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SUMMARY: A new methodology is proposed for clustering datasets in the preséncattered observations. Scattered
observations are defined as unlike any other, so traditional app#wtegorce them into groups can lead to erroneous
conclusions. Our suggested approach is a scheme which, undemigsuof homogeneous spherical clusters, iteratively
builds cores around their centers and groups points within each core igdilgfying points outside as scatter. In the
absence of scatter, the algorithm reduce&-tmeans. We also provide methodology to initialize the algorithm and to
estimate the number of clusters in the dataset. Results in experimental siisitam excellent performance, especially
when clusters are elliptically symmetric. The methodology is applied to thesisalf/the United States Environmental
Protection Agency (EPA)’s Toxic Release Inventory (TRI) reportinaiuistrial releases of mercury for the year 2000.
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1. Introduction 1.1 Categorizing Industrial Facilities that Release Mercury

Clustering or finding groups of similar observations in datasets Fublic health officials have long been concerned about the adverse
a well-studied issue in the statistics literature (Eveetttal, 2001; effects of prenatal mercury exposure on physiological and negwolo
Fraley and Raftery, 2002; Hartigan, 1985; Kaufman and Rousseeuwal development in children (Grandjeahal, 1997; Kjellstromet al,
1990; Kettenring, 2006; McLachlan and Bashford, 1988; Murtagh986; National Academy of Sciences, 200@r&hseret al, 1999).
1985; Ramey, 1985). Some approaches are hierarchical (either Blge element is believed to originate in the environment through
glomerative orbottom-up or divisive or top-dowr) while others releases from industrial facilities and to travel long distances on
are non-hierarchical, optimally partitioning data using parametratmospheric air currents, contaminating even distant areas (Fitzger-
assumptions and maximizing a loglikelihood function or minimizingld et al, 1998). Bacteria convert some mercury to the even more
some measure of distortion — such as the trace or determinantieshal methylmercury which is transferred to humans through the
the within-sum-of-squares-and-cross-produdf)( matrix (Freid- consumption of contaminated fish and seafood. There is no safe
man and Rubin, 1967; Scott and Symons, 1971) — of identifidichit for the latter chemical and it is more easily absorbed by the
clusters. Implementation is usually via locally optimal algorithmbody. Developing effective policies that limit mercury releases is
such ask-means or its generalizations suchkasiedoids (Chapter 2 thus crucial, but requires a detailed understanding of what and how
of Kaufman and Rousseeuw, 1990), or by applying the expectatidneustries release mercury.
maximization (EM) of a specified (typically Gaussian) mixture The TRI database for the year 2000 contains data on releases, in
model (Celeux and Govaert, 1995; Fraley and Raftery, 1998; Fralpgunds, of mercury and mercury compounds to fugitive and stack
and Raftery, 2002; McLachlan and Peel, 2000). air emissions, water, land, underground injection into wells and off-
Most common partitioning algorithms group all observations, agite disposals as reported by 1,409 eligible facilities from twenty-
undesirable feature in datasets wihatter points(defined to be four different kinds of industries. A large proportion (33%) of these
observations unlike any other in the dataset). Identifying such ofacilities combust fossil fuels to generate electricity while another
servations may be of scientific interest and including them in clustet&% manufacture or process chemicals.
with other observations may bias group summaries (such as means okn unsupervised method of grouping similar facilities is an im-
variability measures) and other conclusions. Tseng and Wong (20@6)tant tool for studying the characteristics of mercury releases.
give several examples of poor performance when clustering aldeacilities with similar patterns can be grouped together to better
rithms forcefully cluster every observation. The implications can hinderstand their effects on the environment and public health and
important, such as in the public health application which we discuksad to the framing of public policy targeted for maximum effect.
next. However, a striking feature of the dataset is the number of reports
that are unlike any other. Including them in other groups could
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skew results, obscure common characteristics and undermine tibe and estimation of<. The different elements of our proposed
effectiveness of devised policies: there is thus a crucial need for lmethodology are extensively evaluated and compared in Section 3

algorithm that accounts for scatter while clustering. and Web Appendix Section 2 through simulation experiments with
varying amounts of scatter and cluster separation. The mercury re-
1.2 Background and Related Work lease dataset introduced in Section 1.1 is analyzed in Section 4. The

There are few existing methods that address the issue of cluster@per concludes with some discussion.

in the presence of scatter. A model-based approach using EM on a

mixture-of-Gaussians augmented with a Poisson Process component

for scatter (Banfield and Raftery, 1993; Dasgupta and Raftery,;1998

Fraley and Raftery, 1998) is implemented as part ofRhgackage 2. Methodology

MCLUST (Fraley and Raftery, 2006). Unfortunately, the EM algolet X1, X2,..., X, be p-variate observations from the mixture
rithm can be notoriously slow and difficult to apply to larger datasetéistributiong(w) _ f Ck[%f(%)] + %% where V is the

The density-based hierarchical clustering method (DHC) of Jé&ing k=1 ) ) ) )

al (2003) extracts interesting patterns from noisy datasets witho{®lume of a bounded regioB with uniform densityo > 0 is a scale
actually identifying scatter. The adaptive quality-based clusteriframeter is an identification parameter anly) = v¥(y'y)
(Adapt Clust) of De Smeet. al (2002) iteratively finds cluster cores With ¢/(-) areal positive-valued function such tht) is ap-variate

in zero-mean-unit-variance standardized data up to some terminafi§gsity. Forhard clusteringmethods such ag-means,(;. is the
criterion, whereupon it classifies the remaining observations as sciservation's class indicator, while fsoft clusteringalgorithms,

ter. Tseng and Wong (2005) developed Tight Clustering (hereafté, 'ePresents the probability of its inclusion in tig¢h cluster.
TCTW) by using resampling to sequentially determine cluster cord§'€ above formulation provides a convenient way to fix ideas in a
up to a targeted numbéd 1) or until no furthertight and stable statistical framework, §t|pulat|ng tha ; comes fromlone of tth
cluster can be identified, at which point the rest are labeled as scaf§fnogeneous populations or thk + 1)th group which comprises
Along with K 7, the algorithm requires specifications for tightness ( uniformly-distributed scatter and can not be summarized beyond this
in their paper, but we user here), stability §) and another tuning Property. Our goal is to estimat€ (if unknown), the meang,, the
parameter &) which severely influences performance. The last jgumber of clustered observations'§, V' and more importantly to

set at one- to two-fold the true number of clusters, which is usuaffjassify observations into groups and scatter. We propose algorithms
not known a priori. A data-driven approach to parameter estimatiéachieve these objectives next.

is not natural to implement because unlike model-based methods,

the algorithm has no obvious objective function. Another drawback g._clips: A modified k-means algorithm for data with scatter

of this algorithm is that the sequential cluster identification doeé
not account for already identified groupings, which can result llg to build K p-dimensional uniform-volumed spheres (or cores)

partitions that violate the distance assumption of the metric used (see ) .
Figure 1e for an illustration) around each: these cores represent dense partsl(sters) of the

The optimal number of clusters<) in a dataset often needs tc)da’[aset with their complement the domain of the scattered points.

. . . h X PPints inside a core are assigned to the corresponding cluster, those
be estimated in many practical settings. Several methods (Mam%tUtside all cores are nominated as scatter, and the cluster centers and
1971, Milligan and Cooper, 1985; Tibshiraii al, 2001; Tibshirani !

and Walther, 2005) exist, but no method is viewed as clearly superfﬁf cores are u_pdatgd. This proc.:edure Is iterated until convergence.
e exact algorithm is as follows:

to the others. Additionally, many of them are inapplicable in the
presence of scatter. For instance, the calculatioWof- needed in (1) Building the coresAssign each observatioX ; to clusterk =

the context of minimizing®|W | over different partitions for each argmin, . | X: — p,, || and denote thisX; as X ;).

K (Marriott, 1971), or intr (W) of the Gap statistic (Tibshiraet al, Obtain a robust estimate,) of the standard deviation (SD) of
2001) — is then not clear. For model-based approaches, the problemthe observations, common for all dimensions, using the biweight
is sometimes reformulated in terms of model selection (McLachlan estimator of Hoagliret al (2000). Letjix ; be the median of the
and Peel, 2000), with Schwarz’s (1978) Bayes Information Criterion  th cluster andjth dimensionk = 1,...,K;j = 1,...,p),
(BIC) as a popular choice. TCTW determin&s algorithmically, andY;x),; = Xia,; — fir,; be the median-centered observa-
terminating at’’ = Kt or when no further tight and stable clus-  tions. Denote the common median absolute deviation (MAD) of
ter is possible. In our experience however, the algorithm continues theseY; ;) ;'s as5. For some constanb, letw; ) ; = Yit)s

_ [H

building clusters far beyond the tru¢. Hence, a good estimate of  Then the robust biweight estimator of the SD is given by
K is needed. In some cases, this may be provided by the researcher,

iven K and initial cluster centerie,; £ = 1,..., K}, our strategy

however even experienced researchers often have no way ofrignow (np)% [Z 2 (1 w2 )4} 3
what would be reasonable. Spuy = (1), 5 1<1 7 é(R)3 i(k),j .
In this paper, we proposeiameans-type algorithm for “Cluster- | Z\u.(k) <1 (1 — “?Uv) j) (1 _ 5“?@) j) |
z »J ’ )

ing in the Presence of Scatter” (abbreviatedkadips). Section 2

develops an iterative methodology together with an approach for  Next, create K p-dimensional spheres of common radius

its initialization. We estimaté< using an adaptation of BIC which TK = Sbwy/ X3« €aCh centered at the currgnt’s, Wherexfm
reduces to Marriott’s criterion in the absence of scatter. While we is the(1 — a)th quantile of thex?—distribution withp degrees

use k-means with scatter for our algorithmic development, other of freedom0 < o < 1.

algorithms using a central measure of tendency of a cluster (su@ AssignmentsObservations outside all cores are labeled scatter;
as k-medoids with scatter) could also be developed similarly. Our the rest are assigned to those clusters whose centers are closest
algorithm is general enough to permit other strategies for initializa- to them.
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(3) Updates.Recalculate{p,; &k = 1,..., K} using the centers of Raftery, 1998) followed by an algorithm such as the multi-stage
the points currently in each cluster. Note that scatter points ateterministic initializer of Maitra (2007) which, in the context/of

not used to update thes. means, finds a large number of local modes and then chd6sep-
(4) Repeat until convergence, upon which final cluster centers arebentatives from the most separated ones. Performance of this last
classifications into groups or scatter are obtained. approach in simulation experiments was uneven (see Web Appendix

Section 2.2), so here we develop an adaptation of Maitra (2007) that

accounts for the presence of scatter:

(1) Our algorithm locally minimizes, upon convergence, the ap-
proximate objective function given b2 log(c? + 27) + (1) Write X as then x p matrix of observationsi.e. X' =
szttt (W) + (n — n*)log (V) wheretr (W ™) is the trace of :
the within-sums-of-squares-and-products matsi® Py-) based
on then™ clustered observations. A model-based interpretation
for the above is provided in the hard-clustering context when
each cluster density is assumed to be Gaussian with dispersion . . .
matrix o2 I (see Web Appendix Section 1). Further, for known obtam th_eT n:odes along e_ach dlme_n3|on._ The product7set
and in the absence of scatter, this objective function reduces to (card|qal|tyK0) of the regultmg_one-d|men3|ona| modes are our
that for k-means. Note also that while our algorithm converged potential car.1d|F1ate.start.|ng points. o
in all our experiments, convergence has not been rigorou§|7y) For each.pomtlnY,ldentlfythe closest member #{. Eliminate
proved, and needs to be established. Such development however,tN0S€ Points fron¥ that are not closest to at leaStobserva-
is perhaps beyond the scope of this paper. tions in X. T/hls_ ellmlrllates s*catter points frof, ylel(ilng the

(2) Hoaglinet al. (2000) show thats., is an efficient and robust _ reduced sekt’ with | 7' |= K. Assume for now thak™ > K.
scale estimator in several non-Gaussian situations. Our clustéh} Initialize the algorithm of Section 2.1 with" and apply to the
ing scenario has scatter points and outliersssois reasonable datasetX to obtainK™ modes.
in determining the radius of the cores. (4) Our next goal is to obtairF representatives from the most

(3) The estimate;,, uses a parametes to modulate the influence widely separated modes. We propose using hierarchical clus-
of scatter points currently misclassified as clustered. Intuitively, tering with single linkage on thé™ local modes and cut the
higher choices ofv correspond to higher (less robust) values of resulting tree intak groups. Classify all observations into one

Comments.

{Xl:Xzf...an}. For thejth column ofX (j =1,2,...,p),

obtain ther = [(np)/"*Y7] equi-spaced quantiles, where
[z] denotes the smallest integer greater than or equal.to
Use one-dimension&-means initialized with these quantiles to

svw While lower choices result in estimates fothat are biased of the K groups. Use the group medoids as the initial cluster
downwards. Under Gaussian distributional assumptians; 9 centers{p,;k =1,2,..., K} in thek-clips algorithm.

means that observations more than 6 SD’s from every cluster

median in each dimension are ignored in the calculatios,of Comments.

In the absence of additional information, one may optimize the
objective function ovenw € {3,4.5,6,7.5,9} to get a data- (1) The choice ofr large relative to Maitra (2007) generates many
driven choice. We adopt this approach in this paper. univariate candidate starting points and avoids trapping one-
(4) The core volume is also controlled lay, with higher values dimensionak-means in local minima around scatter points. This
identifying more observations as scatter. Under Gaussian density strategy does not eliminate scatter, but increases the chance of
assumptionss. /X2 approximates the radius of the dens- ~ also finding true modes at only a modest additional computa-
est100(1 — «)% sphere of concentration in each cluster. The tional cost, since we use one-dimensiokaheans.
distributional assumption helps motivate our algorithm sinc@) A liberal choice forr means thatH is large and includes
clustering makes most sense in the context of compact groups, some scatter. Large values 8f(which may be thought of as
for which the Gaussian density provides a reasonable frame of a minimum cluster size) reduce the chance of retaining scatter
reference. in H’, but £ too large can result id{* < K. We avoid this
(5) Asw 1 oo anda | 0, the algorithm reduces to-means. problem by successively running the initializer with decreasing
& from an upper bound,; > £ until K* > K. Although no
optimal choice fo€,, can be prescribeal priori, we have found
M= I;—Lp to work well in our experiments.
Data-driven choices af anda allow for greater flexibility in de-

The above differs from DHC in that it is a non-hierarchical
algorithm classifying observations into both clusters and scatter.
Adapt Clust and TCTW identify clusters one-by-one, with the forts
mer designed to work only on mean-zero-unit-variance-standardized 4o 1ining the influence of scatter on the starting centers. Candi-
data. On the contrary, our algorithm modifiesneans to simulta- date values are all pairs of € {3,9} anda € {.01,.05,.1, .2}.
neously partition any dataset into clusters and scatter, proceeding {0y e the extreme candidate valuesfdo save éom[;uté time,
convergence from initializing cluster centers, a strategy for choosing since our objective here is merely to obtain starting values for the

which we address next. cluster means. The final initializer is chosen from among the can-
didate set by evaluating the objective function after one iteration
2.2 Initialization of Cluster Centers of k-clips using moderate values of = 6 anda = 0.05. This
Common initialization methods fok-means degrade with scatter, last step is needed in order to obtain a summary assignment of
cf. Tseng and Wong (2005) who proposed to initialize using the scatter points in the calculation of the objective function.
means of the largedt” groups obtained after cutting a hierarchically4) The hierarchical classification in Step 4 of the initialization
clustered tree intdC x p groups Our own experience has shown this  algorithm does not exclude scatter, so we use medoids instead of
approach to not perform well with increased scatter. An alternative means to help ensure that the starting centers are in the interior
is to remove clutter using-nearest neighbor cleaning (Byers and  of the clusters.



344 Biometrics, 2009

Our initialization strategy is discussed and demonstrated in the cdihe observed ranges in each dimension kiy(a, 2) deviate. Such
text of k-clips, however, it is general enough to extend to othescatter formed between 15% and 50% of each dataset.
algorithms that need initialization in the presence of scatter. We nowExperiments were done assuming known and unkndviand

address the issue of estimating the number of cludters evaluatingR, for the derived groupings relative to the true. We
useda = 0.05 and5 < € < n/pK for k-clips and compared its
2.3 Estimating the Number of Clusters performance with groupings obtained using TCTW andMwust

function of theMCLUST package inR. We usedMclust with the
Poisson Process component for scatter initialized using a random
estimate (see Page 15 of Fraley and Raftery, 2006) and a data-driven
BIC-optimal choice of dispersion matrix. TCTW was implemented

Our algorithms have so far assumed knowledg& ofvhich is rarely
true in practice, so we turn to methods for optimally estimafifig
Our proposal is to choose

- . 1 n* (1 * using Tseng and Wong’s (2005) software. For the tuning param-
K= 1 k+ = — [ = log|W
‘"‘rg,{“m{ o8 ( + p) * n <2 o8| |> (1) eters, we used a data-driven approach to choosingdhe ) in
n* . {0,0.05,0.1} x {0.6,0.7, 0.8} that maximized the likelihood model
+ (1 - ?) logV} generating the data. The ranges fof and 8 corresponded to de-

. _ . creasing and increasing orders of tightness and stability respectively
where|W*| is the determinant of'S P based on the” clustered and were taken from different scenarios of possible values distusse
observations, and’ is the volume of the region containing thejy Tseng and Wong (2005). With unknowi, we setKr in TCTW
n—n’ scattered points. We motivate (1) by modifying BIC (see Wefy pe equal to the maximum number of groups consideretdust
Appendix Section 1) under the hard clustering model with Gaussigfd x-clips. Further with TCTW, we sek’ < ko < 2K for known

densities centered dju;; k = 1,2,..., K} and a common disper- i andikr < k, < 2K with unknownk..
sionX. In the context of a model without scattef, = n andW* =

W, yielding Marriott’s criterion. Finally, the volum¥ is calculated . .

from the p-dimensional cube with axes matching the rangeskof -1 Bivariate Experiments

in each dimension, less the volume of thep-variate spheres. In For each of the three experimental scenarios, we generated 100 scat-
cases where any Sphere intersects with the boundary of the Cl}Bé@d realizations along with 500 clustered observations drawn with
V is approximated using Monte Carlo simulation, specifically b§dual probablity from one of five exactseparated Gaussians (Fig-
generating uniform pseudo-random deviates within the region of tHee 1, colored symbols). For this suity = 15. Clearly, k-clips

data and estimatingy’ as the proportion of simulated points outsideétways performed very well, even thoudhclust was marginally
the cores. better whenc = 1.6. However, the latter performed poorly with

lower separation. The performance of TCTW was uniformly weak,
with no scatter identified when= 0.8 and 1.2, and two true clusters
identified as scatter when = 1.6. A disconcerting consequence

3. Experimental Evaluations " T - ]
Th d hodol ivel | d th of the sequential identification of clusters without accounting for
e suggested methodology was extensively evaluated througly 8., v ientified partitions is well-illustrated in Figure le: some

series of simulation experiments. Thelips algorithm has three as- of the true scatter in the lower left corner was identified”)“as

pects: the main algorithm, initialization and estimation of the numb%relonging to a group (upper left) beyond its closest clustet)(*

of clusters. We only report evaluations on its overall performance ;- - estimatingk, k-clips was always correct while TCTW
here and refer to Web Appendix Section 2 for more detailed studig ays found the maxi’muﬁ(T — 15 stable and tight clusters. These
on each of these issues. Our assessment is presented graphlcallx 0rgartitions sub-divided several true clusters and misclassifed scat-

bivariate examples, and numerically for all dimensions. Our NUM&E, i1 other true clusters, resulting in very pag’s. Mclust found
ical measure is a modification of the adjusted Rand meastire ( ttg)e correct number of clusters fer= 0.8 and 1.6, whilek = 3 for

Hubert and Arabie, 1985), where scatter points are considered to be

. A o ; = 1.2 leading to a considerably poor partitioni = 0.476,
sole members of clusters of size one. This modified measure is tﬁi{ ure 2f) Th(ge harsh penalizati%r? of t%o few gl%éters?ﬂy is

more severely influenced by misclassifications of scatter into groups - onstrated by thiiclust solution in Figure 2f, which performed
with true cluster points and vice-versa than by erroneously creatiBgtter at identifying scatter and cluster than T’CTW (Figure 2e) but

additional clusters of scatter points onli, also more severely had lower R, even though TCTW identified 15 clusters and no
penalizes partitions with too few groups than with too many groupS.4iter!

Our experimental suite covered a wide range of dimensions and sep-

aration between clusters. Following Maitra’s (2007) modification of

Dasgupta’s (1999) definition, we defined a sepefariate Gaussian 3.2 Higher-dimensional Examples

densities to bexact — ¢ — separated if for every pairN (u;,3;) We performed higher-dimensional experiments wijth%, n) = (5,
andN (e, 35), s — w5l = ¢y/pmax (Amas{Z:) ; Amax (£5)}, 5, 500), (10, 7, 2,000) and (20, 15, 5,000) and varying the atsoun
with equality holding for at least one pair and,.x (X) denoting of separation between clusters. The proportignof scatter in the

the largest eigenvalue A&. In our experimentsg ranged from 0.8 experiments ranged from 15% to 25% of the total observations. We
(marginally separated) to 2.0 (well-separated) witls enforced to also performed experiments with 50% scatter and 2.0. In each

be diagonal (but not spherical) for each cluster. Observations wese, we generated 25 sets of parameters (cluster means, dispersion
generated with equal probability from each cluster, and realizatiomsxing proportions) thus obtaining 25 simulation datasets. Table 1
outside thed5% ellipsoids of concentration of all the clusters wereeports comprehensive measures on overall performance ihen
eliminated. Finally, scatter points were uniformly generated via sirknown, with results fo#S unknown shown in Table 2. (For the latter,
ple rejection from outside the union of these 95% confidence ellipcr was set to 15, 20 and 25 fpr= 5, 10 and 20, respectively.) Note
soids. The outer limits of this region were obtained by multiplyinghat TCTW did considerably worse than eitlieclips or Mclust in
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(d) k-clips: Rq = 0.912 (e) TCTW: R, = 0.391 (f) Mclust: R, = 0.862

(9) k-clips: R, = 0.952 (h) TCTW: R, = 0.615 (i) Mclust: R, = 0.975

Figure 1. Results ofk-clips (first column), TCTW (second column) aidclust (third column) with K = 5 known clusters for =
0.8,1.2,and1.6 for the first, second and third rows respectively. Small filled circlesesnt identified scatter, colors signify true clusters
and characters as identified clusters.

almost all cases with knowix’, but occassionally performed besthigh values ofc. On the other hand, fop = 20 Mclust tended to
with unknown K. k-clips did substantially better thaviclust for  grossly underestimat& for low separation and slightly overestimate
cases with low separation, bitclust performed marginally better K for higher separatiorMclust R, values were thus very poor for
than k-clips for higherc. In general k-clips correctly estimated” low separation but fairly high for well-separated clusters. TCTW
whenp = 5,10, but tended to underestimate it fpr = 20 and often found the maximunk'r stable and tight clusters for = 5
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(a) k-clips:Rqe = 0.9 (b) TCTW: R, = 0.482 (c) Mclust: R, = 0.713

(d) k-clips: Rq = 0.912 (e) TCTW: R, = 0.379 (f) Mclust: R, = 0.476

(9) k-clips: R, = 0.952 (h) TCTW: R, = 0.390 (i) Mclust: R, = 0.975

Figure 2. Results oft-clips (first column), TCTW (second column) ahttlust (third column) with K" estimated for increasing separation
¢ = 0.8,1.2,and1.6 for the first, second and third rows respectively. Small filled circlesesgnt identified scatter, colors represent true
clusters and characters denote identified clusters.

and usually substantially more than the tideclusters. Even then, dimensionality seemed to affliét-clips slightly more tharMclust
performance was rather poor for cases with low separation, but lisad TCTW for higher separation, as seen foe= 20, becoming
Mclust, improved substantially with higher separation. TCTW hadhore evident withi unknown. Note that in all our experiments, data
very goodR, values forp = 20, but was again outclassed bywere generated from the Gaussian-uniform mixture model explicitly
k-clips andMclust for higher proportions of scatter. The curse ofissumed byclust — thus, it is expected that it would perform well.
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Table 1
The median adjusted Ra GQ% values from 25 runs d§-clips andMclust with known number of clusters and TCTW with = K

target clusterslx is the interquartile of the 2% ,’s andn is the number of runs where the method has the higRgstvith ties being split
among the methods tying.

Settings k-clips Mclust TCTW
s c R1 Ir n R 1 Ir n R Ir n

= 0.8 0891 0.057 19 0.854 0.195 6 0.555 0.074 O

B e 12 0973 0032 175 0951 0.086 75 0.676 0.094 O
g ' 16 0994 0.012 15 0.989 0.016 10 0.744 0.065 O

o 20 0997 0.006 145 0.995 0.009 105 0.752 0.046 O
I 0.8 0.871 0.084 20 0.797 0.131 5 0.490 0.150 O

S 12 0948 0039 85 0949 0.07r3 165 0.617 0103 O
o 1.6 0.970 0.018 7 0.981 0.029 18 0.673 0.073 O

I 2.0 0.982 0.015 6 0.991 0.008 19 0.679 0.067 O

= 750 20 0911 0032 9 0.987 0.174 16 0.448 0.110 O
= 0.8 0.963 0.018 22 0.521 0.400 3 0.666 0.048 O

] 15 1.2 0995 0.006 17 0.993 0.134 8 0.761 0.029 O

I 1.6 0999 0.002 13 0.999 0.147 12 0.802 0.028 O

S 20 1000 0.080 13 1.000 0.144 12 0.807 0.015 O

I 0.8 0.963 0.018 25 0.781 0.411 0 0.562 0.044 O

S 1.2 0995 0.006 18 0.988 0.156 7 0.650 0.073 O

S ' 16 0999 0.002 115 0.999 0.116 135 0.683 0.060 O
I 20 1000 0.080 135 1000 0.134 115 0.675 0.083 O
& 50 2.0 1000 0.002 115 1.000 0.001 135 0.422 0.060 O
= 0.8 0.995 0.002 25 0.330 0.234 0 0.800 0.055 ©

2 15 1.2 0929 0.064 15 0.929 0.019 10 0.858 0.054 O

[ 16 0.891 0.088 9 0.879 0.073 12 0.893 0.031 4

s 2.0 0.887 0.085 7 0.923 0.066 15 0.866 0.052 3

= 0.8 0994 0.002 25 0.394 0.338 0 0.678 0.063 O

I 95 1.2 0943 0.086 17 0.931 0.132 8 0.766 0.070 O

Mﬁ ’ 1.6 0.862 0.081 7 0.921 0.060 18 0.765 0.086 O

S 2.0 0.874 0.080 7 0.922 0.102 16 0.805 0.116 2

I .50 20 0952 0.089 17 0.925 0.053 8 0.403 0.098 O
=

In summary, our experiments indicate that betblips andMclust ~ Performance however degradeR < 0.62) for unknown K as
outperform TCTW withK known. For unknownk, k-clips is the the algorithm tried to carve ellipsoidal clusters out of the irregular
best performer when groups are not well-separated, but is oeertaland spherically-constrained distributions by combining or splitting
by TCTW or Mclust otherwise. A partial explanation is that them. For both known and unknowii, performance on the highly-
clips sometimes estimated fewer than the true number of clusteskewed datasets of (d) was very poor for moderately-separated
potentially affectingR. severely. Even with well-separated clus<clusters R, < 0.28), but improved considerably for their better-
ters, however, large amounts of scatter uniformly reduced TCTW&gparated counterpart®{ > 0.72). The methodology performed
performance, while honors were about even betweatips and substantially better®. > 0.73) when applied to data transformed
Mclust. Thus, k-clips complementdclust by excelling for cases to reduce skewness in each dimension.

with poorly-separated clusters. Further, sirieelips modifiesk- We also testetclust and TCTW on these dataselsclust often

means, it is more practical to apply to large datasets kielnst. performed worse thah-clips in the moderately-separated cases but
better with higher separation. It had far more problems thatips

3.3 Additional Experiments using Non-Gaussian Clusters in separating cluster from scatter observations with distributions in

The Web Appendix (Section 2.5) also reports detailed performa d hievi llinsoidal sh likeclins b it
evaluations on two-dimensional simulation experiments where cl and (c) achieving ellipsoidal shapes Ikeclips by partition-
ter distributions vary widely from the Gaussian. We summariZ89 true glusters. For (_C)MCIUSt did substantl_ally better thah-_ .
our findings here. Our clusters in these experiments were frq ps for hlghgr separatlop, perhaps becauge it has greater erX|b|I|t.y
distributions that were (a) symmetric but heavy-tailed, (b) very if! agcorr;ogatl_lr_lg_ll_i)/\\//ver-g_lg?ter:jspnqll G?uss;ar!s (see WefbthAppendlx
regular, (c) constrained to lie on a sphere, or (d) highly-skeweﬁ.ec lon 2. _)' . exnibited simifar trends in many of these ex-
In (a), k-clips maintained the trend of good performance for bot mples as it did for the Gaussian datasets, failing to identify scatter
’ correctly, continually splitting apart clusters and occasionally failing

known and unknownK (R, > 0.95). For (b) and (c) withK . . A
known, k-clips performed at least moderately weR{ > 0.70). to adhere to the distance metric. Likeclips, Mclust and TCTW

TES and (b). For unknow, it often grossly overestimateH for
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Table 2
The median adjusted Ral CR% values from 25 runs d§-clips andMclust with unknown number of clusters and TCTW wifh set to

the maximum considered by the other methddgsis the interquartile of the 2R ,'s, ) is the number of runs where the method has the
highestR ., K% is the median estimated number of clusters &ads the interquartile of the 2%’s over the 25 runs.

Settings k-clips Mclust TCTW
S Cc R% Ir n K% If( R% Iz n K% If{ R% Ir n K% If(

= 0.8 0865 0.169 13 5 0 0.854 0.199 12 5 1 0340 0194 O 15 1
10 1.2 0971 0.041 145 5 0 0.951 0.032 105 5 1 0555 015 O 15 1
[ 1.6 0989 0.017 125 5 0 0.986 0.016 125 5 0 0.705 0.086 O 15 0
L:» 20 0924 0.138 7 5 1 0.995 0.016 18 5 0 0.760 0.064 O 15 0
I 0.8 0807 0124 11 5 1 0.797 0.147 14 5 1 0.500 0.219 O 15 0
X 25 1.2 0948 0.040 55 5 0 0.952 0.032 195 5 1 0.617 0118 O 15 0
o 1.6 0.970 0.019 3 5 0 0.984 0.027 22 5 0 0.742 0.148 O 15 0
I 2.0 0.979 0.020 4 5 0 0991 0.007 21 5 0O 0840 0076 O 15 0
= 750 20 0911 0036 0 5 0 0.991 0.013 25 5 1 0.864 0.055 O 15 0
S 0.8 0.963 0.018 20 7 0 0.648 0.466 5 7 4 0761 0136 0 14 5
5 12 0994 0.090 12 7 0 0.995 0.007 13 7 1 0916 0.112 O 17 2
[ 16 0911 0.126 55 6 1 0.999 0.036 175 8 1 0.969 0.055 2 17 3
E 20 0904 0.154 05 6 1 1.000 0.011 215 8 2 095 0.041 3 18 2
I 0.8 0962 0025 25 7 0 0.781 0.361 0 6 3 0.843 0.106 O 16 2
SR 12 0994 0.005 20 7 0 0.991 0.022 5 8 1 0956 0.036 O 16 2
= 16 1000 0.144 11 7 1 0.999 0.009 10 8 1 0.981 0.007 4 17 2
] 20 0918 0.137 5 6 1 0.999 0.003 15 7 1 0.980 0.009 5 18 3
a 50 2.0 1000 0.002 105 7 0 1.000 0.008 14.5 8 1 0912 0150 O 132
= 0.8 0994 0.041 18 15 0 0.358 0.092 0 5 1 0.974 0.007 7 22 2
3 15 1.2 0.858 0.161 0 13 2 0.985 0.022 15 17 2 0.982 0.004 10 21 2
I 1.6 0.833 0.097 0 12 3 0984 0.029 13 17 2 0981 0.004 12 20 3
S 20 0.789 0.077 0 11 1 0.986 0.029 15 17 3 0.981 0.003 10 21 3
= 0.8 0994 0.002 25 15 0 0.407 0.143 0 5 2 0.940 0.020 O 17 1
I 95 1.2 0960 0.158 115 15 1 0983 0.037 125 16 3 0960 0018 1 17 2
Kﬁ ' 1.6 0.880 0.092 1 15 3 0.979 0.028 19 18 3 0.962 0.010 5 16 2
B 20 0.820 0.130 0 13 3 0982 0.029 23 17 2 0951 0033 2 16 3
I .50 20 1.000 0.066 12 15 1 099 0.014 13 17 2 0617 0349 0 19 5
Sh

both performed poorly when applied directly to the highly-skewed. Application to Mercury Release Data
datasets of (d), but did much better on data transformed to redugge mercury release data were severely and differentially skewed in
skewness in each dimension, with similar results as in Section 3.1the variables of interest, with kurtosis for fugitive air emissions and
Our experiments illustrate some of the main propertiesiof total off-site releases of around 120 and 1,300 respectively. Given
clips. The main algorithm performs well in identifying cluster coreshe results of the simulations, we followed Lin (1973) and used a
centers and scatter when the distribution is far removed from tBRgifted loglog transformation;;; = log (1 4 log (1 + X;)), where
Gaussian which is used to motivate the objective function in out,. denoted thejth type of release reported by thith facility.
algorithm. Robust methods of scale and hence core estimation @hch transformed variable was scaled by its standard deviation to
low the algorithm to take deviations from spherical and compagfiow for the use of Euclidean distances. After transformation, there
clusters in its stride. The algorithm does have a breaking-poiggill remained a number of outliers, mostly facilities with massive
reached, for instance, when data are heavily-skewed and clusi@&rcury releases which needed to be accounted for while identifying
only moderately-separated. In such cases, transforming the datageiiar facilities.
can improve performance. Our BIC-type criterion for estimating the A total of fourteen clusters, ranging in size from 11 to 257 facil-
number of clusters is more sensitive to deviations from the Gayges, and 98 scatter facilities were optimally identified kylips.
sian, performing well when the clusters are compact and regular itese clusters (henceforthclipsters) were estimated to beact —
not quite spherical (Section 3.1 and 3.2) or spherical but not comg9 — separated, which indicated at least moderate separation of
pact (Section 3.3), but rarely otherwise. We now turn our attentiggentified groups. The marginal distributions of the clusters, in terms
towards categorizing industrial releases of mercury. of their deciles, with the intensities mapped onto the standardized
shifted loglog scale described above are shown in Figure 3. Clearly,
the mercury release characteristics for each group were quite distinct,
providing confidence in the obtained groupings.
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Figure 3. Distribution of members of each identified cluster with area of rectangtgsoptional to cluster size. The deciles of the marginal
releases for each group are represented by the intensities on a diaed#vglog scale separate for each release type.

The utility of groupings and scatter obtained Vi&C'TW was second (69.6% of 217 reports) and third largest clusters (58.2% of
unclear, as the algorithm always bulitr groups, until we sek\r = 212 reports) which were characterized by moderate to high stack
200 upon which it terminated at 199 clusteflclust estimated air emissions, and high stack air and land releases, respectively. On
56 optimal clusters (hencefortticlusters), ranging in size from 5 the other hand, they formed a small proportion (16 or 12% of 134
through 94 facilities and 71 scattered points viRh = 0.232 when reports) of the fourth largest (“clean”) group, which also contained
compared té-clips. With so manyiclusters, interpreting the results a substantially higher number of reports from California. The major
was more challenging as not all clusters were noticeably distingroup memberships thus appeared to be concordant with other intu-
Indeed, the four largest-clipsters together comprised as many reitive facility characteristics and lent further confidence in Ahelips
ports (60%) as the twenty-one largaédtlusters. Eachk-clipster classification.
contained facilities that were in multipl§lclusters but very few Maitra (2007) categorized industrial mercury releases via a mix-
(2 of 56) Mclusters contained a substantial number of observatiomsre model with commor® that made estimation with singleton
from severak-clipsters. Further, th®clusters were estimated to be groups possible, implicitly allowing for outliers. Similar teclips,
exact — 0.29 — separated, so at least some of them were poorly-is five largest groups accounted for almost 60% of facilities. His
separated. Taken together, we concludelMhatst subdivided many analysis showed that oil- and coal-combusting electric services dom-
k-clipsters. inated the groups characterized by high-volume mercury releases,

A review of the majork-clipsters showed that oil- and coal-also corroborated here By-clips. However, his efforts to properly
combusting electric power facilities disproportionately populated treecount for outliers appeared to be only partially successful as many
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Table 3
Summary of different types of mercury releases (in pounds) of tfor ohasters as identified by-clips and by Maitra (2007). For each
cluster, the top row contains cluster sizes) and means of the different releases. The bottom row contains the nofrdzanmon facilities
in the k-clipster and its closest Maitra (2007) counterpart (first row) followstthe median for each cluster. In all cases, regular fonts (left
side) indicatek-clips clusters and where applicable, italicized fonts (right side) reprelstitra (2007) clusters. Note that underground
injections releases in each cluster are not displayed as all cluster meghsadians were essentially zero. Also, the kaslipster has no
corresponding cluster in Maitra (2007).

Ne Fugitive Air Stack Air Water Land Off-site
257 281 0.008 0.004 99 88 0.021 0.001 0.114 0.049 0.067 0.11
[230] 0 0 34 24.6 0 0 0 0 0 0
217 154 0.009 0.005 225 249 0.021 0.003 153 186 0.415 0.223
[150] 0 0 120 177 0 0 53 81.9 0 0
212 148 0.009 0.006 93.6 79.3 0.075 0.001 359 0.97 3126 4448

[147] 0 0 375 31 0 0 0 0 20.2 195
134 141 0.043 0.05 0.275 0.535 0.025 0.001 0.126 0.094 0.261 0.378
[116] 0 0 0.05 0.15 0 0 0 0 0 0
124 103 0.019 0.002 0.273 0.2 0.041 0.001 1 0.01 1064 1254
[103] 0 0 0 0 0 0 0 0 27.9 30
97 0.011 4.36 0.073 0.289 0.434
0 3.7 0 0 0

facilities with extremely high volumes of mercury releases wemment of the groupings indicated sharper boundaries betweetr the
classified byk-clips as scatter and thieclipsters were more similar. clipsters. Well-demarcated clusters can lead to better understanding
Table 4 compares the means and medians of the largest clustersefdfictors governing mercury releases and more meaningful tieffec
each method. public policies. In particular, determining what practices are used by
Maitra’s (2007) largest cluster of 281 facilities shared 230 conirdustries with little to no levels of mercury releases without erro-
mon reports with the largegtclipster. These clusters shared similaneously including the moderate polluters may better guide strategies
characteristics, including moderately large stack air emissions. Tteereduce the mercury effluents of the heavier polluters. Although
remaining 51 reports had low stack air emissions (from 2—13 Ibs) ahtlusters may help achieve the same goal, these less sharply distin-
total offsite releases (0-2 Ibs) and were classified in the sixth larggsiishable groups may not be significantly different, after accounting
k-clipster with other facilities also having moderately low stack aiior measurement error, and could lead to confusing, contradictory
emissions and some off-site disposals. This cluster was the oalyd ineffective regulatory policies.
large k-clipster not in loose correspondence with a Maitra (2007)
cluster. Further, half of the primarily lime-manufacturing facilities
were represented in this-clipster. A quarter of the facilities from 5. Discussion

_this i_n_dustry were in the 51 discrepant reports abqve, Ehutips_ The main contribution of this paper is the development of a modified
identified a cluster more meaningful for targeted policy formulatlork_means algorithm for clustering in the presence of scatéebser-

The fourth largest of Maitra’s (2007) groups (141 reports) was-Cha,,jions that are unlike any other in the dataset. Several applications in
acterized by Iqw emissions f_o_r_ all c_ategorles. This clegn grouge biological and other sciences need to cluster observations in the
shared 116 of its cleanest facilities with the fourth lardestipster, presence of scatter. As discussed in Tseng and Wong (2005), standa
thus _m_aklng It & more truly “’clean" gro“up. T,t?e majority of thealgorithms lead to erroneous conclusions when applied to such data.
remaining reports from Maitra’s (2007) “clean” group (24 of 25k, \,ggested methodology is an iterative scheme which requires
fell in the sixth largesk-clipster characterized by moderately highysia|ization, for which we also provide a deterministic approach.
stack air re!e_ases. Fl_naIIy, 34 of the 98_ scattgr observatmk_n&hp)s We also developed a BIC-type criterion to estimate the number of
were classified as singleton clusters in Maitra (2007) with anothgy,siers which reduces to Marriott's (1971) criterion when scatter
28 in small clusters of two or three facilities each. The remainiqg a priori known to be absent. ISO/ANSI-compliant C software
_36 fza_qilities were found in h_is bigger clusters along with faCi“tie?mplementingk-clips andR code for all simulation datasets used
identified as clustered by-clips. Of these, the largest number 1, s paper and the Web Appendix are available upon request.
appear in any one cluster was six. This group had 28 facilities apf,- 4gorithm is computer-intensive but can be implemented via
overlapped with &-clipster of 18 facilities. The six observations h"J‘dmodifications of efficient strategies férmeans. Further, while our
somewhat higher land and total offsite disposals resulting in Skewﬁf?ethodology was developed in the context of adaptingeans, it
summaries for the Maitra (2007) group when compared to the abqyg, e readily retooled for other partitioning algorithms suck-as
k-clipster. medoids.

In summary, k-clips found a new major cluster consisting of  gyperimental evaluations of the algorithm in several scenarios
facilities with moderate levels of mercury releases that were group\gfére very promising: we almost uniformly outperformed TCTW
by Maitra (2007) as elther.“plean_" or heavy polluters. W_h'le thigven when the number of clusters was known and algorithm parame-
new group was the most striking difference, a comprehensivesassggys tor the latter were set to maximize the likelihood of the data un-
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der the true model. For experiments in which clusters were not well- SUPPLEMENTARY MATERIALS
separated, we typically outperformed Fraley and Raftery’s (2001?
Mclust even though the experimental datasets were generated
ing the model explicitly assumed bMiclust. Although Mclust
and TCTW (for higher dimensions, witkl unknown) performed
marginally better for well-separated clustets;lips remained supe-
rior when clusters had some overlap. Our main algorithm also proved ACKNOWLEDGMENTS

considerably robust to deviations from compact spherical clusters,

despite the fact that its development was motivated using Gaussidle authors very gratefully acknowledge the insightful comments
distributional assumptions. We also estimated the number of clustap$l helpful suggestions of a Co-Editor, an associate editor and three
very satisfactorily in cases for compact or spherical clusters, but figferees which greatly improved this article. This material is based, in
so well when neither assumption was true. In sumniacjips com-  part, upon work supported by the National Science Foundation (NSF)
plements existing clustering methods by excelling on possibly largéfder its CAREER Grant No. DMS-0437555 and NSF VIGRE Grant
datasets whose clusters are not We||_separaMJst is perhaps No. 0091953. Any OpiniOﬂS, findings, and conclusions or recommen-
a better choice for smaller-sized datasets when clusters are weltions expressed in this material are those of the authors and do not
separated or have lower-dimensional Gaussian representation. \ggessarily reflect the views of the National Science Foundation.
caution only that the current method for estimatiignay compro-
mise k-clips’s performance on non-spherical clusters, but there was
no clear winner for such data.

Accounting for unusual data €. scatter) can produce more meanganfield, J. D. and Raftery, A. E. (1993). Model-Based Gaussidn an
ingful classifications, enabling improved understanding of data and  Non-Gaussian Clusteringiometrics49:803-21
clearer distinctions between clusters. For example,kealips ap-  Byers, S. and Raftery, A. E. (1998). Nearest-Neighbor Clutter Re-
plication to industrial release of mercury and mercury compounds  moval for Estimating Features in Spatial Point Proceskrs-
in 2000 produced tighter, more interpretable clusters than a previous ng| of the American Statistical Associati®8:577-584.
attempt (Maitra 2007) and could ultimately lead to improved policieseleux, G. and Govaert, G. (1995). Gaussian parsimonious cluster-
for public health. ing models Pattern Recognitio28:781-93.

A few points remain to be addressed. As mentioned in Section 2Hasgupta, S. (1999) Learning mixtures of GaussiBnsceedings of
convergence of our algorithm needs to be rigorously established. |EEE Symposium on Foundations of Computer Scie688-
There is some scope for optimism here, given that the algorithm 44, New York.
converged in all experiments reported in this paper and the Wela Smet, F., Mathys, J., Marchal, K., Thijs, G., De Moor, B., and
Appendix. Further, as seen in the Section 2.2 of the Web Appendix, Moreau, Y. (2002). Adaptive quality-based clustering of gene
our suggested initialization strategy did very well when clusters were  expression profileBioinformatics18:735-46.

not well-separated; performance was less emphatic when compagggyritt, B. S., Landau S. and Leesem, M. (2002uster Analysis
with an initialization strategy based upon using the nearest-neighbor  (4th ed.). Hodder Arnold. London.

cleaning of Byers and Raftery (1998) followed by the deterministicraley, C. and Raftery, A. E. (1998). How many clusters? Which
initialization strategy of Maitra (2007). One suggestion not imple-  cluster method? Answers via model-based cluster analysis.
mented in our experiments is to obtain starting values using both  Computer Journa#1:578-88.

strategies and to initializé-clips with the one that optimizes the Fraley, C. and Raftery, A. E. (2002). Model-Based Clustering, Dis-
objective function. Any of these novel strategies could also poten-  criminant Analysis, and Density Estimatiodournal of the
tially be modified for use in initializingClust or TCTW. A second American Statistical Associatid®v:611-31.

issue pertains to clustering in the presence of scatter using data fh@jey, C. and Raftery, A. E. (2006) MCLUST Version 3: An R
are constrained to lie in certain subspaces. Such applications arise, package for Normal Mixture Modeling and Model-Based Clus-
for instance, when the desired metric for clustering is correlation,  tering. Technical Report No. 504. University of Washington.
which is equivalent to applying the Euclidean metric to data spherggtzgerald, W. F., Engstrom, D. R., Mason, R. P. and Nater, E. A.
after centering (note that Adagtlust is specifically designed for (1998). The case for atmospheric mercury contamination in
such data). Parts of the algorithm would translate readily but core  remote area€nvironmental Science and Technolo89(1):1-
building would need reconsideration. A third issue pertains to clus- 7.

tering massive datasets in the presence of scatter; in this caserélidman, H. P. and Rubin, J. (1967). On some invariant criteria for

may be possible to adapt this approach within the framework of the  grouping dataJournal of the American Statistical Association
multi-stage clustering approach of Maitra (2001). Finally, improved  §2:1159-78.

methods for estimating the number of clusté&fould significantly Grandjean, P., Weihe, P., White, R. F., Debes, F., Araki, S.,
improve the robustness of our method, since it was shown superiorto  yokoyama, K., Murata, K., Sorensen, N., Dahl, R., and Jor-
existing methods for non-Gaussian clusters wheis known. Thus, gensen, P. J. (1997). Cognitive deficit in 7-year-old children
while the methods suggested in this paper can be regarded as impor- with prenatal exposure to methylmerculeurotoxicology and
tant statistical contributions for clustering datasets in the presence of Teratology19(6):417-28.
scatter observations, some issues meriting further attention remaifgrtigan, J. A. and Wong, M. A. (1979). A K-means clustering
algorithm.Applied Statistic28, 126-130.
Hartigan, J. (1985). Statistical theory in clusteridgurnal of Clas-
sification2:63-76.
Hoaglin, D. C., Mosteller, F., and Tukey, J. W. (2000hderstanding

?19 Web Appendix referenced in Sections 1, 2, 3 and 5 is avail-
&bie under the Paper Information link at the Biometrics website
http://www.biometrics.tibs.org.
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