw ∈ {3, 4.5, 6, 7.5, 9} to get a data-
driven choice. We adopt this approach in this paper.

(4) The core volume is also controlled byα, with higher values
identifying more observations as scatter. Under Gaussian density
assumptions,sbw

p

χ2
p,α approximates the radius of the dens-

est100(1 − α)% sphere of concentration in each cluster. The
distributional assumption helps motivate our algorithm since
clustering makes most sense in the context of compact groups,
for which the Gaussian density provides a reasonable frame of
reference.

(5) Asw ↑ ∞ andα ↓ 0, the algorithm reduces tok-means.

The above differs from DHC in that it is a non-hierarchical
algorithm classifying observations into both clusters and scatter.
Adapt Clust and TCTW identify clusters one-by-one, with the for-
mer designed to work only on mean-zero-unit-variance-standardized
data. On the contrary, our algorithm modifiesk-means to simulta-
neously partition any dataset into clusters and scatter, proceeding to
convergence from initializing cluster centers, a strategy for choosing
which we address next.

2.2 Initialization of Cluster Centers

Common initialization methods fork-means degrade with scatter,
cf. Tseng and Wong (2005) who proposed to initialize using the
means of the largestK groups obtained after cutting a hierarchically
clustered tree intoK × p groups Our own experience has shown this
approach to not perform well with increased scatter. An alternative
is to remove clutter usingk-nearest neighbor cleaning (Byers and

Raftery, 1998) followed by an algorithm such as the multi-stage
deterministic initializer of Maitra (2007) which, in the context ofk-
means, finds a large number of local modes and then choosesK rep-
resentatives from the most separated ones. Performance of this last
approach in simulation experiments was uneven (see Web Appendix
Section 2.2), so here we develop an adaptation of Maitra (2007) that
accounts for the presence of scatter:

(1) Write X as then × p matrix of observations,i.e. X ′ =

{X1

...X2

... . . .
...Xn}. For thejth column ofX (j = 1, 2, . . . , p),

obtain theτ = ⌈(np)1/(p+1)⌉ equi-spaced quantiles, where
⌈x⌉ denotes the smallest integer greater than or equal tox.
Use one-dimensionalk-means initialized with these quantiles to
obtain theτ modes along each dimension. The product setH
(cardinalityK∗

0 ) of the resulting one-dimensional modes are our
potential candidate starting points.

(2) For each point inX , identify the closest member inH. Eliminate
those points fromH that are not closest to at leastE observa-
tions inX . This eliminates scatter points fromH, yielding the
reduced setH′ with | H′ |= K∗. Assume for now thatK∗

> K.
(3) Initialize the algorithm of Section 2.1 withH′ and apply to the

datasetX to obtainK∗ modes.
(4) Our next goal is to obtainK representatives from the most

widely separated modes. We propose using hierarchical clus-
tering with single linkage on theK∗ local modes and cut the
resulting tree intoK groups. Classify all observations into one
of the K groups. Use the group medoids as the initial cluster
centers{µk; k = 1, 2, . . . , K} in thek-clips algorithm.

Comments.

(1) The choice ofτ large relative to Maitra (2007) generates many
univariate candidate starting points and avoids trapping one-
dimensionalk-means in local minima around scatter points. This
strategy does not eliminate scatter, but increases the chance of
also finding true modes at only a modest additional computa-
tional cost, since we use one-dimensionalk-means.

(2) A liberal choice forτ means thatH is large and includes
some scatter. Large values ofE (which may be thought of as
a minimum cluster size) reduce the chance of retaining scatter
in H′, but E too large can result inK∗ < K. We avoid this
problem by successively running the initializer with decreasing
E from an upper boundEM > E until K∗

> K. Although no
optimal choice forEM can be prescribeda priori, we have found
EM = n

Kp
to work well in our experiments.

(3) Data-driven choices ofw andα allow for greater flexibility in de-
termining the influence of scatter on the starting centers. Candi-
date values are all pairs ofw ∈ {3, 9} andα ∈ {.01, .05, .1, .2}.
We use the extreme candidate values forw to save compute time,
since our objective here is merely to obtain starting values for the
cluster means. The final initializer is chosen from among the can-
didate set by evaluating the objective function after one iteration
of k-clips using moderate values ofw = 6 andα = 0.05. This
last step is needed in order to obtain a summary assignment of
scatter points in the calculation of the objective function.

(4) The hierarchical classification in Step 4 of the initialization
algorithm does not exclude scatter, so we use medoids instead of
means to help ensure that the starting centers are in the interior
of the clusters.
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Our initialization strategy is discussed and demonstrated in the con-
text of k-clips, however, it is general enough to extend to other
algorithms that need initialization in the presence of scatter. We now
address the issue of estimating the number of clustersK.

2.3 Estimating the Number of Clusters

Our algorithms have so far assumed knowledge ofK, which is rarely
true in practice, so we turn to methods for optimally estimatingK.
Our proposal is to choose

K̂ = argmin
k
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where|W ∗| is the determinant ofSSPW based on then∗ clustered
observations, and̂V is the volume of the region containing the
n−n∗ scattered points. We motivate (1) by modifying BIC (see Web
Appendix Section 1) under the hard clustering model with Gaussian
densities centered at{µk; k = 1, 2, . . . , K} and a common disper-
sionΣ. In the context of a model without scatter,n∗ = n andW ∗ =
W , yielding Marriott’s criterion. Finally, the volumêV is calculated
from thep-dimensional cube with axes matching the ranges ofX

in each dimension, less the volume of theK p-variate spheres. In
cases where any sphere intersects with the boundary of the cube,
V̂ is approximated using Monte Carlo simulation, specifically by
generating uniform pseudo-random deviates within the region of the
data and estimatingV as the proportion of simulated points outside
the cores.

3. Experimental Evaluations

The suggested methodology was extensively evaluated through a
series of simulation experiments. Thek-clips algorithm has three as-
pects: the main algorithm, initialization and estimation of the number
of clusters. We only report evaluations on its overall performance
here and refer to Web Appendix Section 2 for more detailed studies
on each of these issues. Our assessment is presented graphically for
bivariate examples, and numerically for all dimensions. Our numer-
ical measure is a modification of the adjusted Rand measure (Ra;
Hubert and Arabie, 1985), where scatter points are considered to be
sole members of clusters of size one. This modified measure is thus
more severely influenced by misclassifications of scatter into groups
with true cluster points and vice-versa than by erroneously creating
additional clusters of scatter points only.Ra also more severely
penalizes partitions with too few groups than with too many groups.
Our experimental suite covered a wide range of dimensions and sep-
aration between clusters. Following Maitra’s (2007) modification of
Dasgupta’s (1999) definition, we defined a set ofp-variate Gaussian
densities to beexact − c − separated if for every pairN (µi,Σi)
andN

`

µj ,Σj

´

, ‖µi−µj‖ > c
p

p max (λmax{Σi) , λmax (Σj)},
with equality holding for at least one pair andλmax (Σ) denoting
the largest eigenvalue ofΣ. In our experiments,c ranged from 0.8
(marginally separated) to 2.0 (well-separated) withΣ’s enforced to
be diagonal (but not spherical) for each cluster. Observations were
generated with equal probability from each cluster, and realizations
outside the95% ellipsoids of concentration of all the clusters were
eliminated. Finally, scatter points were uniformly generated via sim-
ple rejection from outside the union of these 95% confidence ellip-
soids. The outer limits of this region were obtained by multiplying

the observed ranges in each dimension by aU(1, 2) deviate. Such
scatter formed between 15% and 50% of each dataset.

Experiments were done assuming known and unknownK and
evaluatingRa for the derived groupings relative to the true. We
usedα = 0.05 and5 6 E 6 n/pK for k-clips and compared its
performance with groupings obtained using TCTW and theMclust
function of theMCLUST package inR. We usedMclust with the
Poisson Process component for scatter initialized using a random
estimate (see Page 15 of Fraley and Raftery, 2006) and a data-driven
BIC-optimal choice of dispersion matrix. TCTW was implemented
using Tseng and Wong’s (2005) software. For the tuning param-
eters, we used a data-driven approach to choosing the(αT , β) in
{0, 0.05, 0.1}×{0.6, 0.7, 0.8} that maximized the likelihood model
generating the data. The ranges forαT andβ corresponded to de-
creasing and increasing orders of tightness and stability respectively
and were taken from different scenarios of possible values discussed
in Tseng and Wong (2005). With unknownK, we setKT in TCTW
to be equal to the maximum number of groups considered forMclust
andk-clips. Further with TCTW, we setK 6 k0 6 2K for known
K andKT 6 ko 6 2KT with unknownK.

3.1 Bivariate Experiments

For each of the three experimental scenarios, we generated 100 scat-
tered realizations along with 500 clustered observations drawn with
equal probablity from one of five exact-c-separated Gaussians (Fig-
ure 1, colored symbols). For this suite,KT = 15. Clearly,k-clips
always performed very well, even thoughMclust was marginally
better whenc = 1.6. However, the latter performed poorly with
lower separation. The performance of TCTW was uniformly weak,
with no scatter identified whenc = 0.8 and 1.2, and two true clusters
identified as scatter whenc = 1.6. A disconcerting consequence
of the sequential identification of clusters without accounting for
already identified partitions is well-illustrated in Figure 1e: some
of the true scatter in the lower left corner was identified (“◦”) as
belonging to a group (upper left) beyond its closest cluster (“N”).

When estimatingK, k-clips was always correct while TCTW
always found the maximumKT = 15 stable and tight clusters. These
15 partitions sub-divided several true clusters and misclassifed scat-
ter into other true clusters, resulting in very poorRa’s. Mclust found
the correct number of clusters forc = 0.8 and 1.6, whileK̂ = 3 for
c = 1.2 leading to a considerably poor partitioning (Ra = 0.476,
Figure 2f). The harsh penalization of too few clusters byRa is
demonstrated by theMclust solution in Figure 2f, which performed
better at identifying scatter and cluster than TCTW (Figure 2e) but
had lowerRa even though TCTW identified 15 clusters and no
scatter!

3.2 Higher-dimensional Examples

We performed higher-dimensional experiments with(p, K, n) = (5,
5, 500), (10, 7, 2,000) and (20, 15, 5,000) and varying the amounts
of separation between clusters. The proportion (s) of scatter in the
experiments ranged from 15% to 25% of the total observations. We
also performed experiments with 50% scatter andc = 2.0. In each
case, we generated 25 sets of parameters (cluster means, dispersions,
mixing proportions) thus obtaining 25 simulation datasets. Table 1
reports comprehensive measures on overall performance whenK is
known, with results forK unknown shown in Table 2. (For the latter,
KT was set to 15, 20 and 25 forp = 5, 10 and 20, respectively.) Note
that TCTW did considerably worse than eitherk-clips orMclust in
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(a) k-clips:Ra = 0.9 (b) TCTW:Ra = 0.508 (c) Mclust: Ra = 0.713

(d) k-clips:Ra = 0.912 (e) TCTW:Ra = 0.391 (f) Mclust: Ra = 0.862

(g) k-clips:Ra = 0.952 (h) TCTW:Ra = 0.615 (i) Mclust: Ra = 0.975

Figure 1. Results ofk-clips (first column), TCTW (second column) andMclust (third column) withK = 5 known clusters forc =
0.8, 1.2,and1.6 for the first, second and third rows respectively. Small filled circles represent identified scatter, colors signify true clusters
and characters as identified clusters.

almost all cases with knownK, but occassionally performed best
with unknownK. k-clips did substantially better thanMclust for
cases with low separation, butMclust performed marginally better
thank-clips for higherc. In general,k-clips correctly estimatedK
when p = 5, 10, but tended to underestimate it forp = 20 and

high values ofc. On the other hand, forp = 20 Mclust tended to
grossly underestimateK for low separation and slightly overestimate
K for higher separation.Mclust Ra values were thus very poor for
low separation but fairly high for well-separated clusters. TCTW
often found the maximumKT stable and tight clusters forp = 5
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(a) k-clips:Ra = 0.9 (b) TCTW:Ra = 0.482 (c) Mclust: Ra = 0.713

(d) k-clips:Ra = 0.912 (e) TCTW:Ra = 0.379 (f) Mclust: Ra = 0.476

(g) k-clips:Ra = 0.952 (h) TCTW:Ra = 0.390 (i) Mclust: Ra = 0.975

Figure 2. Results ofk-clips (first column), TCTW (second column) andMclust (third column) withK estimated for increasing separation
c = 0.8, 1.2,and1.6 for the first, second and third rows respectively. Small filled circles represent identified scatter, colors represent true
clusters and characters denote identified clusters.

and usually substantially more than the trueK clusters. Even then,
performance was rather poor for cases with low separation, but like
Mclust, improved substantially with higher separation. TCTW had
very goodRa values forp = 20, but was again outclassed by
k-clips andMclust for higher proportions of scatter. The curse of

dimensionality seemed to afflictk-clips slightly more thanMclust
and TCTW for higher separation, as seen forp = 20, becoming
more evident withK unknown. Note that in all our experiments, data
were generated from the Gaussian-uniform mixture model explicitly
assumed byMclust – thus, it is expected that it would perform well.
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Table 1
The median adjusted Rand

“

R 1
2

”

values from 25 runs ofk-clips andMclust with known number of clusters and TCTW withKT = K

target clusters.IR is the interquartile of the 25Ra’s andη is the number of runs where the method has the highestRa, with ties being split
among the methods tying.

Settings k-clips Mclust TCTW

s c R 1
2

IR η R 1
2

IR η R 1
2

IR η
p

=
5
,K

=
5
,n

=
5
0
0

.15

0.8 0.891 0.057 19 0.854 0.195 6 0.555 0.074 0
1.2 0.973 0.032 17.5 0.951 0.086 7.5 0.676 0.094 0
1.6 0.994 0.012 15 0.989 0.016 10 0.744 0.065 0
2.0 0.997 0.006 14.5 0.995 0.009 10.5 0.752 0.046 0

.25

0.8 0.871 0.084 20 0.797 0.131 5 0.490 0.150 0
1.2 0.948 0.039 8.5 0.949 0.073 16.5 0.617 0.103 0
1.6 0.970 0.018 7 0.981 0.029 18 0.673 0.073 0
2.0 0.982 0.015 6 0.991 0.008 19 0.679 0.067 0

.50 2.0 0.911 0.032 9 0.987 0.174 16 0.448 0.110 0

p
=

1
0
,K

=
7
,n

=
2
0
0
0

.15

0.8 0.963 0.018 22 0.521 0.400 3 0.666 0.048 0
1.2 0.995 0.006 17 0.993 0.134 8 0.761 0.029 0
1.6 0.999 0.002 13 0.999 0.147 12 0.802 0.028 0
2.0 1.000 0.080 13 1.000 0.144 12 0.807 0.015 0

.25

0.8 0.963 0.018 25 0.781 0.411 0 0.562 0.044 0
1.2 0.995 0.006 18 0.988 0.156 7 0.650 0.073 0
1.6 0.999 0.002 11.5 0.999 0.116 13.5 0.683 0.060 0
2.0 1.000 0.080 13.5 1.000 0.134 11.5 0.675 0.083 0

.50 2.0 1.000 0.002 11.5 1.000 0.001 13.5 0.422 0.060 0

p
=

2
0
,K

=
1
5
,n

=
5
0
0
0

.15

0.8 0.995 0.002 25 0.330 0.234 0 0.800 0.055 0
1.2 0.929 0.064 15 0.929 0.019 10 0.858 0.054 0
1.6 0.891 0.088 9 0.879 0.073 12 0.893 0.031 4
2.0 0.887 0.085 7 0.923 0.066 15 0.866 0.052 3

.25

0.8 0.994 0.002 25 0.394 0.338 0 0.678 0.063 0
1.2 0.943 0.086 17 0.931 0.132 8 0.766 0.070 0
1.6 0.862 0.081 7 0.921 0.060 18 0.765 0.086 0
2.0 0.874 0.080 7 0.922 0.102 16 0.805 0.116 2

.50 2.0 0.952 0.089 17 0.925 0.053 8 0.403 0.098 0

In summary, our experiments indicate that bothk-clips andMclust
outperform TCTW withK known. For unknownK, k-clips is the
best performer when groups are not well-separated, but is overtaken
by TCTW or Mclust otherwise. A partial explanation is thatk-
clips sometimes estimated fewer than the true number of clusters,
potentially affectingRa severely. Even with well-separated clus-
ters, however, large amounts of scatter uniformly reduced TCTW’s
performance, while honors were about even betweenk-clips and
Mclust. Thus,k-clips complementsMclust by excelling for cases
with poorly-separated clusters. Further, sincek-clips modifiesk-
means, it is more practical to apply to large datasets thanMclust.

3.3 Additional Experiments using Non-Gaussian Clusters

The Web Appendix (Section 2.5) also reports detailed performance
evaluations on two-dimensional simulation experiments where clus-
ter distributions vary widely from the Gaussian. We summarize
our findings here. Our clusters in these experiments were from
distributions that were (a) symmetric but heavy-tailed, (b) very ir-
regular, (c) constrained to lie on a sphere, or (d) highly-skewed.
In (a), k-clips maintained the trend of good performance for both
known and unknownK (Ra > 0.95). For (b) and (c) withK
known, k-clips performed at least moderately well (Ra > 0.70).

Performance however degraded (Ra 6 0.62) for unknown K as
the algorithm tried to carve ellipsoidal clusters out of the irregular
and spherically-constrained distributions by combining or splitting
them. For both known and unknownK, performance on the highly-
skewed datasets of (d) was very poor for moderately-separated
clusters (Ra 6 0.28), but improved considerably for their better-
separated counterparts (Ra > 0.72). The methodology performed
substantially better (Ra > 0.73) when applied to data transformed
to reduce skewness in each dimension.

We also testedMclust and TCTW on these datasets.Mclust often
performed worse thank-clips in the moderately-separated cases but
better with higher separation. It had far more problems thank-clips
in separating cluster from scatter observations with distributions in
(a) and (b). For unknownK, it often grossly overestimatedK for
(b) and (c) achieving ellipsoidal shapes likek-clips by partition-
ing true clusters. For (c),Mclust did substantially better thank-
clips for higher separation, perhaps because it has greater flexibility
in accomodating lower-dimensional Gaussians (see Web Appendix
Section 2.5). TCTW exhibited similar trends in many of these ex-
amples as it did for the Gaussian datasets, failing to identify scatter
correctly, continually splitting apart clusters and occasionally failing
to adhere to the distance metric. Likek-clips, Mclust and TCTW
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Table 2
The median adjusted Rand

“

R 1
2

”

values from 25 runs ofk-clips andMclust with unknown number of clusters and TCTW withKT set to

the maximum considered by the other methods.IR is the interquartile of the 25Ra’s, η is the number of runs where the method has the
highestRa, K̂ 1

2
is the median estimated number of clusters andIK̂ is the interquartile of the 25̂K ’s over the 25 runs.

Settings k-clips Mclust TCTW

s c R 1
2

IR η K̂ 1
2

IK̂ R 1
2

IR η K̂ 1
2

IK̂ R 1
2

IR η K̂ 1
2

IK̂

p
=

5
,K

=
5
,n

=
5
0
0

.15

0.8 0.865 0.169 13 5 0 0.854 0.199 12 5 1 0.340 0.194 0 15 1
1.2 0.971 0.041 14.5 5 0 0.951 0.032 10.5 5 1 0.555 0.156 0 15 1
1.6 0.989 0.017 12.5 5 0 0.986 0.016 12.5 5 0 0.705 0.086 0 15 0
2.0 0.924 0.138 7 5 1 0.995 0.016 18 5 0 0.760 0.064 0 15 0

.25

0.8 0.807 0.124 11 5 1 0.797 0.147 14 5 1 0.500 0.219 0 15 0
1.2 0.948 0.040 5.5 5 0 0.952 0.032 19.5 5 1 0.617 0.118 0 15 0
1.6 0.970 0.019 3 5 0 0.984 0.027 22 5 0 0.742 0.148 0 15 0
2.0 0.979 0.020 4 5 0 0.991 0.007 21 5 0 0.840 0.076 0 15 0

.50 2.0 0.911 0.036 0 5 0 0.991 0.013 25 5 1 0.864 0.055 0 15 0

p
=

1
0
,K

=
7
,n

=
2
0
0
0

.15

0.8 0.963 0.018 20 7 0 0.648 0.466 5 7 4 0.761 0.136 0 14 5
1.2 0.994 0.090 12 7 0 0.995 0.007 13 7 1 0.916 0.112 0 17 2
1.6 0.911 0.126 5.5 6 1 0.999 0.036 17.5 8 1 0.969 0.055 2 17 3
2.0 0.904 0.154 0.5 6 1 1.000 0.011 21.5 8 2 0.956 0.041 3 18 2

.25

0.8 0.962 0.025 25 7 0 0.781 0.361 0 6 3 0.843 0.106 0 16 2
1.2 0.994 0.005 20 7 0 0.991 0.022 5 8 1 0.956 0.036 0 16 2
1.6 1.000 0.144 11 7 1 0.999 0.009 10 8 1 0.981 0.007 4 17 2
2.0 0.918 0.137 5 6 1 0.999 0.003 15 7 1 0.980 0.009 5 18 3

.50 2.0 1.000 0.002 10.5 7 0 1.000 0.008 14.5 8 1 0.912 0.150 0 113

p
=

2
0
,K

=
1
5
,n

=
5
0
0
0

.15

0.8 0.994 0.041 18 15 0 0.358 0.092 0 5 1 0.974 0.007 7 22 2
1.2 0.858 0.161 0 13 2 0.985 0.022 15 17 2 0.982 0.004 10 21 2
1.6 0.833 0.097 0 12 3 0.984 0.029 13 17 2 0.981 0.004 12 20 3
2.0 0.789 0.077 0 11 1 0.986 0.029 15 17 3 0.981 0.003 10 21 3

.25

0.8 0.994 0.002 25 15 0 0.407 0.143 0 5 2 0.940 0.020 0 17 1
1.2 0.960 0.158 11.5 15 1 0.983 0.037 12.5 16 3 0.960 0.018 1 17 2
1.6 0.880 0.092 1 15 3 0.979 0.028 19 18 3 0.962 0.010 5 16 2
2.0 0.820 0.130 0 13 3 0.982 0.029 23 17 2 0.951 0.033 2 16 3

.50 2.0 1.000 0.066 12 15 1 0.995 0.014 13 17 2 0.617 0.349 0 19 5

both performed poorly when applied directly to the highly-skewed
datasets of (d), but did much better on data transformed to reduce
skewness in each dimension, with similar results as in Section 3.1.

Our experiments illustrate some of the main properties ofk-
clips. The main algorithm performs well in identifying cluster cores,
centers and scatter when the distribution is far removed from the
Gaussian which is used to motivate the objective function in our
algorithm. Robust methods of scale and hence core estimation al-
low the algorithm to take deviations from spherical and compact
clusters in its stride. The algorithm does have a breaking-point,
reached, for instance, when data are heavily-skewed and clusters
only moderately-separated. In such cases, transforming the dataset
can improve performance. Our BIC-type criterion for estimating the
number of clusters is more sensitive to deviations from the Gaus-
sian, performing well when the clusters are compact and regular but
not quite spherical (Section 3.1 and 3.2) or spherical but not com-
pact (Section 3.3), but rarely otherwise. We now turn our attention
towards categorizing industrial releases of mercury.

4. Application to Mercury Release Data

The mercury release data were severely and differentially skewed in
the variables of interest, with kurtosis for fugitive air emissions and
total off-site releases of around 120 and 1,300 respectively. Given
the results of the simulations, we followed Lin (1973) and used a
shifted loglog transformation:Yij = log (1 + log (1 + Xij)), where
Xij denoted thejth type of release reported by theith facility.
Each transformed variable was scaled by its standard deviation to
allow for the use of Euclidean distances. After transformation, there
still remained a number of outliers, mostly facilities with massive
mercury releases which needed to be accounted for while identifying
similar facilities.

A total of fourteen clusters, ranging in size from 11 to 257 facil-
ities, and 98 scatter facilities were optimally identified byk-clips.
These clusters (henceforthk-clipsters) were estimated to beexact−
0.89 − separated, which indicated at least moderate separation of
identified groups. The marginal distributions of the clusters, in terms
of their deciles, with the intensities mapped onto the standardized
shifted loglog scale described above are shown in Figure 3. Clearly,
the mercury release characteristics for each group were quite distinct,
providing confidence in the obtained groupings.
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Figure 3. Distribution of members of each identified cluster with area of rectangles proportional to cluster size. The deciles of the marginal
releases for each group are represented by the intensities on a standardized loglog scale separate for each release type.

The utility of groupings and scatter obtained viaTCTW was
unclear, as the algorithm always builtKT groups, until we setKT =
200 upon which it terminated at 199 clusters.Mclust estimated
56 optimal clusters (henceforthMclusters), ranging in size from 5
through 94 facilities and 71 scattered points withRa = 0.232 when
compared tok-clips. With so manyMclusters, interpreting the results
was more challenging as not all clusters were noticeably distinct.
Indeed, the four largestk-clipsters together comprised as many re-
ports (60%) as the twenty-one largestMclusters. Eachk-clipster
contained facilities that were in multipleMclusters but very few
(2 of 56)Mclusters contained a substantial number of observations
from severalk-clipsters. Further, theMclusters were estimated to be
exact − 0.29 − separated, so at least some of them were poorly-
separated. Taken together, we conclude thatMclust subdivided many
k-clipsters.

A review of the majork-clipsters showed that oil- and coal-
combusting electric power facilities disproportionately populated the

second (69.6% of 217 reports) and third largest clusters (58.2% of
212 reports) which were characterized by moderate to high stack
air emissions, and high stack air and land releases, respectively. On
the other hand, they formed a small proportion (16 or 12% of 134
reports) of the fourth largest (“clean”) group, which also contained
a substantially higher number of reports from California. The major
group memberships thus appeared to be concordant with other intu-
itive facility characteristics and lent further confidence in thek-clips
classification.

Maitra (2007) categorized industrial mercury releases via a mix-
ture model with commonΣ that made estimation with singleton
groups possible, implicitly allowing for outliers. Similar tok-clips,
his five largest groups accounted for almost 60% of facilities. His
analysis showed that oil- and coal-combusting electric services dom-
inated the groups characterized by high-volume mercury releases,
also corroborated here byk-clips. However, his efforts to properly
account for outliers appeared to be only partially successful as many
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Table 3
Summary of different types of mercury releases (in pounds) of the major clusters as identified byk-clips and by Maitra (2007). For each

cluster, the top row contains cluster sizes (nc) and means of the different releases. The bottom row contains the number of common facilities
in thek-clipster and its closest Maitra (2007) counterpart (first row) followed by the median for each cluster. In all cases, regular fonts (left

side) indicatek-clips clusters and where applicable, italicized fonts (right side) represent Maitra (2007) clusters. Note that underground
injections releases in each cluster are not displayed as all cluster means and medians were essentially zero. Also, the lastk-clipster has no

corresponding cluster in Maitra (2007).

nc Fugitive Air Stack Air Water Land Off-site

257 281 0.008 0.004 99 88 0.021 0.001 0.114 0.049 0.067 0.11
[230] 0 0 34 24.6 0 0 0 0 0 0

217 154 0.009 0.005 225 249 0.021 0.003 153 186 0.415 0.223
[150] 0 0 120 177 0 0 53 81.9 0 0

212 148 0.009 0.006 93.6 79.3 0.075 0.001 3.59 0.97 3126 4448
[147] 0 0 37.5 31 0 0 0 0 20.2 19.5

134 141 0.043 0.05 0.275 0.535 0.025 0.001 0.126 0.094 0.261 0.378
[116] 0 0 0.05 0.15 0 0 0 0 0 0

124 103 0.019 0.002 0.273 0.2 0.041 0.001 1 0.01 1064 1254
[103] 0 0 0 0 0 0 0 0 27.9 30

97 0.011 4.36 0.073 0.289 0.434
0 3.7 0 0 0

facilities with extremely high volumes of mercury releases were
classified byk-clips as scatter and thek-clipsters were more similar.
Table 4 compares the means and medians of the largest clusters of
each method.

Maitra’s (2007) largest cluster of 281 facilities shared 230 com-
mon reports with the largestk-clipster. These clusters shared similar
characteristics, including moderately large stack air emissions. The
remaining 51 reports had low stack air emissions (from 2–13 lbs) and
total offsite releases (0–2 lbs) and were classified in the sixth largest
k-clipster with other facilities also having moderately low stack air
emissions and some off-site disposals. This cluster was the only
large k-clipster not in loose correspondence with a Maitra (2007)
cluster. Further, half of the primarily lime-manufacturing facilities
were represented in thisk-clipster. A quarter of the facilities from
this industry were in the 51 discrepant reports above, thusk-clips
identified a cluster more meaningful for targeted policy formulation.
The fourth largest of Maitra’s (2007) groups (141 reports) was char-
acterized by low emissions for all categories. This “clean” group
shared 116 of its cleanest facilities with the fourth largestk-clipster,
thus making it a more truly “clean” group. The majority of the
remaining reports from Maitra’s (2007) “clean” group (24 of 25)
fell in the sixth largestk-clipster characterized by moderately high
stack air releases. Finally, 34 of the 98 scatter observations ink-clips
were classified as singleton clusters in Maitra (2007) with another
28 in small clusters of two or three facilities each. The remaining
36 facilities were found in his bigger clusters along with facilities
identified as clustered byk-clips. Of these, the largest number to
appear in any one cluster was six. This group had 28 facilities and
overlapped with ak-clipster of 18 facilities. The six observations had
somewhat higher land and total offsite disposals resulting in skewed
summaries for the Maitra (2007) group when compared to the above
k-clipster.

In summary,k-clips found a new major cluster consisting of
facilities with moderate levels of mercury releases that were grouped
by Maitra (2007) as either “clean” or heavy polluters. While this
new group was the most striking difference, a comprehensive assess-

ment of the groupings indicated sharper boundaries between thek-
clipsters. Well-demarcated clusters can lead to better understanding
of factors governing mercury releases and more meaningful, effective
public policies. In particular, determining what practices are used by
industries with little to no levels of mercury releases without erro-
neously including the moderate polluters may better guide strategies
to reduce the mercury effluents of the heavier polluters. Although
Mclusters may help achieve the same goal, these less sharply distin-
guishable groups may not be significantly different, after accounting
for measurement error, and could lead to confusing, contradictory
and ineffective regulatory policies.

5. Discussion

The main contribution of this paper is the development of a modified
k-means algorithm for clustering in the presence of scatter,i.e.obser-
vations that are unlike any other in the dataset. Several applications in
the biological and other sciences need to cluster observations in the
presence of scatter. As discussed in Tseng and Wong (2005), standard
algorithms lead to erroneous conclusions when applied to such data.
Our suggested methodology is an iterative scheme which requires
initialization, for which we also provide a deterministic approach.
We also developed a BIC-type criterion to estimate the number of
clusters, which reduces to Marriott’s (1971) criterion when scatter
is a priori known to be absent. ISO/ANSI-compliant C software
implementingk-clips andR code for all simulation datasets used
in this paper and the Web Appendix are available upon request.
Our algorithm is computer-intensive but can be implemented via
modifications of efficient strategies fork-means. Further, while our
methodology was developed in the context of adaptingk-means, it
can be readily retooled for other partitioning algorithms such ask-
medoids.

Experimental evaluations of the algorithm in several scenarios
were very promising: we almost uniformly outperformed TCTW
even when the number of clusters was known and algorithm parame-
ters for the latter were set to maximize the likelihood of the data un-
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der the true model. For experiments in which clusters were not well-
separated, we typically outperformed Fraley and Raftery’s (2006)
Mclust even though the experimental datasets were generated us-
ing the model explicitly assumed byMclust. Although Mclust
and TCTW (for higher dimensions, withK unknown) performed
marginally better for well-separated clusters,k-clips remained supe-
rior when clusters had some overlap. Our main algorithm also proved
considerably robust to deviations from compact spherical clusters,
despite the fact that its development was motivated using Gaussian
distributional assumptions. We also estimated the number of clusters
very satisfactorily in cases for compact or spherical clusters, but not
so well when neither assumption was true. In summaryk-clips com-
plements existing clustering methods by excelling on possibly larger
datasets whose clusters are not well-separated.Mclust is perhaps
a better choice for smaller-sized datasets when clusters are well-
separated or have lower-dimensional Gaussian representation. We
caution only that the current method for estimatingK̂ may compro-
misek-clips’s performance on non-spherical clusters, but there was
no clear winner for such data.

Accounting for unusual data (i.e.scatter) can produce more mean-
ingful classifications, enabling improved understanding of data and
clearer distinctions between clusters. For example, ourk-clips ap-
plication to industrial release of mercury and mercury compounds
in 2000 produced tighter, more interpretable clusters than a previous
attempt (Maitra 2007) and could ultimately lead to improved policies
for public health.

A few points remain to be addressed. As mentioned in Section 2.1,
convergence of our algorithm needs to be rigorously established.
There is some scope for optimism here, given that the algorithm
converged in all experiments reported in this paper and the Web
Appendix. Further, as seen in the Section 2.2 of the Web Appendix,
our suggested initialization strategy did very well when clusters were
not well-separated; performance was less emphatic when compared
with an initialization strategy based upon using the nearest-neighbor
cleaning of Byers and Raftery (1998) followed by the deterministic
initialization strategy of Maitra (2007). One suggestion not imple-
mented in our experiments is to obtain starting values using both
strategies and to initializek-clips with the one that optimizes the
objective function. Any of these novel strategies could also poten-
tially be modified for use in initializingMClust or TCTW. A second
issue pertains to clustering in the presence of scatter using data that
are constrained to lie in certain subspaces. Such applications arise,
for instance, when the desired metric for clustering is correlation,
which is equivalent to applying the Euclidean metric to data sphered
after centering (note that AdaptClust is specifically designed for
such data). Parts of the algorithm would translate readily but core
building would need reconsideration. A third issue pertains to clus-
tering massive datasets in the presence of scatter; in this case, it
may be possible to adapt this approach within the framework of the
multi-stage clustering approach of Maitra (2001). Finally, improved
methods for estimating the number of clustersK̂ could significantly
improve the robustness of our method, since it was shown superior to
existing methods for non-Gaussian clusters whenK is known. Thus,
while the methods suggested in this paper can be regarded as impor-
tant statistical contributions for clustering datasets in the presence of
scatter observations, some issues meriting further attention remain.

SUPPLEMENTARY MATERIALS

The Web Appendix referenced in Sections 1, 2, 3 and 5 is avail-
able under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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