
Clustering Malware-generated Spam Emails
With a Novel Fuzzy String Matching Algorithm
Chun Wei*

weic@cis.uab.edu

Alan Sprague*
sprague@cis.uab.edu

Gary Warner*
gar@cis.uab.edu

ABSTRACT
In this paper, a fuzzy-matching clustering algorithm is introduced
to group subjects found in spam emails which are generated by
malware. A modified scoring strategy is applied in dynamic
programming to find subjects that are similar to each other. A
recursive seed selection strategy allows the algorithm to detect
similar patterns even when the spammer creates a variation of the
original pattern. A sliding threshold based on string length helps
to minimize false-positives.
The algorithm proves to be effective in detecting and grouping
spam emails using templates. It also helps spam investigators to
collect and sort large amount of malware-generated spam more
efficiently without looking at the email content.

Categories and Subject Descriptors
H.4.3 [Information Systems Applications]: Communications
Applications – Electronic mail
K.4.1 [Computers and Society]: Public Policy Issues – Abuse
and crime involving computers

General Terms
Algorithms, Experimentation, Security.

Keywords
Electronic Mail, Spam, Data Mining, Forensics, Cyber Crime.

1. INTRODUCTION
Malware-generated spam emails usually exhibit certain
patterns[3]. For example, a spam email subject like “Dear
editor5@domain.org April 84% OFF” is generated by using a
template with variation in certain fields. The template uses a
pattern like: “Dear” followed by recipient’s email address,
followed by current month, followed by a discount percentage,
followed by “OFF”. If we see another subject like “Dear
pyihy@domain.org May 84% OFF”, then we know that they are
probably generated by the same template, and therefore are likely
tied to the same spammer. Detection of these patterns is useful to
investigators and anti-spam workers who seek to attribute spam
messages to the criminal or botnets[1][4] who sent them.
Spam emails like the example above can be grouped using fuzzy
string matching, also known as approximate or inexact string

matching. In this paper we apply fuzzy string matching to sets of
spam subjects to identify related messages. The resulting groups
are very likely to be generated by malware using similar
templates.

2. CLUSTERING ALGORITHM
2.1 Similarity of Strings
The most common way to measure disagreement between strings
is through edit distance, also referred as Leveshtein distance [2].
Because we want the similarity rather than distance, we use
dynamic programming to find the alignment between a pair of
strings s and t that maximizes the number of matches. The
resulting number of matches between strings s and t is called their
inverse Levenshtein distance, written as ILD(s,t).
However, we prefer the measure of similarity between a pair of
strings to be always between 0 and 1. We want it to express the
portion of the strings that match. The Jaccard coefficient
accomplishes this but is defined for sets instead for strings.
Therefore, we define the Jaccard coefficient for strings in a way
analogous to sets. The Jaccard coefficient on sets A and B is
defined by:
Jaccard(A, B) = (|A�B|)/(|A| + |B| - |A�B|) *
where |A| and |B| are the size of set A and B, and |A�B| is the size
of intersection.
It yields a value between 0 and 1. Having the number of matches
from the alignment, we define the Jaccard coefficient for strings s
and t by:
Jaccard(s,t) = ILD(s,t)/(|s| + |t| - ILD(s,t))

2.2 Similarity on Spam Subjects
Next we define: a token is a sequence of nonblank characters in a
subject; tokens are separated by blanks. A subject will be regarded
as a sequence (or string) of tokens.

If tokens are compared using exact matching, then
Jaccard(“Viagra 80mgx30 pills”, “Price for Viagra 50mgx60
pills”) = 2/(3+5-2) = .333 because there are two matching tokens.
However, we want to allow tokens to partially match to each
other, when two tokens p and q have the same number of
characters, say n characters: length(p) = length(q) = n. Match(p,
q) = m/n where m is the number of matching characters. The
matching is done like this: for each character (p1 ,p2,… , pn) in p
and (q1 ,q2,… , qn) in q, compare pi with qi. This computation is

* Dept. of Computer and Information Sciences, Univ. of Alabama at
Birmingham, 1300 Univ. Blvd., Birmingham, AL, USA 35294.
Tel: (205)934-2213

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC’09, March 8-12, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 978-1-60558-166-8/09/03…$5.00.

889

more rapid than dynamic programming, because we only consider
tokens with same number of characters.
Now Jaccard(“Viagra 80mgx30 pills”, “Price for Viagra 50mgx60
pills”) = 2.7/(3+5-2.7) = 0.51, because the partial match score of
“80mgx30” to “50mgx60,” is 0.7.

2.3 Clustering Spam Subjects
A pattern matching problem is: given a pattern P, find in a set of
strings S={S1,S2,…, Sn} all strings matching to P. Our problem is
to find in S all interesting patterns and the corresponding strings.
We applied a recursive seed selection algorithm. Let S be the set
of subjects, and let S0 = S. To form one group (one cluster):
Select an arbitrary subject s in S0, usually the first one. Then let
Group(s) = {t: match(s,t) � h1} (where h1 is a similarity threshold)
and remove Group(s) from S0. After a group Group(s) is formed,
attempt to enlarge it by selecting an s' in Group(s) (but s'
relatively far from s), and adjoin all subjects t such that
match(s',t)�h1. s' is picked from Group(s) where match(s', s) is
minimum. New s' is repeatedly selected until no new t can be
drawn to the group. The result of this is that one group has been
formed, and S0 has shrunk. We repeat this, until S0 is empty.
Now we have partitioned the set S of subjects into groups, some
large and some small. Next, discard all groups containing fewer
than h2 subjects (where h2 is a threshold).
We also introduced a slack variable � to fine tune the similarity
threshold h1,
h1=base ± �
� is based on a standard normal distribution function of the string
length (for spam subject, it is the number of tokens). The statistics
(average string length and standard deviation) used in the function
can be easily computed when loading the spam data.
For a pair of strings that are longer than average string length, � is
subtracted from the base threshold and the tuned threshold will be
slightly lower. And for a pair of strings that is shorter, � is added
to the base threshold and the threshold will be slightly higher.
Parameters in the function can be tuned to limit the value range of
� to be a small portion of the base threshold.

3. EXPERIMENTS
The spam emails were contributed by a spam researcher, who has
a “catch all” policy to collect emails on his domains sent to non-
existing email accounts which are believed to all be spam.
Starting from March 2008, there are approximately over 10,000
up to 20,000 spam messages and 3000 to 6000 distinct email
subjects every day. Note there is a 1:3 ratio between subjects and
email messages.

We tested on three days data using different base thresholds.
Results showed that a base threshold between 0.45 and 0.5 yields
satisfactory accuracy rate (Table 1). Since this is the first stage of
clustering spam emails, we want to be safe rather than generating
too many false-positives. Other clustering methods will be built
on the results generated by this method.
The recursive seed selection strategy was able to pick up
variations in pattern. For example,

Viagra (Sildenafil) 100mg x 30 pills
Price for Viagra 100mg x 60 pills

Viagra (Sildenafil) 50mg x 30 pills $3.00 per pill
$89.95 Viagra 50mg x 30 pills buy now
Viagra (Sildenafil) 50mg x 30 pills $3.00 per pill buy now

The sliding threshold was able to put more restraint on shorter
subjects, for example:
Group 1:
3a06c0.c15a38’s discount #VUUkNK. BEEST Quaelity MedDs.
3a2061bf.5640c7’s discount #MeEhEi. BEEST Quaelity MedDs.
Group 2:
RE: Discount
Discount
Although groups 1 and 2 generate the same similarity score, the
sliding threshold will allow group 1 to join but not group 2.

Table 1: May 1st 2008 subject groups

Base
thres
hold

of
groups

of
grouped
subjects

of
validated
groups

of
subjects
validated

of
groups
can be
merged

0.4 32 2024 28 1926 0

0.45 31 1898 28 1886 3

0.5 30 1450 29 1435 11

0.55 37 1292 37 1292 22

4. CONCLUSION AND FUTURE WORK
This paper used modified Levenshtein edit distance combined
with Jaccard similarity coefficients to cluster spam subjects. The
recursive seed selection and sliding threshold help to reduce the
false-negative and false-positive rate. According to our data,
around 1/3 of the email subjects each day match a pattern when
using fuzzy matching. The patterns we found, combined with
other clustering methods, will hopefully cluster large groups of
emails which can be linked to a single spammer that created them.
Future work includes making the system more adaptive to
changes in patterns, including foreign character sets, and weighted
tokens, and considering fuzzy matching of additional attributes,
such as sender name or URL path.

5. REFERENCES
[1] Dagon, D., Guofei. G., Lee, C. P. and Wenke L. (2007) A
Taxonomy of Botnet Structures. In Proc. of the 23rd Annual
Computer Security Applications Conference, 325 – 339.
[2] Levenstein, V. I. (1966). Binary codes capable of correcting
insertion and reversals. Sov. Phys. Dokl., 10, 707 – 710.
[3] Nhung, N. P. and Phuong, T. M. (2007) An Efficient Method
for Filtering Image-Based Spam. In Proc. of the 2007 IEEE
International Conference on Research, Innovation and Vision for
the Future, 96 – 102.
[4] Ono, K., Kawaishi, I. and Kamon, T. (2007) Trend of Botnet
Activities. In Proc. of , the 41st Annual IEEE International
Carnahan Conference on Security Technology, 243 – 249.

890

