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Abstract. In this paper we present a prototype of a new model for per-
forming clustering in large, non-static databases. Although many ma-
chine learning algorithms for data clustering have been proposed, none
appear to specifically address the task of clustering moving data. The
model we describe combines features of two existing computational mod-
els — that of Artificial Immune Systems (AIS) and Sparse Distributed
Memories (SDM). The model is evolved using a coevolutionary genetic
algorithm that runs continuously in order to dynamically track clusters
in the data. Although the system is very much in its infancy, the ex-
periments conducted so far show that the system is capable of tracking
moving clusters in artificial data sets, and also incorporates some mem-
ory of past clusters. The results suggest many possible directions for
future research.

1 Introduction

As the ability to collect and store vast quantities of data increases, having some
facility to intelligently and efficiently analyse that data in order to detect clusters,
patterns and meaningful correlations becomes essential. Many algorithms have
been proposed to perform some or all of these tasks, however it seems clear that a
successful algorithm must address the following key features of larger databases
if it is to prove useful in the real-world:

– The data-base is likely to be non-static; data is continually added and deleted
– Trends in the data change over time
– The data may be distributed across several servers
– The data may contain a lot of ’noise’
– A significant proportion of the data may contain missing fields or records

Recently, a growing body of work has shown that the biological immune
contains many desirable features which allow it to be used to address some of
the characteristics listed above. In (one) extremely simplified view, the immune
system (IS) can be considered to be a decentralised self-organising system which
operates by producing antibodies which recognise potentially harmful invaders
and eliminate them from the body. The recognition takes place via some kind of
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sophisticated pattern matching mechanism which allows it to access a content
addressable memory of past invaders. The matching mechanism is imprecise —
an antibody is stimulated by an antigen if the strength or affinity of the match
between the two exceeds some threshold. Any antibody which stimulates an
antigen is said to be within the ball of stimulation of the antigen. Moreover, the IS
is able to dynamically learn about new substances when it encounters them and
add them to its memory. At the same time, any little used information is deleted
from the memory, therefore the memory is continually changing. Several of these
features have been modelled in a number of very different implementations of
artificial immune systems and applied to the problem of clustering data. For
example, Potter et al. describe a model of an AIS that uses a coevolutionary
genetic algorithm (GA) to evolve antibodies to cluster artificial data sets [1] and
Congress voting records [2]; Forrest et. al [3] describe a GA that uses emergent
fitness sharing to find patterns; Hunt et al. [4] describe a system named Jisys
which was used to cluster data for use in mortgage fraud detection and Timmis
[5] has adapted this system to successfully cluster the well known but very small
benchmark data set containing iris petal sizes. Both the Timmis and Hunt work
used a model based on connected networks of antibodies, in which nodes which
are connected recognise similar patterns. So far, none of these methods have
addressed the question of clustering data in time-varying databases. Although
there is no intrinsic barrier to extending either the coevolutionary or network
models to deal with non-stationary data, both methods present obstacles. In
the network model, there are high computational overheads associated with re-
organising large networks as the data changes, which increase as the size of the
database increases also. It is also unclear whether the coevolutionary method of
evolving clusters is able to cope with extremely large databases, particularly as
the antibodies compete to exclusively recognise data, whereas in reality clusters
may overlap.

In other work, Smith et. al [6] have shown that the immune system can be
considered to be representative of the same class of memories as Kanerva’s Sparse
Distributed memory, [7]. The SDM is a content-addressable memory which was
originally proposed as an efficient method for storing a very large number of
large binary data patterns using a very small number of physical data addresses,
in a manner which allows accurate recall of all the data. An SDM is composed
of a set of physical or hard locations, each of which recognises data within a
specified distance of itself — this distance is known as the recognition radius of
the location. Each location also has an associated set of counters, one for each bit
in its length, which it uses to ‘vote’ on whether a bit recalled from the memory
should be set to 1 or 0. An item of data is stored in the memory by distributing it
to every location which recognises it — if recognition occurs, then the counters at
the recognising locations are updated by either incrementing the counter by 1 if
the bit being stored is 1, or decrementing the counter by 1 if the bit being stored
is 0. To recall data from the memory, all locations which recognise an address
from which recall is being attempted vote by summing their counters at each bit
position; a positive sum results in the recalled bit being set to 1, a negative sum
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in the bit being set to 0. This results in a memory which is particularly robust
to noisy data due to its distributed nature and inexact method of storing data.
These properties make it an ideal candidate for addressing clustering problems
in large databases; For example, we can consider each physical location along
with its recognition radius to define a cluster of data; the location itself can
be considered to be a concise representation or description of that cluster, and
the recognition radius specifies the size of the cluster. Clusters can overlap —
indeed, it is this precisely this property which allows all data to be recognised
with high precision whilst maintaining a relatively low number of clusters. If no
overlap is allowed, then a large number of locations are required to cluster the
data, the system becomes overly specific, and hence general trends in the data
are lost. In the form described, the SDM is also static and inflexible, however
given its powerful and efficient storage and recognition capacities, it is fruitful
to adapt it to operate in a dynamic environment. Therefore, the model we now
describe combines features of SDM and the type of AIS describe by Potter to
produce a system that is dynamic, adaptable and capable of tracking changes
in large volumes of data. For simplicity, during the remainder of this paper we
use immunological terminology — an antigen is equivalent to a piece of data, an
antibody to a description of a cluster, and the ball of stimulation of the antibody
defines the size of the cluster.

2 Description of the Proposed Model

The proposed model is shown in figure 1. The basic proposition is to use a
coevolutionary GA, running continuously, to find quickly the set of antibodies
(and their corresponding balls of stimulation) that best cluster the data currently
visible to the system. An antigen is represented by a bit string of length L. An
antibody is also represented by a bit string of length L, and also defines the
recognition radius R of the antibody. Each antibody has an associated set of
counters, one for each bit, which are used to ‘vote’ on whether the bit should
be set to 1 or 0 as described in the previous section. The accuracy of the SDM
formed by the set of antibodies can be determined by attempting to recall each
data item stored and comparing the results to the actual data in the database.
The coevolutionary GA controls the evolution of k populations of antibodies
— each population is attempting to evolve the location and radius of one of
the antibodies defining the memory (and therefore the clusters). At any time
t, the best antibodies in each population cooperate to form an SDM in which
all data visible to the system at this time can be stored and ideally accurately
recalled (and hence clustered). The mechanism by which the evolution proceeds
is detailed in the next section.

3 Experimental Details

In order to calculate the fitness of an antibody in any population (which only
represents a partial solution to the problem), the antibody is added to a serum
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Fig. 1. The proposed model, combining features from an SDM, AIS and coevolutionary
genetic algorithm

consisting of itself and the best members of the other populations.1 The counters
of each antibody in the serum are set to 0. All the antigens in the database are
then stored in the SDM defined by this serum, and then recall attempted of each
antigen. Antigens not recognised by any of the antibody species are allocated to
a default cluster which is defined by the antibody ‘0000...000’ with a recognition
radius of L. Otherwise, the antigen is assigned a match-score equivalent to the
number of correctly recalled bits. The fitness of the antibody is then set to
the average value of M . Antibodies which cooperate with other antibodies to
more accurately represent the dataset are thus more highly rewarded. Note that
antibodies are not exclusively competing for antigen — several hard locations in
the serum may recognise an antigen and thus collaborate in order produce the
recalled data, which should result in a higher recall accuracy than in the system
described in [1]. This bears a close analogy to the real immune system in which
a cross-reaction between antibodies can occur.

3.1 Control of Number of Species

The number of species is dynamic, that is species are added and deleted from the
algorithm as becomes necessary. The rate at which this happens is controlled by
4 parameters; the extinction threshold, e, the learning phase, l, the stagnation
phase length, sp and the stagnation level st. If the fitness of the serum com-
posed of the best member of each species does not increase by at least st over
spgenerations, then a new species is added to the system, with randomly gener-
ated members. Similarly, if the best member of a species does not recognise at
1 In the initial generation of the algorithm, antibodies are chosen at random from

populations that have not yet been evaluated when forming the serum
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least e antigens from the current antigen population, and the species has been in
existence for at least l generations then that species is removed from the system,
with the caveat that if the species recognises an antigen that is not recognised by
any other antibody then the species is allowed to remain. A limit of M species
is imposed on the system to prevent it growing too large ( and therefore too
specialised).

4 Experiments

Two series of experiments were performed in order to investigate the capability
of the system. The first series of experiments investigated the ability of the
system to track clusters which vary in a random manner with time. The second
series was concerned with investigating the performance of the system in an
environment in which data appears in cycles, and is designed to test the ability
of the system to react more quickly to clusters of data which it has previously
encountered.

Generating Data. In all experiments, the system is continually exposed to a set
of 100 antigen. The antigen are generated from s schemas. Each schema consists
of a string of 64 bits, in which d contiguous bits are set to 1, with the start
position of the d bits randomly chosen. All remaining bit positions contain wild-
cards. Antigen are generated in equal proportion from each schema by randomly
replacing wild-cards with either 0 or 1. In order to generate non-stationary data,
the following procedure is followed. 100 antigens are generated at time t = 0 from
s schema. Every U time-steps, g schemas are chosen at random and replaced by
g new randomly generated schema. New antigens are generated from the new
schema and replace those antigens generated from the schema being replaced.

Tolerization Period. In each experiment, the system is allowed to undergo a
tolerization period of T iterations in order to learn the data present at t = 0.
This is necessary in order to accurately measure the response of the system to
data changes from a state in which it has accurately clustered the current data.
If this was not present, the system may still be learning the original data when
changes occur, and hence we are not measuring the ability of the system to adapt
to new data from an already stable state. This can be considered similar to the
neonatal period in humans in which the body is thought to become tolerant of
‘normal’ proteins, [8]. In all experiments described, T is set to 200.

5 Simple Pattern Tracking

In the first series of experiments, a number of tests were performed for an update
rate U = 50, varying the parameters s, d, and g. In this paper, due to space
constraints, we report the results from experiments with s = 5,d ∈ (8, 16, 32)
and g ∈ (1, 2, 3, 4, 5). Each experiment was repeated 5 times, and the resulting
fitness at each time averaged. In each experiment, the size of each population
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was set to 50. Initially, 2 populations are created, and a maximum limit of 10
populations is imposed. The populations are evolved using fitness proportionate
selection, 2-point crossover, and bit-flip mutation at a rate of 1/L per gene.
The parameters controlling the dynamics of the evolution were set to e = 5, l =
10, sp = 5, st = 0.5.
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Fig. 2. The figure shows the performance of the proposed system for 3 experiments in
which groups of 1 → n schema are replaced at each update. The vertical axis shows
the fitness of the best SDM found, where fitness is equal to the average number of
correctly recalled bits across the entire data set.

5.1 Results

Figure 2 shows the results of the experiments for each combination of d and
g, i.e. number of defined bits and number of schemas replaced. The results are
shown from the end of the tolerization period only so that trends can be more
clearly observed. In order to analyse the trends more thoroughly, the magnitude
of the average drop in fitness in the system whenever a change in antigen occurs
is plotted against the number of schemas replaced. This is shown in figure 3.
In all experiments, a single antibody with all bits set to 1 and a radius of L
should provide the most general clustering of the system, as this would match
all of the possible sequences of d defined bits comprising the data set. This
antibody would produce a recall score for the entire data set of 36,40 or 48,
for the cases when d = 8, d = 16 and d = 32 respectively. This is calculated by
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considering that exactly d bits would match perfectly and on average (l−d)/2 of
the remaining bits would match. This gives a baseline against which to compare
the performance of the system.

The first observation to note from Figure 2 is that in all experiments, the
fitness of the system immediately before any antigen change always exceeds the
baseline fitness described above, therefore the system is clearly performing some
clustering. The success of the system varies as the number of antigen replaced
at each update changes, and also as the number of bits defining the schema
change. The greatest effect on performance of the number of antigens replaced
is observed when d = 32. This is as expected — if the number of defined bits is
large compared with the length of the antigen, then the number of bits that must
change in order to recognise different schema may be very large (for example,
in the extreme case, if schema consisting of ‘11111.....#####’ is replaced by
one described by ‘#####....11111’ then L/2 bits may need to change.) Hence
we expect to see a large variation in performance as the number of antigen
replaced increases. At the other end of the scale, when d = 8, and therefore small
compared with the length of string, it is likely that common patterns exist in the
schema other than those described by the section of defined bits, and therefore
introducing new antigen produces much less overall change in the composition of
the entire antigen data set, as these spurious patterns can always be generated by
chance. In the case where d = 16, slightly anomalous results are observed, as the
worst fitness values are obtained when g = 1, i.e. when only 20% of the antigen
population is updated. This requires further investigation, particularly as figure
3 indicates that the drop in fitness between updates increases approximately
linearly as the number of schemas replaced increases for d = 16 but that the
drop is higher than in the case when d = 32. Figure 3 shows that although the
drop in fitness increases with number of schema replaced, the drop is actually
small in proportion to the relative fitness of the system; the largest drop obtained
is approximately 1.3, whereas the fitness of the system is generally higher than
41.

6 Investigating the Memory Retention

The second series of experiments aimed to investigate whether the system could
retain some memory of past clusters so that if a cluster reappears the system
responds to it more rapidly. In this series of experiments, antigen sets were again
generated from sets of schema in the following manner:

c ∗ s schema are initially generated in the manner previously described. At
any time t, only s of these schema are used to generate the antigen population.
A sliding window of size s defines which schemas are used; this window is moves
w schemas along the schema list every U generations. The schema list is treated
as cyclic and wraps around when the window reaches the end. Thus, if c = 2 and
s = 4, then 8 schemas are initially generated. If w is equal to c, then all antigens
are replaced at each update; thus at time t = 0, antigens {0, 1, 2, 3} define the
data set. At time U , antigens {4, 5, 6, 7} define the data, at time 2U , antigens
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Fig. 3. The figure shows the drop in fitness experienced following a change in antigen
for three experiments using schema containing 8,16, or 32 defined bits.

{0, 1, 2, 3} again define the data etc. A more incremental update is achieved by
setting w < s.

The experiments reported have s = w where s ∈ (2, 5, 10). The update rate U
is set to 50 generations, and c is set equal to 2. Again, a tolerization period of T
generations is allowed, in which the system learns the first s schemas. Thereafter,
the schema set alternates between the two possible schemas (referred to as set
A and B in the following discussion) every 50 generations. Figure 4 shows the
results of these experiments. In each case, the experiments are compared to
an equivalent experiment in which the antigen set is updated from randomly
generated schema at each update. Clearly, the experiments which replace antigen
with previously encountered antigen outperform the random set, showing that
the system must be displaying some kind of memory. Again, the results are only
shown from the end of the tolerization period.

To investigate the ‘period’ of this memory, we analyse the best fitness found
for schema set A each time it appears. The experiment described above is re-
peated for values of c equal to 3, and 4, so that 3 ∗ s schemas are generated
in the former case, and 4 ∗ s in the latter. In each case, the experiments are
run for sufficient generations that the schema set A appears 5 times. The best
fitness found on each occasion is averaged over the entire experiment and the
results are shown in table 1. t-tests applied to each pair of results shows that
the only significant difference in values is found between cases (c = 2, s = 2)
and (c = 3, s = 2), (c = 3, s = 2) and (c = 4, s = 2), and finally between cases
(c = 3, s = 10) and (c = 4, s = 10). Therefore, the system appears relatively
robust to the parameter c which controls the period of the memory.
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Fig. 4. Comparison of experiments in which new antigen are generated from new,
randomly generated, schema to those in which antigen are generated from schema that
the system has previously been exposed to

Table 1. The mean and standard deviation (shown in brackets) of the maximum
fitness found for schema set A averaged across 5 occurrences of the set

Number of Schemas Mutltiplier for Number of Schema c
s 2 3 4
2 44.63 (0.186) 44.37 (0.274) 44.77 (0.322)
3 43.06 (0.382) 44.1 (0.342) 43.01 (0.405)
4 42.72 (0.266) 42.78 (0.474) 42.79 (0.281)

7 Conclusion

So far, only a very preliminary investigation of the capabilities of the proposed
new system have been investigated. However, in light of those experiments re-
ported here, and others to be reported in future publications, we make the
following observations;

– The model appears capable of clustering data sets; this has been tested with
up to 10 clusters.

– The model satisfactorily copes with moving data; the experiments show that
the model tracks both incremental and large changes in data, but perfor-
mance degrades as the amount of data changing increases.
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– The model exhibits a basic form of memory; when re-exposed to familiar
antigen, it reacts more rapidly than to previously unseen antigen.

Clearly, there is much more work to do to fully assess the performance of
the model, however the results found so far are promising. The model described
seems to provide a sensible method of addressing the difficulties concerned with
clustering data in non-stationary databases. Issues that must be addressed in
future however include investigating the scalability of the system, the robustness
of the system to noise in the data and to the distance between clusters. Although
the system produced satisfactory results with arbitrarily chosen parameters, we
wish to investigate the sensitivity of the parameter choices. Finally, we intend
to compare the model to other methods which potentially could be employed to
track non-stationary data.
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