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ABSTRACT 
In this paper, a fuzzy-matching clustering algorithm is introduced 
to group subjects found in spam emails which are generated by 
malware.  A modified scoring strategy is applied in dynamic 
programming to find subjects that are similar to each other.  A 
recursive seed selection strategy allows the algorithm to detect 
similar patterns even when the spammer creates a variation of the 
original pattern.   A sliding threshold based on string length helps 
to minimize false-positives.  
The algorithm proves to be effective in detecting and grouping 
spam emails using templates.   It also helps spam investigators to 
collect and sort large amount of malware-generated spam more 
efficiently without looking at the email content.    

Categories and Subject Descriptors 
H.4.3 [Information Systems Applications]: Communications 
Applications – Electronic mail 
K.4.1 [Computers and Society]: Public Policy Issues – Abuse 
and crime involving computers 

General Terms 
Algorithms, Experimentation, Security. 
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Electronic Mail, Spam, Data Mining, Forensics, Cyber Crime. 

1. INTRODUCTION 
Malware-generated spam emails usually exhibit certain 
patterns[3]. For example, a spam email subject like “Dear 
editor5@domain.org April 84% OFF” is generated by using a 
template with variation in certain fields.   The template uses a 
pattern like: “Dear” followed by recipient’s email address, 
followed by current month, followed by a discount percentage, 
followed by “OFF”.  If we see another subject like “Dear 
pyihy@domain.org May 84% OFF”, then we know that they are 
probably generated by the same template, and therefore are likely 
tied to the same spammer.  Detection of these patterns is useful to 
investigators and anti-spam workers who seek to attribute spam 
messages to the criminal or botnets[1][4] who sent them. 
Spam emails like the example above can be grouped using fuzzy 
string matching, also known as approximate or inexact string 

matching.  In this paper we apply fuzzy string matching to sets of 
spam subjects to identify related messages.  The resulting groups 
are very likely to be generated by malware using similar 
templates.   

2. CLUSTERING ALGORITHM 
2.1 Similarity of Strings  
The most common way to measure disagreement between strings 
is through edit distance, also referred as Leveshtein distance [2].   
Because we want the similarity rather than distance, we use 
dynamic programming to find the alignment between a pair of 
strings s and t that maximizes the number of matches.   The 
resulting number of matches between strings s and t is called their 
inverse Levenshtein distance, written as ILD(s,t).   
However, we prefer the measure of similarity between a pair of 
strings to be always between 0 and 1.  We want it to express the 
portion of the strings that match.  The Jaccard coefficient 
accomplishes this but is defined for sets instead for strings.  
Therefore, we define the Jaccard coefficient for strings in a way 
analogous to sets.  The Jaccard coefficient on sets A and B is 
defined by:  
Jaccard(A, B) = (|A�B|)/(|A| + |B| - |A�B|)                        *      
where |A| and |B| are the size of set A and B, and |A�B| is the size 
of intersection. 
It yields a value between 0 and 1.  Having the number of matches 
from the alignment, we define the Jaccard coefficient for strings s 
and t by: 
Jaccard(s,t) = ILD(s,t)/(|s| + |t| - ILD(s,t)) 

2.2 Similarity on Spam Subjects 
Next we define: a token is a sequence of nonblank characters in a 
subject; tokens are separated by blanks. A subject will be regarded 
as a sequence (or string) of tokens. 

If tokens are compared using exact matching, then 
Jaccard(“Viagra 80mgx30 pills”, “Price for Viagra 50mgx60 
pills”) = 2/(3+5-2) = .333 because there are two matching tokens.                           
However, we want to allow tokens to partially match to each 
other, when two tokens p and q have the same number of 
characters, say n characters: length(p) = length(q) = n.  Match(p, 
q) = m/n where m is the number of matching characters.  The 
matching is done like this: for each character (p1  ,p2,… , pn) in p 
and (q1  ,q2,… , qn) in q, compare pi  with qi.  This computation is 
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more rapid than dynamic programming, because we only consider 
tokens with same number of characters.  
Now Jaccard(“Viagra 80mgx30 pills”, “Price for Viagra 50mgx60 
pills”) = 2.7/(3+5-2.7) = 0.51, because the partial match score of 
“80mgx30” to “50mgx60,” is 0.7. 

2.3 Clustering Spam Subjects 
A pattern matching problem is: given a pattern P, find in a set of 
strings S={S1,S2,…, Sn} all strings matching to P.  Our problem is 
to find in S all interesting patterns and the corresponding strings.  
We applied a recursive seed selection algorithm.  Let S be the set 
of subjects, and let S0 = S.  To form one group (one cluster): 
Select an arbitrary subject s in S0, usually the first one.  Then let 
Group(s) = {t: match(s,t) � h1} (where h1 is a similarity threshold) 
and remove Group(s) from S0.  After a group Group(s) is formed, 
attempt to enlarge it by selecting an s' in Group(s) (but s' 
relatively far from s), and adjoin all subjects t such that 
match(s',t)�h1.  s' is picked from Group(s) where match(s', s) is 
minimum. New s' is repeatedly selected until no new t can be 
drawn to the group. The result of this is that one group has been 
formed, and S0 has shrunk.   We repeat this, until S0 is empty. 
Now we have partitioned the set S of subjects into groups, some 
large and some small.  Next, discard all groups containing fewer 
than h2 subjects (where h2 is a threshold).   
We also introduced a slack variable � to fine tune the similarity 
threshold h1,  
h1=base ± � 
� is based on a standard normal distribution function of the string 
length (for spam subject, it is the number of tokens). The statistics 
(average string length and standard deviation) used in the function 
can be easily computed when loading the spam data.   
For a pair of strings that are longer than average string length, � is 
subtracted from the base threshold and the tuned threshold will be 
slightly lower.  And for a pair of strings that is shorter, � is added 
to the base threshold and the threshold will be slightly higher. 
Parameters in the function can be tuned to limit the value range of 
� to be a small portion of the base threshold. 

3. EXPERIMENTS 
The spam emails were contributed by a spam researcher, who has 
a “catch all” policy to collect emails on his domains sent to non-
existing email accounts which are believed to all be spam.   
Starting from March 2008, there are approximately over 10,000 
up to 20,000 spam messages and 3000 to 6000 distinct email 
subjects every day.  Note there is a 1:3 ratio between subjects and 
email messages. 

We tested on three days data using different base thresholds.  
Results showed that a base threshold between 0.45 and 0.5 yields 
satisfactory accuracy rate (Table 1).   Since this is the first stage of 
clustering spam emails, we want to be safe rather than generating 
too many false-positives.   Other clustering methods will be built 
on the results generated by this method.   
The recursive seed selection strategy was able to pick up 
variations in pattern.   For example, 

Viagra (Sildenafil) 100mg x 30 pills 
Price for Viagra 100mg x 60 pills 

Viagra (Sildenafil) 50mg x 30 pills $3.00 per pill 
$89.95 Viagra 50mg x 30 pills buy now 
Viagra (Sildenafil) 50mg x 30 pills $3.00 per pill buy now 
 
The sliding threshold was able to put more restraint on shorter 
subjects, for example: 
Group 1: 
3a06c0.c15a38’s discount  #VUUkNK. BEEST Quaelity MedDs. 
3a2061bf.5640c7’s discount  #MeEhEi. BEEST Quaelity MedDs. 
Group 2: 
RE: Discount 
Discount 
Although groups 1 and 2 generate the same similarity score, the 
sliding threshold will allow group 1 to join but not group 2. 
 

Table 1: May 1st 2008 subject groups 

Base 
thres
hold 

# of 
groups 

# of 
grouped 
subjects 

# of 
validated 
groups 

# of 
subjects 
validated 

# of 
groups 
can be 
merged 

0.4 32 2024 28 1926 0 

0.45 31 1898 28 1886 3 

0.5 30 1450 29 1435 11 

0.55 37 1292 37 1292 22 

 

4. CONCLUSION AND FUTURE WORK 
This paper used modified Levenshtein edit distance combined 
with Jaccard similarity coefficients to cluster spam subjects.  The 
recursive seed selection and sliding threshold help to reduce the 
false-negative and false-positive rate.  According to our data, 
around 1/3 of the email subjects each day match a pattern when 
using fuzzy matching.   The patterns we found, combined with 
other clustering methods, will hopefully cluster large groups of 
emails which can be linked to a single spammer that created them.  
Future work includes making the system more adaptive to 
changes in patterns, including foreign character sets, and weighted 
tokens, and considering fuzzy matching of additional attributes, 
such as sender name or URL path. 
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