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SUMMARY
The standard classification model with several normal populations is
extended to the cluster analysis situation where little or no previous in-

formation about the population parameters is available. Some common cluster-

~ ing procedures are shown to be extensions of likelihood ratio methods of

classification. The analysis suggests that the procedurcs may have a tend-

~ ency to partition the sample into groups of about the same size. This sug-

gestion is examined in an example.

1. INTRODUCTION

Clusfering methods that split a large number of multivariate observa-
tions into a smaller number of relatively homogeneoué groups are important
in biological applications and many other fields. There are a wide variety
of techniques available and some useful comparisons are contained in papers
by Gower [1968] and Friedman and Rubin [1967]. The techniques seem to be
applied in two rather different situations. In one case, the purpose of the
analyéis is purely descriptive. There are no assumptions, implicit or other-

wise, about the form of the underlying population and the grouping is simply

1This work was done while on leave from the London School of Economics
during 1969-70.
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a useful condensation of the data. In the other case, it is felt that'the

population is composed of several distinct sub;category and the purpose

of the analysis is to group together all those observations belonging to the

same subcategory. We are concerned with this second type of problem here,
As a model for this situation, we suppose that each observation in the

sample may come from any one of a small number of different distribﬁtions.

This would be the standard classification problem if the distributions were

. known, or there was a substantial amount of information about them from pre-

vious samples (Anderson [1958], Ch. 6), but littie or no prior knowledge about
the component distributions is available in most situations where clustering
techniques are used. In either case, classification.or clustering, we want

to group together all the observations from the same distribution. Let y denote
the set of identifying labels, i.e., if there are n sample observations, y

is an unknown parameter with n components where the iEb-component indicates

the distribution from which the iEh-observation came. We derive the maximum

likelihood estimate of y under the assumption that the underlying distributions
are multivariate normal and this turns out to be equivalent to several stand-
ard clustering methods with different assumptions about the covariance
structure. These methods are shown to be natural extensions of standard
classification rules based on the likelihood ratio criterion.

A related approach has been cdnsidered by Wolfe [1967, 1969] and Day
[1969] who suppose that the observations are drawn independently from a mix-

ture of multivariate normal distributions. This is equivalent to the model

above with the additional assumption that y is an (unobservable) random

variable whose components are the outcomes of n independent multinomial trials.

An indirect estimate of y is obtained by estimating the parameters of the



ixture and using standard classification methods with these- estimates

jn place of the unknown parameter. It is possible to go a step further than

this and consider a Bayesian approach in which all the parameters are random

variables. A very short sketch of this approach is given in section 4 and
the results are compared with the maximum 1ikelihood results. The comparison

suggests that the methods based on maximum likelihood will perform best when

the populations are represented in about equal proportions. The well-known

Fisher Iris data is used in section 5 to explore this suggestion empirically.

2. THE MODEL

The sample consists of n observations Y = CZi’XZ""’Zn) where Y; re-

presents measurements on p characteristics. Suppose that the observations are

independent and that each may come from any one of G possible p-variate normal

distributions with means U,,...,H and covarlance MALTICES Iqseeeslns FOT
Loy | =G 1 G

generality we allow for the possibility of a previous sample of independent

from each distribution. Then the joint distribution

observations §gl"’f’§gm
. s0)

of Y and the previous observations is completely determined by Bg’ Zg (g=1,

and the grouping or classification parameter y = (Yl""’Yﬁ) where v;=g when

Yi comes from the gEh-sub-population. Ifoe-= (I’El”:"EG’Zl""’

the log likelihood functionm, 2(0), is

ZG) denotes
the collection of all the parameters,
given by
06 —'. . G ];:lg '2;1 )+2( '2_1(
©) - L L1 Gk’ L (gily Yihe)' g Qihg)
: g=l i=1 Cg
ey

+ (my*ny) log' IZgl]

where Cg is the set.of Xi's assigned to the gzh-group or cluster by Y, ng is
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and IZ | denotes the determinant of Zg‘

The classification or clustering problem is to estimate y and hence the

clusters Cl’ ,CG. 1f the means and covariances are known, or there are a

large number of previous observations from each sub-population, this is the

a551f1cat10n problem. When there is little or no

prior information about the components, the problem becomes one of cluster

analysis.

3. MAXIMUM LIKELTHOOD ESTIMATES

For a given partition of Y into G groups Cl""’CG the likelihood is

maximized by substituting the ordinary maximum 1ikelihood estimates of ug and

% . The estimate of Bg’ whateVer the assumptions about the Zg, is

m X +n_y
g~g g°8
+n

g g

IR

gg(x) =

=

where ig is the mean of the ng observations in Cg' When u (y) is substituted

for Eg in expression (1) it follows that the maximum 11k611h00d estlmate, Y,

of y can be found by minimizing

g_X_ {er [ (W Wy W )Z;] + '(mgfng) log |71} @)

where

m

Wox = Z (g3 Xg) g1 X x)'s

wgy = é CZi-Xg?CZi-Zg) ’
g
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. ’ m n - - - -
W = ._g__g - - ',
gy mm (g Xg) Wg%g)

3.1 Equal Covariance Matrices

If Zg = Z(g=1,...,G) then expression (2) reduces to

tr[cwx+wy+wxy)z"] + (mn) log |J] , )

where Wx =3 ng is the within-groups sum of squares matrix for the X's,
Wy =TI W gy is the within-groups sum of squares matrix for the y's and
W . _=ZIW is the contribution due to the differences between y_and x_.

Xy gy ~8 ~8

If ¥ is known, (3) reduces further. The assumption of known I is reason-
able when each Y3 is actually the mean of many observations which can be used
to provide a good estimate of I. Edwards and Cavalli-Sforza [1965] discuss

such an example. In this situation ? is the grouping that minimizes

tr [+ )17) | )

Two -cases are of particular interest. In the limit as the mg's become large,
expression (4) is minimized by assigning each Yi independently to the group

with the smallest value of (yi-ig)'z_l(zi—ig)_. This, of course, is the

standard classification procedure when the costs of misclassification are

assumed equal and no prior information about y is available. It is also the
minimax procedure. (Anderson [1958], §6.6) |

At the other extreme there is no previous information at all so that



;mg=0 (g=1,...,G). Then expression (4) reduces to’

-1 G - yy0-1 -
tr(w, 1) = gglg (7 T Ty - 5)
g

Equivalently, % maximizes the weighted between-groups sum of squares

-1 G = =gy pelo= - .
tr(8, ] ) = gzl n, (G, y)" 2 -(zg-z) , (6)
vhere

G
B, = [ n@ NGy -
Y oye1 EEY CE -

It would be natural to pre-standardize in this case so that 2=I; the identity

matrix, and the maximum likelihood partition minimizes

G .
- v — !
tr(W,) DLy Qi)' 7
g=1C
g .

the total within-groups sum of squares, or maximizes tr (By) , the between-
groups sum of squares. This has been widely used as a criterion for cluster
analysis and forms the basis of the method suggested by Edwards and Cavilli-
Sforza [1965]. They use the c:ritﬁerion to partition the set first into two

groups, then to subdivide each group, and so on.

If T is not known, its maximum likelihood estimate for fixed y is equal
to (Wx+Wy+ny)/ (mtn). When this is substituted in expression (3) it follows

that y is the grouping that minimizes.

W, + W+ nyl . (8)



' Again some extreme cases are of special interest. For a single new observa-

tion y it can be shown that this reduces, to minimizing

m _ -1 _
T (0Ep) W 0E) | ©)

which is a natural extension of the likelihood ratio method for classifying
an observation into one of two populations given previous samples from each.
(Anderson [1958], §6.5.5)

When there is no previous sample information about any of the populations,
i is the grouping that minimizes |Wy|, the determinant of the within-groups sum
of squares matrix. This is another widely used criterion, suggested by Friedman
and Rubin [1967]. They have found methods based on IWyI to work well in several
empirical ‘studies. | ‘ 7

The spécial case of two groups has been considered by John [1970] in a

slightly different context. He shows that minimizing lwyl is equivalent to

maximizing

-1 2
tr(By T )= ]

- - -1 - -
-y)' T - 10
o1 g (7gY) g k (10)

where
: n

T-) DG

is the total scatter matrix. This is a weighted between-groups sum of squares
like expreésion (6) for known 3 but the weighting depends on the sample quantity
T rather than £. Use of expression (10) makes computation easier but um-
fortunately the result does not extend in a simple way to more than two groups.

It can be shown in the same way that for G=2 minimizing IWyl is equivalent to



maximizing tr(W

1t
equal to (W ™oy Wony

B ), the Hotelling Trace. This has also been considered

as a criterion for cluster analysis by Friedman and Rubin [1967]

3.2 Unequal Covariance Matrices

If Zg the (g=1,...,G) are specified then g minimizes
Z {tr [ (W Wy W )Z ] +n, log |11} (11)
gl |

There seems to be little of interest to say about this case.
1f the Zg are not known, the maximm likelihood estimates for given y are

)/@n +n ) for g=1,...,G, which can be substituted in

expression (2). In this case, Y is the grouping that minimizes

m oW +w_+w |8 &, ' (12)

Again the extreme cases have a fairly simple form. When a single observation

y is to be classified on the basis of previous samples, this reduces to assign-

~

ing y to the population with the smallest value of

m © ‘ ng+1
- ' W - .
|ng| [1+ m—g—g+1 04 >5g) gx(}j >§g)] | (13)

This is a natural extension of the 1ikelihood ratio method (Anderson [1958],

§6.5.5) to unequal covarlance matrlces.

When there is no previous sample information, y is equlvalent to choosing

groups so that

G | |ng
W (14)
g1 &
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Again the extreme cases have a fairly simple form. When a single observation

y is to be classified on the basis of previous samples, this reduces to assign-

~

ing y to the population with the smallest value of

n+1

[Wor| [1+ 27 (YX) W (YX)] : (13)
g

This is a natural extension of the likelihood ratio method (Anderson [1958],

§6.5.5) to unequal covariance matrlces

When there is no previous sample information, 7y is equlvalent to choosing

groups so that

G ng'
I w 14
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is minimized. (The restriction that at 1éast (p+1) observations must be
assigned to each group avoids the degeherate case of infinite 1likelihood.)

As far as we know, this has not been used as a criterion for cluster analysis,
although Chernoff [1970] has suggested using the individual cluster scatter

matrices W__ rather than the pooled matrix Wy when the cluster shapes are very

different.

4. BAYES ESTIMATES

An alternative approach is to specify a prior distribution for © = (X’El’
...,EG,Zl,.;.,ZG) which can be combined with the likelihood defined by (1) to
obtain the posterior distribution of © given the sample and previous observations.
We can then obtain the marginal posterior probability of any grouping y by

integrating out the nuisance parameters {i,...Ue and Zl,...,ZG. The obvious

choice of a single summary statistic for the distribution is the mode since
there is no natural ordering of the G possible values of y, and we take the
posterior mode as our point estimate of y.-

Results very similar to those of the previous section are pbtained when

there is little prior information about Hg and Zg beyond that contained in the

previous samples. If Zg =1 (g=1,...,G), for example, this situation might be

approximated roughly by taking the prior density of 0 to have the form
- prl
p@ =py) 15l ° @1s)

over the region of interest. (Geisser and Cornfield [1963]) In this case

the posterior probability of y is proportional to

" (mtn-g)
2 -L
W +W +W I m _+n 16
[W M p(ﬂmgmgo (myn,) (16)



'-n———-.-

-10-

The grouping with the highest posterior probability corresponds exactly to

the maximum likelihood estimate of y if
p(y) = T (m-‘n )% . | . Q@n
- mg+ng>0 £ &

When the previous samples are large this is approximately constant which implies
that each individual is regarded as being equally likely to come from any of

the G populations. This seems a reasonéble choice if there are only a few

. new observations to be classified, but the prior probability that the groups

are of equal size becomes large as n increases. In the cluster analysis sit-

utation with mg=0 the density (17) becomes

.
PO = N n,’ . (18)
n .
g

which puts even heavier weight on groups of equal size. The fact that the
maximum likelihood estimate of vy corresponds to the Bayes estimate for such
extreme wéights suggesf that it may have a tendency to force the data into a
balanced split. The suggestion is examined in an example in the next section.

If there is no extraneous information about individual yi's a natural way

| of generating p(Y) is to suppose that each Yi has the same probability, Hg

say, of coming from the gzh-population, and to specify a distribution for
(Hl,...,HG_l).v This is exactly the same as supposing that the Xi's are in-

dependent observations from a mixture of G normal distributions, as in Wolfe
[1969] and Day [1969], and then specifying a prior distribution for the mix-

ture probabilities. Thus, from a Bayesian viewpoint, there is no difference

between the two models: The mixture model simply requires a special, but
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very natural, type of prior distribution for Y. A difficulty with this
;) to reflect rather

vague knowledge. As indicated above, the results that are closest to the

maximum likelihood partition are obtained by taking IIi=G'1 with certainty.

Another possibility is to take a uniform density on (Hl,...,HG_l) where Hizp

and }] 1.=1.
i
This leads to
G

p(y) « [T n 1]
< g=l g

(19

which puts much more emphasis on uneven splits than the first choice. These

two alternatives correspond to the Maxwell-Boltzmann and Einstein-Bose dis-

tribution of physics. (Feller [1950])

5. NUMERICAL RESULTS
Friedman and Rubin [1967] looked at the performance of a number of cluster-

ing methods, including those based on lwyl and tr(wy), when applied to 3 sets

of data containing groups of observations from several populations. In two of

the data sets, the groups were exacfly equal in size while the third set had

4 groups containing 23, 18, 21, and 35 observations respectively. The |W&|
criterion gives excellent results for all three sets, but the discussion of

the previous section suggest that the results might be less satisfactory with

more disparate groups.

We explored the consequences of ﬁhequal group sizes by looking at various

subsets of the second set of data, the well-known Iris data published by

Fisher [1936] in his paper introducing the linear discriminant function. The

data are reproduced on p. 318 of Kendall and Stuart [1966]. There are four
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measurements on 50 plahts from each of three species of Iris: Iris setosa,
Iris versicolor, and Iris virginica.  The Setosa plants are so well separated

from the others that any reasonable method can isolate them, but there is some

overlap between the other two species. Most of the separation is in the

measurements on petal length and petal width and these components are plotted
in Figure 1. The split into 3 groups reported by Friedman and Rubin for the
|W§| criterion recovered the three species completely except for two Versicolor
plants which were placed in the Virginica cluster and one Virginica plant

which was grouped with the other Versicolor plants.

[Insert Figure 1.]

In practice, it is impossible to find the minimum value ofAIW&I by search-

-ing over all possible partitions of a set of n observations. unless n is quite

small. We used an approximate routine constructed by D. J. MacRae [1970],

which incorporates techniques suggested by Forgy [1965], MacQueen [1967], and

Friedman and Rubin [1967]. This produces a relative minimum for IWyI in the
sense that any reassignment of one or two observations results in a larger
vélue, but does not guarantee an absolute minimum. To supplement the program,
we examined individually all the partitions in the neighborhood of the true
split as well as particular partitions thaf were suggested by a-visual inspec-
tion of the two-dimensional scatter diagrams.

We first looked at subsets of the Versicolor and Virginica species. As

long as the two groups were of equal size, the IWyI criterion gave good results.

Even when size was reduced to 10 observations from each species, the method
consistently yielded clusters that could be identified clearly with a single

species with onl& about 10% of the observations misclassified. Next, 5
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unbalanced data sets were created by splitting the Versicolor plants into 5

equal groups and combining each group with all 50 Virginica plants. In each

case there was one relative minimum near the true split and another close to a

partition into 2 equal groups of 30 observations each. The results are

sumarized in Table 1. In 4 of the 5 cases the near-equal split had the lowest

value of |W§l that was found and only in one case was anything like the actual

partition recovered.

[Insert Table 1.]

Five more sets were produced in the same way by splitting the Virginica into

5 equal groups and combining each group with all 50 ‘Versicolor plants. These

led to very similar results with a near- equal split having the smallest value
of |W | in 4 of the 5 sets. The effect of increasing the size of the smaller

group was investigated next. The results were very little better when 15

observations from one species was combined with all 50 observations from the

other. There was a substantial improvement, however, when the smaller group

was increased to 20 observations. Six such sets were constructed and clusters

clearly identifiable with a single species were produced with every set.

About 11% of the observations were misclassified.

Finally, subsets of the Setosa plants were combined with the other species.

The separation is much more clear-cut here and the results were very satisfactory.

The Setosa observations were always isolated perfectly even when as few as

10 Setosa plants were combined with all 50 Versicolor plants.
On the whole, the results confirm the value of |W | as a criterion for

cluster analysis. It led to meaningful clusters whenever the separation was

large or the groups were of roughly the same size. However, those results do
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seem to confirm that there is a tendency to divide the data into even. groups
if the separation between the éub—populations is not large. This suggests
that some care should be taken in interpreting an analysis based on the cri-

terion of Section 3 if the resulting clusters are of about the same size.

6. CONCLUDING NOTE
So farbwe have not touched on one of the most basic questions of cluster
analysis: How many clusters are there? Although we have only set an upper
bound to the nmumber of clusters in theory, in practice the maximum 1ikelihood
methods will always partition the datalinto the maximum number of partitions
allowed. One way of approaching the question is to.rephrase it as a testing
problem. For example, the fundamental question of whether there is more than
one cluster can be considered as a test of the null hypothesis:
Hot Y1775 o0 T

against the alternative that not all the Yi's are equal. If XA denotes the

likelihood ratio statistic then, in the case Eg=2(g=1,...,G) with I unknown,
-2 log A = n log [ <(|T|/[W )] | @

where T = Z(Zi-i)(zi-i)' is the total scatter matrix. The assumptions of the -

usual asymptotic theory for likelihood ratio tests do not hold here and the

_problem of finding the null distribution appears to be intractable. Friedman

and Rubin [1967] noted that the log-Max in (17) gives an indication of the

number of clusters.
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LIST OF FIGURES

FIGURE 1: SCATTER DIAGRAM OF PETAL WIDTH VERSUS PETAL LENGTH OF IRIS
SETOSA (*), IRIS VERSICOLOR (o), AND IRIS VIRGINICA (#).
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_ TABLE 1
Values om_zt at relative minima and the corresponding cluster sizes

st . nd . rd . th . th .
Observations 15%10 Versicolor | 27910 Versicolor | 3 10 Versicolor | 4710 Versicolor | 5 10 Versicolor
50 Virginica 50 Virginica 50 Virginica 50 Virginica 50 Virginica
_sw_ 1153.0 {1217.1 1404.3 |1441.4 884.1 | 1225.3 112.4 | 1306.8 1086.2 }1069.5
Cluster Sizes : Noom»,..ﬁwwpw ...30,30 | 10,50 .{- 30,30} 10,50 - -.30,30 | 10,50 -f---29,31 }{.10,51




