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Abstract With the emergence of numerical sensors in many aspects of every-
day life, there is an increasing need in analyzing multivariate functional data.
This work focuses on the clustering of such functional data, in order to ease
their modeling and understanding. To this end, a novel clustering technique
for multivariate functional data is presented. This method is based on a func-
tional latent mixture model which fits the data into group-specific functional
subspaces through a multivariate functional principal component analysis. A
family of parsimonious models is obtained by constraining model parameters
within and between groups. An Expectation Maximization algorithm is pro-
posed for model inference and the choice of hyper-parameters is addressed
through model selection. Numerical experiments on simulated datasets high-
light the good performance of the proposed methodology compared to existing
works. This algorithm is then applied to the analysis of the pollution in French
cities for one year.
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1 Introduction

The modern technologies ease the collection of high frequency data which is of
interest to model and understand the studied phenomenon for further analy-
ses. For example in sports, athletes wear devices that collect data during their
training to improve their performances and follow their physical constants in
order to prevent injuries. This kind of data can be classified as functional
data: a quantitative entity evolving along time. For instance in the univari-
ate case, a functional data X is represented by a single curve, X(t) ∈ R,
∀t ∈ [0, T ]. With the growth of smart device market, more and more data are
collected for the same individual, such as runner heartbeat and the altitude
of his travel. An individual is then represented by several curves. The corre-
sponding multivariate functional data can be written: X = X(t)t∈[0,T ] with

X(t) = (X1(t), ..., Xp(t))′ ∈ R
p, p ≥ 2. We refer to Ramsay and Silverman

(2005) for univariate and bivariate examples.
Because of this amount of collected data, there is an increasing need for meth-
ods able to identify homogeneous subgroups of data, to make better indi-
vidualized predictions for example. The clustering of functional data can be
addressed with different methods, that can be split into 4 categories according
to Jacques and Preda (2014a): the raw data methods that consists of cluster-
ing directly the curves on their finite set of points ; the filtering methods that
need a first step of smoothing curves into a basis of functions and a second
step of clustering the obtained expansion coefficients ; the adaptive meth-
ods where clustering and expression of the curves into a finite dimensional
space are performed simultaneously ; and the distance-based methods where
usual clustering algorithms are applied with specific distances for functional
data. Among these categories, there exist numerous works for the clustering
of univariate functional data as for instance James and Sugar (2003), Tarpey
and Kinateder (2003), Chiou and Li (2007), Bouveyron and Jacques (2011),
Jacques and Preda (2013), Bouveyron et al. (2015) and Bongiorno and Goia
(2016).

Conversely, only a few exists for clustering multivariate functional data.
Singhal and Seborg (2005) and Ieva et al. (2013) use a k-means algorithm
based on specific distances between multivariate functional data. Kayano et al.
(2010) consider Self-Organizing Maps based on the coefficients of multivariate
curves into an orthonormalized Gaussian basis expansions. Tokushige et al.
(2007) extend crisp and fuzzy k-means algorithms for multivariate functional
data by considering a specific distance between functions. Those methods clus-
ter data by considering that they lie in the same subspace. A new method has
been recently published based on a hypothesis testing k-means (Dias et al.,
2018). At each step of the k-means algorithm, the curve belonging decision is
based on the combination of two hypothesis test statistics. The performance
of their algorithm is compared to distance-based methods and some dimension
reduction based methods. Those dimension reduction techniques main princi-
ple is to obtain a low-dimensional representation of functions. For example,
Ieva and Paganoni (2013) present a generalized functional linear regression
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model that cluster individuals in two categories. The first step consist of a
multivariate functional principal component analysis applied on the variance-
covariance matrix on the functional data and their first derivatives. Then, the
obtained scores are used as covariates in a generalized linear model to pre-
dict the outcome.Yamamoto and Hwang (2017) propose a clustering method
that combines a subspace separation technique with functional subspace clus-
tering, named FGRC, that is less sensible to data variance than functional
principal component k -means developed by Yamamoto (2012) and functional
factorial k -means (Yamamoto and Terada (2014)). Finally, Jacques and Preda
(2014b) present a Gaussian model-based clustering method based on a prin-
cipal component analysis for multivariate functional data (MFPCA). One of
the benefits of this method is that the dependency between functional vari-
ables is managed thanks to the MFPCA. More recently, new methods based
on a mix between dimension reduction and nonparametric approaches appear.
Indeed, Traore et al. (2019) propose a clustering technique for nuclear safety
experiment where one individual curve is decomposed into two new curves
that are used in the decision making process. The first step consists in doing a
dimension reduction technique on the first curves and applying a hierarchical
clustering on those obtained values. Then, a semi-metric is build to compare
the second curves, and the clusters are refining thanks to this comparison.
But, even if this method is developped to deal with two curves for a same
individual, at first the functional data are univariate.

In Jacques and Preda (2014b), MFPCA scores are considered as random
variables whose probability distributions are cluster specific. Although this
model is far more flexible than other methods due to its probabilistic modeling,
it suffers nevertheless from some limitations. Indeed, using an approximation
of the notion of density distribution for functional data, the authors modeled
only a given proportion of principal components and thus a significant part of
the available information is ignored. In this paper, we propose a model which
extends Jacques and Preda (2014b) work by modeling all principal components
whose estimated variance are non-null. All available information is therefore
taken into account. This is a significant advantage because it will give a finner
modeling and, consequently, a better clustering in most cases. Moreover, our
model allows to use an Expectation Maximisation (EM) algorithm for its in-
ference, with the theoretical guaranties it implies, whereas Jacques and Preda
(2014b) use an heuristic pseudo-EM algorithm with no theoretical guaranties.
The resulting model can be also viewed as an extension of Bouveyron and
Jacques (2011) method to the multivariate case, that is why we will refer to
it as the funHDDC model in the following.

The paper is organized as follows. A quick reminder of function data anal-
ysis is done in Section 2 . Section 3 presents principal component analysis
for multivariate functional data, as introduced in Jacques and Preda (2014b).
Section 4 introduces the mixture model allowing the clustering of multivariate
functional data. Section 5 discusses parameters estimation via an EM algo-
rithm, proposes criteria for the selection of number of clusters and computa-
tional details. Comparisons between the proposed method and existing ones
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on simulated and real datasets are presented in Sections 6 and 7. A discussion
concludes the paper in Section 8.

2 Functional data analysis

Let us first assume that the observed curvesX1, ...,Xn are independent realiza-
tions of a L2-continuous multivariate stochastic process X = {X(t), t ∈ [0, T ]}
= {(X1(t), . . . , Xp(t))}t∈[0,T ] for which the sample paths, i.e. the observed
curves Xi = (X1

i , ..., X
p
i ), belong to L2[0, T ]. Without loss of generality, let

assume that E(X) = 0.
In practice, the functional expressions of the observed curves are not known

and it is only possible to have access to discrete observations at a finite set of
times Xj

i (t1), . . . , X
j
i (ts) with 0 ≤ t1 ≤ . . . ,≤ ts ≤ 1 for every 1 ≤ i ≤ n and

1 ≤ j ≤ p. The first task, when working with functional data, is therefore to
convert these discretely observed values to a function Xj

i (t), computable for
any desired argument value t ∈ [0, T ]. One way to do that is interpolation,
which is used if the observed values are assumed to be errorless. However, if
there is some noise that needs to be removed, a common way to reconstruct
the functional form is to assume that the curves Xj

i (t) can be decomposed
into a finite dimensional space, spanned by a basis of functions (Ramsay and
Silverman, 2005):

Xj
i (t) =

Rj∑

r=1

cjir(X
j
i )φ

j
r(t) (1)

where (φj
r(t))1≤r≤Rj

is the basis of functions for the j-th component of the
multivariate curve and Rj the number of basis functions. In order to ease
the description of the model, let us introduce the following notations. The
coefficients cjir can be gathered in the matrix C:

C =



c111 ... c11R1

c211 ... c21R2
... cp11 ... cp1Rp

...
c1n1 ... c1nR1

c2n1 ... c2nR2
... cpn1 ... cpnRp


.

Let also introduce the matrix φ(t), gathering the basis functions:

φ(t) =




φ1
1(t) ... φ

1
R1

(t) 0 ... 0 ... 0 ... 0
0 ... 0 φ2

1(t) ... φ
2
R2

(t) ... 0 ... 0
...

0 ... 0 0 ... 0 ... φp
1(t) ... φ

p
Rp

(t)


.

With these notations, Equation (1) can be rewritten as follows:

X(t) = Cφ′(t).

The estimation of C is usually done through least square smoothing (see Ram-
say and Silverman (2005)). The choice of the basis functions, contained in φ,
has to be made by the user. There is no straight rules about how to choose the
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appropriate ones (Jacques and Preda (2014a)). We can nevertheless recom-
mend the use of a Fourier basis in the case of data with a repetitive pattern,
and B-spline functions in most other cases.

3 Multivariate functional principal component analysis

Principal component analysis for multivariate functional data has already been
suggested by various authors. Ramsay and Silverman (2005) propose to con-
catenate observations of the functions measured on a fine grid of points into
a single vector and then to perform a standard principal component analysis
(PCA) on these concatenated vectors. They also propose to express observa-
tions into a known basis of functions and apply PCA on the vector of concate-
nated coefficients. Both approaches may be problematic when the functions
correspond to different observed phenomena. Moreover, the interpretation of
multivariate scores for one individual is usually difficult. In Berrendero et al.
(2011), the authors propose instead to summarize the curves with functional
principal components. For this purpose, they carry out classical PCA for each
value of the domain on which the functions are observed and suggest an inter-
polation method to build their principal functional components. In a different
approach, Jacques and Preda (2014b) suggest the MFPCA method, with a
normalization step if the units of measurement differ between functional vari-
ables. Their method relies on the multidimensional version of the Karhunen-
Loève expansion (Saporta, 1981). Chiou et al. (2014) also present a normalized
multivariate functional principal component analysis which takes into account
the differences in degrees of variability and units of measurement among the
components of the multivariate random functions. As in Jacques and Preda
(2014b), it leads to a single set of scores for each individual. Chen and Jiang
(2016) present a multi-dimensional functional principal component analysis
and Happ and Greven (2015) a multivariate functional principal component
analysis that both can handle data observed on more than one-dimensional
domain. Happ and Greven (2015) method can be applied to sparse functional
data and includes the MFPCA proposed by Jacques and Preda (2014b) when
the interval is [0, T ] and steady.

Because our data are collected on the one-dimensional interval [0,T] and
with a regular sampling scheme, the MFPCA proposed by Jacques and Preda
(2014b) is used in combination with a fine probabilistic modeling of the group-
specific densities. The MFPCA method is therefore summarized hereafter.
MFPCA aims at finding the eigenvalues and eigenfunctions that solve the
spectral decomposition of the covariance operator ν:

νf l = λlf l, ∀l ≥ 1, (2)

with λl a set of positive eigenvalues and f l the set of associated multivariate
eigenfunctions. The estimator of the covariance operator can be written as:

ν̂(s, t) =
1

n− 1
X ′(s)X(t) =

1

n− 1
φ(s)C ′Cφ′(t). (3)
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Let suppose that each principal factor f l belongs to the linear space spanned
by the matrix φ:

f l(t) = φ(t)b′l (4)

with bl = (bl11, ..., bl1R1 , bl21, ..., bl2R2 , ..., blp1, ..., blpRp
). Using Equation (3),

the eigen problem (2) becomes:

1

n− 1
φ(s)C ′CWb′l = λlφ(s)b

′
l (5)

where W =
∫ T

0
φ′(t)φ(t) is a R × R matrix, where R =

∑p
j=1 Rj , which

contains the inner products between the basis functions. The MFPCA then
reduces to eigendecomposition of the matrix 1√

n−1
CW 1/2. Thus, each mul-

tivariate curve Xi is identified by its score δi = (δil)l≥1 into the basis of
multivariate eigenfunctions (f l)l≥1. Scores are obtained from δil = CiWb′l
where Ci is the i-th row of matrix C.

In practice, due to the fact that each component Xj
i of Xi is approximated

into a finite basis of functions of size Rj , the maximum number of scores which
can be computed is R =

∑p
j=1 Rj .

4 A generative model for multivariate functional data clustering

Our goal is to group the observed multivariate curvesX1, ...,Xn intoK homo-
geneous clusters. At this stage, K is fixed a priori and an estimation procedure
for this parameter will be suggested in Section 5.3. Let Zik be the latent vari-
able such that Zik = 1 if Xi belongs to cluster k and 0 otherwise. In order to
ease the presentation of the modeling, let us assume at first that the values
zik of Zik are known for all 1 ≤ i ≤ n and 1 ≤ k ≤ K (our goal is in practice
to recover them from the data). Let nk =

∑n
i=1 zik be the number of curves

within cluster k.
Let suppose that the curves of each cluster can be described into a low-

dimensional functional latent subspace specific to each cluster, with intrinsic
dimensions dk < R, k = 1, ...,K. Curves can be expressed into a group-specific
basis {ϕk

r}1≤r≤dk
, which is determined thanks to the model, and is obtained

from {φj
r}1≤j≤p,1≤r≤R through a linear transformation:

ϕk
r (t) =

R∑

ℓ=1

qkrℓφℓ(t), 1 ≤ r ≤ R

where Qk = (qkrℓ)1≤r,ℓ≤R is the orthogonal R×R matrix containing the basis
expansion coefficients of the eigenfunctions. Qk is split for later use into two
parts: Qk = [Uk, Vk] with Uk of size R × dk and Vk of size R × (R − dk),
U ′
kUk = Idk

, V ′
kVk = IR−dk

and U ′
kVk = 0.

Let (δki )1≤i≤nk
be the MFPCA scores of the nk curves of cluster k. These

scores are assumed to follow a Gaussian distribution

δki ∼ N (µk,∆k)
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with µk ∈ R
R the mean function and ∆k the covariance matrix with the

following form:

∆k =































ak1 0

. . .

0 akdk

0

0

bk 0

. . .

. . .

0 bk





































dk



















R− dk

The assumption on ∆k allows to finely model the variance of the first
dk principal components, while the remaining ones are considered as noise
components and modeled by a unique parameter bk. This model will be referred
to as [akjbkQkdk] hereafter. The model of Jacques and Preda (2014b) is similar
but with the constraint bk = 0, for all k = 1, ...,K. The latter leads to ignore
information contained in the last eigenfunctions, whereas we propose to model
it in a parsimonious way.

In addition, different sub-models can be defined depending on the con-
straints we apply on model parameters, within or between groups, leading to
more parsimonious models. This possibility allows to fit into various situations.
The following 5 sub-models can be derived from the most general one:

– [akbkQkdk]: this model is used if the first dk eigenvalues are assumed to be
common within each group. In this case, there is only 2 eigenvalues in ∆k,
ak and bk.

– [akjbQkdk]: the parameters bk are fixed to be common between groups. It
assumes that the variance outside the group-specific subspaces is common,
a usual hypothesis when data are obtained in a common acquisition process.

– [akbQkdk]: the parameters ak are fixed to be common within each group
and bk are fixed to be common between groups.

– [abkQkdk]: the parameters akj are fixed to be common between and within
groups.

– [abQkdk]: the parameters akj and bk are fixed to be common between and
within groups.

In practice, the zik’s are not known and our goal is to predict them. That is
why an EM algorithm is proposed below in order to estimate model parameters
and then to predict the zik’s.

5 Model inference and choice of the number of clusters

5.1 Model inference through an EM algorithm

In model-based clustering, the estimation of model parameters is traditionally
done by maximizing the likelihood through the EM algorithm (Dempster et al.,
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1977). The EM algorithm alternates between two steps: the expectation (E)
and maximization (M) steps. The E step aims at computing the conditional
expectation of the complete log-likelihood using the current estimate of pa-
rameters. Then, the M step computes parameter estimates maximizing the
expected complete log-likelihood found in the E step.

This section presents the update formulae of the EM algorithm in the case
of the [akjbkQkdk] model. Update formulae can be easily derived in the same
manner for other models. The following proposition provides the expression of
the complete log-likelihood associated with the model described above. Proof
of this result is provided in Appendix A.1.

Proposition 1 The complete log-likelihood of the observed curves under the

[akjbkQkdk] model can be written as:

ℓc(θ) = −
1

2

K∑

k=1

nk




dk∑

j=1

(
log(akj) +

qtkjW
1/2CkW

1/2qkj

akj

)

+

R∑

j=dk+1

(
log(bk) +

qtkjW
1/2CkW

1/2qkj

bk

)
− 2 log(πk)




+
nR

2
log(2π), (6)

where θ = (πk,µk, akj , bk, qkj)kj for 1 ≤ k ≤ K and 1 ≤ j ≤ dk, qkj is the

j-th column of Qk, Ck = 1
nk

∑n
i=1 Zik(ci −µk)

t(ci −µk) and ci = (c1ir, ..., c
p
ir)

is a vector of coefficients.

As the group memberships Zik are unknown, the EM algorithm starts
by computing their conditional expectation (E step) before maximizing the
expected complete likelihood (M step).

E step This step aims at computing the conditional expectation of the com-
plete log-likelihood and reduces to the computing of the conditional expecta-
tion E[Zik|ci, θ

(q−1)], which can be computed as follows.

Proposition 2 For the model [akjbkQkdk], the posterior probability that each

curve belongs to the k-th cluster can be written:

t
(q)
ik = E[Zik|ci, θ

(q−1)] = 1/

K∑

l=1

exp[
1

2
(H

(q−1)
k (ci)−H

(q−1)
l (ci))], (7)

where H
(q−1)
k (c) is the cost function defined for c ∈ R

R as:

H
(q−1)
k (c) = ||µ

(q−1)
k − Pk(c)||

2
Dk

+
1

b
(q−1)
k

||c− Pk(c)||
2

+

dk∑

j=1

log(a
(q−1)
kj ) + (R− dk) log(b

(q−1)
k )− 2 log(π

(q−1)
k ), (8)
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where ||.||2Dk
is a norm on the latent space Ek defined by ||y||2Dk

= ytDky,

Dk = Q̃∆−1
k Q̃t and Q̃ is a matrix containing the dk vectors of Uk completed by

zeros such as Q̃ = [Uk, 0R−dk
], Pk is the projection operator on the functional

latent space Ek defined by Pk(c) = WUkU
t
kW

t(c− µk) + µk.

Proof of this result is provided in Appendix A.2.

M step This step estimates the model parameters by maximizing the expecta-
tion of the complete log-likelihood conditionally on the posterior probabilities

t
(q)
ik computed in the previous step. The following proposition provides up-
date formulae for mixture parameters. Proof of these results are provided in
Appendix A.3.

Proposition 3 For the model [akjbkQkdk], the maximization of the condi-

tional expected complete log-likelihood leads to the following update:

– π
(q)
k =

η
(q)
k

n , µ
(q)
k = 1

η
(q)
k

∑n
i=1 t

(q)
ik ci,

– the dk first columns of the orientation matrix Qk are updated by the eigen-

functions coefficients associated with the largest eigenvalues of W 1/2C
(q)
k W 1/2,

– the variance parameters akj, j = 1, ..., dk, are updated by the dk largest

eigenvalues of W 1/2C
(q)
k W 1/2,

– the variance parameters bk are updated by b
(q)
k = 1

R−dk
[tr(W 1/2C

(q)
k W 1/2)−

∑dk

j=1 â
(q)
kj ].

where η
(q)
k =

∑n
i=1 t

(q)
ik and C

(q)
k = 1

η
(q)
k

∑n
i=1 t

(q)
ik (ci − µ

(q)
k )t(ci − µ

(q)
k ) is the

sample covariance matrix of group k.

To summarize, the algorithm introduced above, named hereafter funHDDC,
clusters multivariate functional data through their projection into low dimen-
sional subspaces. Those projections are obtained by performing a MFPCA per
cluster thank to an iterative algorithm.

5.2 Estimation of intrinsic dimensions

In order to choose the intrinsic dimensions dk of each cluster, the Cattell’s
scree-test (Cattell, 1966) is used. This test looks for a drop in the eigenvalues
scree. The selected dimension is the one for which the subsequent eigenval-
ues differences are smaller than a threshold provided by the user or selected
using Bayesian information criterion, Akaike information criterion, integrated
completed likelihood or slope heuristic (described below).

This estimation of the number of intrinsic dimensions is done within the
M step of EM algorithm. It may allow the estimated intrinsic dimensions to
vary along the iterations in order to fit well data.
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5.3 Choice of the number of clusters

We now focus on the choice of the hyper-parameter K, the number of clusters.
The choice of this hyper-parameter is here viewed as model selection problem.
Classical model selection tools include the Akaike information criterion (AIC,
Akaike (1974)), the Bayesian information criterion (BIC, Schwarz (1978)) and
the integrated completed likelihood criterion (ICL, Biernacki et al. (2000)).
In the context of mixture model, BIC is certainly the most popular. The BIC
criterion can be computed as follows:

BIC = l(θ̂)− m
2 × log(n),

with l(θ̂) the maximum log-likelihood value, m the number of model parame-
ters and n the number of individuals. The criterion penalizes the log-likelihood
through model complexity. The model maximizing the criterion is chosen.

Another criterion, that has proved its usefulness, is the slope heuristic (SH,
Birge and Massart (2007)). This data-driven criterion penalty has a multiplica-
tive factor provided by the linear part of the log-likelihood:

SH = l(θ̂)− 2 sm,

where s is the slope of the linear part of the maximum log-likelihood value
l(θ̂) when plotted against the model complexity. It has to be noticed that
this method requires to test a large number of clusters number, or a large
number of models, so that there is enough points in the log-likelihood versus
model complexity plot (bottom left plot of Fig. 4) to detect a plateau in the
log-likelihood.

For either of those criteria, different values for K need to be tested. Then,
the one that maximizes the chosen criterion’s value is the best one that has
to be kept.

5.4 Computational details

As explained in section 4.1, funHDDC algorithm relies on an EM algorithm.
The EM algorithm needs to be initialized, by setting initial values for the par-
titions. To this end, two initialization strategies are considered: random and
kmeans initializations. In the case of random initialization, the partitions are
randomly sampled using a multinomial distribution with uniform probabilities.
The kmeans strategy consists in initializing the partitions with those obtained
by a kmeans algorithm applied directly on the whole set of discretized observa-
tions. With kmeans initialization, the EM algorithm usually converges quicker
than with random initialization. For both initialization, it is highly recom-
mended, in order to prevent the convergence to a local maximum, to perform
multiple initializations of the algorithm and keep the solution maximizing the
log-likelihood. The number of initializations is a parameter of funHDDC algo-
rithm that can be tuned by the user.
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The funHDDC algorithm is stopped when the difference between two con-
secutive log-likelihood values is lower than a given threshold ǫ or after a max-
imal number of iterations.

Running times for different sizes of datasets will be presented later, in
Section 6.4.

6 Numerical experimentation on simulated data

This section presents numerical experiments to illustrate the behavior of the
proposed methodology and confront it to competitors from the literature.
Firstly, the quality of the model inference algorithm is illustrated on simu-
lated data. Secondly, the sensitivity of the proposed approach to sample size
is investigated in term of correct classification rate as well as in term of com-
putational time. Thirdly, BIC and SH are compared for selecting the number
of clusters. Finally, funHDDC is confronted to competitors on several datasets.
The R code (R Core Team, 2017) for our multivariate functional clustering
algorithm is available on CRAN in the funHDDC package.

6.1 Simulation setup

In order to ease the reproducibility of the results, we consider 3 simulation
scenarios designed as follows.

Scenario A: For this first scenario, a sample of 1,000 bivariate curves are sim-
ulated based on [akbkQkDk] model. To do so, scores are simulated according
to a Gaussian model with mean µ and diagonal variance ∆. Curves coefficients
can be rebuild based on (δil)l≥1 = CWb′l as shown in Section 2. The number
of clusters is fixed to K = 3 and mixing proportions are equal. Scores are gen-
erated from a multivariate normal distribution with the following parameters:

Group 1 : d = 5, a = 150, b = 5, µ = (1, 0, 50, 100, 0, . . . , 0),

Group 2 : d = 20, a = 15, b = 8, µ = (0, 0, 80, 0, 40, 2, 0, . . . , 0),

Group 3 : d = 10, a = 30, b = 10, µ = (0, . . . , 0, 20, 0, 80, 0, 0, 100),

where d is the intrinsic dimension of subgroups, µ is the mean vector of size
70, a is the value of the d-first diagonal elements of ∆ and b the value of the
(70-d)-last ones. Curves are smoothed using a basis of 35 Fourier functions (cf.
top panel of Figure 1).

Scenario B: The second simulation setting is inspired by the data simulation
process of Ferraty and Vieu (2003); Preda (2007); Bouveyron et al. (2015), and
therefore will not favor our approach in the comparison. For this simulation,
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Fig. 1 Smooth data simulated for variable 1 (left) and variable 2 (right) for scenario A
(top), scenario B (middle) and scenario C (bottom) colored by group for one simulation
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the number of clusters is fixed to K = 4. A sample of 1000 bivariate curves is
simulated according to the following model for t ∈ [1, 21]:

Group 1 : X1(t) = U + (1− U)h1(t) + ǫ(t),

X2(t) = U + (0.5− U)h1(t) + ǫ(t),

Group 2 : X1(t) = U + (1− U)h2(t) + ǫ(t),

X2(t) = U + (0.5− U)h2(t) + ǫ(t),

Group 3 : X1(t) = U + (0.5− U)h1(t) + ǫ(t),

X2(t) = V + (1− V )h2(t) + ǫ(t),

Group 4 : X1(t) = U + (0.5− U)h2(t) + ǫ(t),

X2(t) = U + (1− U)h1(t) + ǫ(t),

where U ∼ U(0, 0.1) and ǫ(t) is a white noise independent of U and such
that Var(ǫ(t)) = 0.25. The functions h1 and h2 are defined, for t ∈ [1, 21], by
h1(t) = (6−|t−7|)+ and h2(t) = (6−|t−15|)+ where (·)+ means the positive
part. The mixing proportions are equal, and the curves are observed in 101
equidistant points. The functional form of the data is reconstructed using a
cubic B-spline basis smoothing with 25 basis functions (cf. middle panel of
Figure 1).

Scenario C: For this third simulation scenario, the number of clusters is fixed
to K = 4. A sample of 1000 bivariate curves is simulated according to the
following model for t ∈ [1, 21]:

Group 1 : X1(t) = U + (1− U)h1(t) + ǫ(t),

X2(t) = U + (0.5− U)h1(t) + ǫ(t),

Group 2 : X1(t) = U + (1− U)h2(t) + ǫ(t),

X2(t) = U + (0.5− U)h2(t) + ǫ(t),

Group 3 : X1(t) = U + (1− U)h1(t) + ǫ(t),

X2(t) = U + (1− U)h2(t) + ǫ(t),

Group 4 : X1(t) = U + (0.5− U)h2(t) + ǫ(t),

X2(t) = U + (0.5− U)h1(t) + ǫ(t),

where U, ǫ(t), h1 and h2 are defined as before. The mixing proportions are
equal, and the curves are observed in 101 equidistant points. The functional
form of the data is reconstructed using a cubic B-splines basis smoothing with
25 basis functions. As shown in Figure 1 (bottom), the 4 groups cannot be
distinguished with one variable only: indeed group 3 (green) is similar to group
1 (black) for variable X1(t) and similarly group 4 (blue) is similar to group 1
(black) for variable X2(t). Consequently, any univariate functional clustering
methods applied either on variable X1(t) or X2(t) should fail.
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For each scenario, the estimated partitions are compared to the true par-
tition with the adjusted Rand index (ARI, Rand (1971)). This criterion value
is less than or equal to 1, with 1 representing a perfect agreement between
the true partition and the one estimated by the algorithm, and 0 a random
agreement. The algorithm settings used for all simulations are the following:
the threshold of the Cattell’s scree-test for the selection of intrinsic dimensions
dk is fixed to 0.2 (the optimal threshold value should be chosen using BIC or
slope heuristic), the stopping criterion for the EM algorithm is a growth of
the log-likelihood lower than ǫ = 10−3 or a maximal number of iterations of
200, the initialization of the algorithm is done through a random partition in
the introductory example, and with the kmeans strategy the model selection
and benchmark experiments, in order to speed up the convergence.

6.2 An introductory example

Table 1 Mean (and s.d.) of ARI for 50 simulations

funHDDC model Mean (SD)
[akjbkQkDk] 0.99 (0.08)
[akjbQkDk] 0.85 (0.26)
[akbkQkDk] 1 (0)
[akbQkDk] 0.88 (0.26)
[abkQkDk] 0.95 (0.16)
[abQkDk] 0.49 (0.36)

In order to illustrate the good behavior of the inference algorithm, we first
consider a single simulation according to Scenario A, which is overall a difficult
situation. The algorithm is run for K = 3 groups with the model [akbkQkDk]
which has been used to generate the data and the simulation setting is repeated
50 times. Figure 2 allows the comparison of the fitted values with the actual
ones of model parameters. Parameter a turns out to be well estimated for all 3
clusters, whereas parameters b and d are only well estimated for 2 clusters out
of 3. Indeed, this simulation scenario has one mixture component with a low
signal-to-noise ratio which disturbs the estimation of dk for this component,
and therefore also perturb the estimation of the noise variance bk. Nevertheless,
the fact that our model actually models the variance within the whole space
(and not only a part as in Jacques and Preda (2014b)), allows us to correctly
recover the cluster partition even in difficult estimation conditions.

To assess the clustering quality, the funHDDC algorithm is now run for
K = 3 groups with all 6 sub-models and the simulation setting is repeated 50
times. The quality of the estimated partitions is evaluated using the ARI and
results are given in Table 1. As expected, the best result is obtained for the
model [akbkQkDk] which has been used to generate data and it shows that
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the algorithm correctly recovers the cluster pattern. It is worth noticing that
the other models also have satisfying performances.

Fig. 2 Scree-test of Cattell performed for each group with the threshold set to 0.2 (blue
line) for one simulation and mean (sd) of parameters estimation for the 50 simulations with
the [akbkQkDk] model

6.3 Sample size influence

In order to evaluate the sensitivity of the proposed approach to the sample size,
we now consider 50 simulations according to Scenario B, and with different
sample size: 1000, 500, 200 and 30. Table 2 presents the corresponding results.
The impact of the sample size is not really significant between 1000 to 200.
For very small sample size, 30 observations for 3 clusters, the quality of the
partition estimation significantly decreases, but such small sample size are
seldom used in practice for clustering studies.
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Table 2 Mean (and s.d.) of ARI for 50 simulations

sample size n

funHDDC model 1000 500 200 30
[akjbkQkDk] 0.98 (0.08) 0.99 (0.05) 0.98 (0.07) 0.84 (0.20)
[akjbQkDk] 0.82 (0.19) 0.71 (0.15) 0.70 (0.12) 0.67 (0.09)
[akbkQkDk] 1 (0) 0.99 (0.07) 0.98 (0.08) 0.80 (0.23)
[akbQkDk] 0.88 (0.18) 0.66 (0.10) 0.69 (0.11) 0.66 (0.08)
[abkQkDk] 0.98 (0.09) 1 (0) 0.99 (0.05) 0.90 (0.16)
[abQkDk] 0.86 (0.18) 0.71 (0.14) 0.68 (0.11) 0.66 (0.08)

6.4 Computational time and cost

When dealing with multivariate functional data, a big issue consists of scala-
bility and computational effort in performing analyses. We will present here
the impact of sample size and number of functional variables on running time.

Firstly, funHDDC algorithm is applied for K = 4 groups on scenario B

bivariate functional data. Then, a second scenario with four functional vari-
ables is built based on scenario B with the two additional functional variables
be cosinus and sinus functions. The computer used for the experiments has a
Windows 10 operating system, Intel(R) Core(TM) i7-6700 CPU 3.40GHz pro-
cessor and 8.00 Go of RAM memory. The associated running times, estimated
with Sys.time R function, are shown in Table 3.

Table 3 Computational effort in performing analyses

Sample size Number of functional variables Running time (sec)
1000 2 0.24
10 000 2 1.16
100 000 2 10.71
1000 4 0.59
10 000 4 3.50
100 000 4 30.85

6.5 Model selection

In this section, the selection of the number of clusters is investigated. As
previously mentioned, two criteria are used: BIC and the slope heuristic. Data
are generated from Scenario A. This simulation setting has been repeated 50
times and the 6 sub-models have been estimated for a number of clusters from
2 to 10.

Figures 3 and 4 show for one simulation with the model [akbkQkDk], the
values of BIC and the slope heuristic in view of the number of clusters. For
this simulation, both the slope heuristic and BIC succeed in selecting the right
number of clusters. On Figure 4, the left plot corresponds to the log-likelihood
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function with respect to the number of free model parameters. The red line is
estimated using a robust linear regression and its slope coefficient is used to
compute the penalized log-likelihood function shown on the right plot.

Table 4 summarized the results of the 50 simulations for the BIC and
the slope heuristic. The BIC criterion has some difficulties to estimate the
actual number of clusters K. Indeed, depending on the simulation, BIC se-
lects between 2 to 3 clusters and succeed in 46% of simulations in the case
of [akbkQkDk] model. The slope heuristic is conversely more efficient to re-
cover the actual number of groups, in about 66% of simulations in the case of
[akbkQkDk] model.

Fig. 3 BIC for one simulation for the model [akbkQkDk]

Fig. 4 Slope heuristic for one simulation for the model [akbkQkDk]
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Table 4 Best model selected by BIC (top) and by the slope heuristic (SH, bottom) for 50
simulations as a percentage

BIC Number K of clusters
Method Model 2 3 4 5 6 7 8 9 10
funHDDC [akjbkQkDk] 36 48 10 6 - - - - -
funHDDC [akjbQkDk] 38 54 6 - 2 - - - -
funHDDC [akbkQkDk] 42 46 8 0 2 2 - - -
funHDDC [akbQkDk] 44 48 8 - - - - - -
funHDDC [abkQkDk] 46 40 10 4 - - - - -
funHDDC [abQkDk] 64 24 10 2 - - - - -

SH Number K of clusters
Method Model 2 3 4 5 6 7 8 9 10
funHDDC [akjbkQkDk] 6 60 24 10 - - - - -
funHDDC [akjbQkDk] 10 74 12 4 - - - - -
funHDDC [akbkQkDk] 18 66 14 2 - - - - -
funHDDC [akbQkDk] 26 52 14 8 2 - - - -
funHDDC [abkQkDk] 34 42 16 6 2 - - - -
funHDDC [abQkDk] 38 28 20 10 2 0 0 2 -

6.6 Benchmark with existing methods

In this section, the proposed clustering algorithm is compared to competitors
of the literature: Funclust (from Funclustering package, Jacques and Preda
(2014b)), kmeans-d1 and kmeans-d2 (our own implementation of Ieva et al.
(2013)) and FGRC (provided at our request by the authors Yamamoto and
Hwang (2017)). All algorithms are applied forK = 3 groups for Scenario A and
K = 4 groups for Scenario B and Scenario C. These methods are compared
on the basis of the 3 simulation settings and according to the adjusted Rand
index (ARI).

Table 5 presents clustering accuracies for the 10 tested models and the best
funHDDC model selected at each iteration by slope heuristic or BIC. These
scenarios seem to be hard situations since only funHDDC performs well for
the 3 of them. Those good results for funHDDC are due to the fact that the
MFPCA are carried out cluster per cluster. FGRC performed well for 2 out of
3 scenarios, it is the second best method behind funHDDC. Let also remark
that both kmeans methods have a high variance. The SH does not perform
as well as in the previous example. SH seems to be a good criterion to select
the number of clusters, but, with a number of clusters fixed, the BIC seems to
be a better criterion for model selection. One can also wonder if this counter
performance of the SH is not linked to the small number of tested models.

7 Case study: analysis of pollution in French cities

This section focuses on the analysis of pollution data in French cities. The
monitoring and the analysis of such data is of course important in the sense
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Table 5 Mean (and s.d) of ARI for all tested models on 50 simulations

Method Model Scenario A Scenario B Scenario C
funHDDC [akjbkQkDk] 0.99 (0.08) 0.98 (0.08) 0.94 (0.14)
funHDDC [akjbQkDk] 0.85 (0.26) 0.82 (0.19) 0.76 (0.19)
funHDDC [akbkQkDk] 1 (0) 0.96 (0.11) 0.94 (0.13)
funHDDC [akbQkDk] 0.88 (0.26) 0.88 (0.18) 0.81 (0.20)
funHDDC [abkQkDk] 0.95 (0.16) 0.98 (0.09) 0.95 (0.13)
funHDDC [abQkDk] 0.49 (0.36) 0.86 (0.18) 0.78 (0.23)
funHDDC SH best model 0.48 (0.29) 0.76 (0.18) 0.70 (0.14)
funHDDC BIC best model 0.97 (0.12) 0.86 (0.18) 0.79 (0.18)
Funclust - 0.30 (0.27) 0.42 (0.25) 0.41 (0.24)

kmeans− d1 - 0.57 (0.49) 0.18 (0.37) 0.30 (0.46)
kmeans− d2 - 0.61 (0.48) 0.29 (0.43) 0.18 (0.37)

FGRC - 0.87 (0.01) 0.65 (0.21) 0.81 (0.19)

that they could help cities in designing their policy against pollution. As a re-
minder, pollution kills at least nine million people and costs trillions of dollars
every year, according to the most comprehensive global analyses to date 1.

Fig. 5 Location of measured cities (dark blue)

1 who.int/airpollution/en/
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7.1 Data

This dataset deals with pollution in some French cities (available on 3 differ-
ent websites 2). It has been documented by Atmo France, a federation which
monitor air quality in France. It gathered 5 categories of pollutants measured
hourly since 1985. In this study we choose to work on Ozone value (µg/m3) and
PM10 particles (µg/m3) measured in 84 France southern cities. The regions
affected are Nouvelle Aquitaine, Auvergne Rhône Alpes and Provence Alpes
Côte d’Azur (cf. Figure 5). A period of one year from 1/01/2017 to 31/12/2017
is considered. The goal of this study is to characterize the daily evolution of
these polluants. In order to do this, data are split into daily curves, and the
clustering algorithm has been carried out on all the daily curves for all the
cities. Doing this, geographical and temporal dependencies between the daily
curves are ignored in this preliminary study. Finally, we remove from the anal-
ysis the daily curves which have more than 4 missing values or for which there
is missing values at the beginning or at the end of the period. The number of
bivariate curves to analyse is thus 25,658.

The functional form of the data is reconstructed using a cubic B-spline
smoothing with 10 basis functions. As we can see in Figure 6 (bottom), the
presence of missing values does not disrupt smoothing. Data are collected
through calibrated meteorological stations, we consider that data are obtained
in a common acquisition process, then the noise is assumed to be the same
for all stations. So, our algorithm has been applied with [akjbQkDk] model
on smoothed data with a varying number of clusters, from 2 to 20. The BIC
criteria is used to choose an appropriate number of clusters because there is
here not enough models to use the slope heuristic criteria.

Fig. 6 Pollutants real curves (top) and smooth curves (bottom) for Avignon day 12 (blue)
and La Rochelle day 177 (pink)

2 https://www.airpaca.org/donnees/telecharger,
https://www.atmo-auvergnerhonealpes.fr/donnees/telecharger,
https://www.atmo-nouvelleaquitaine.org/donnees/telecharger
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7.2 Results

Table 6 BIC values for the 10 first number of clusters, with [akjbQkDk]

Number of clusters Complexity BIC
6 544 -4,756,123.71
9 849 -4,778,048.84
18 2,057 -4,819,115.13
17 1,929 -4,833,556.40
5 472 -4,939,371.01
14 1,545 -4,966,517.37
16 1,834 -4,969,406.42
15 1,735 -4,970,505.90
11 1,260 -4,972,458.71
2 101 -4,976,490.18

According to BIC, the best partition for [akjbQkDk] model is with 6 clus-
ters (cf. Table 6).
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The main sources of variation of Ozone and particles PM10 overall mean
curves can be studied thanks to the MFPCA performed for each subgroup.
The solid curve on Figure 7 and 8 represents the overall mean curve and the
blue and red ones show the effect of adding (resp. subtracting) a multiple of
the first eigenfunction and can be interpret as the first source of variation
of the overall mean. According to this plot the first source is an amplitude
variation for Ozone. For PM10 particles it is the peaks size that varies the
most between groups.

Looking at the groups mean curves (cf. Figure 7 for Ozone and 8 for PM10
particles) we can see that Ozone mean curves are more variable than PM10
particles ones. We can also see a common pattern between groups. For the
PM10 particles, the mean curves of each group have a wavy shape with a first
summit at night and a second at mid-afternoon. There is two main patterns
in the O3 curves. During a day, the Ozone concentration has a tendency to
decrease from midnight to midday and to increase until reaching a plateau
between 5 pm and 8 pm for the first pattern. For the second one, the Ozone
concentration is stable from midnight to 2 pm and increases until reaching a
maximum at 8 pm. But it is the level of concentration that varies the most
from a group to another.

The dark blue group is characterized by the lower concentration of Ozone
along the day. This group gathers winter days (cf. Figure 9) for cities mostly
in urban area (cf. Table 7). Ozone is a product of photochemical reaction be-
tween various pollutants when there is a lot of sunlight. The low duration of
sunshine during winter can explain those low values. Its Ozone mean curve is
very close to turquoise group one, they differ from their PM10 particle concen-
tration. Indeed, dark blue average curve is three times higher than turquoise
group one. It gathers days the most contaminated by particles PM10 (with the
highest concentration along the day). For that matter, the European Union
recommends that PM10 concentrations should not to be higher than 50 µg/m3

in daily mean more than 35 days per year and in this group the mean value
is above this threshold at any time. Whereas turquoise group gathers fall and
winter days (cf. Figure 9). The black group has the highest values of Ozone (cf.
Figure 7 group 5). Its maximum is reached between 5pm and 10pm. This can
be due to exhaust gas when people commute from their work to their home.

Table 7 Proportion of city type in each group

Type of city Whole dataset Dark blue Group Pink Group Turquoise Group
Urban 0.78 0.81 0.75 0.84
Suburban 0.17 0.16 0.19 0.14
Rural 0.05 0.03 0.06 0.03
Type of city Grey Group Black Group Purple Group
Urban 0.79 0.78 0.77
Suburban 0.16 0.17 0.17
Rural 0.06 0.05 0.05
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Fig. 7 O3 overall mean curve and its variation expressed in each group functional subspace.
Blue (resp. red) curve shows the effect of adding (resp. subtracting) a multiple of the first
eigenfunction and represents the first source of the overall mean variation

To conclude, the use of multiple variables to cluster cities allow the distinc-
tion between different pollution profiles. Those results enable local councils to
have a look at the daily pollution of their towns along the year. Those results
have especially highlighted critical days in particles PM10 pollution, that can
lead to recommendations in order to try to lower these levels the next year.
However we have to stay vigilant about the interpretation of those results.
In fact, the measurement of contaminating elements are very localized, some
sensors are located near companies and thus are not always representative of
the pollution of the whole city in which they are located.

8 Discussion and conclusion

This work was motivated by the will to provide a new clustering method for
multivariate functional data, called funHDDC, which takes into account the
possibility that data live in subspaces of different dimensions. The method is
based on a multivariate functional principal component analysis and a func-
tional latent mixture model. Its efficiency has been demonstrated on simulated
datasets and the proposed technique outperforms state-of-the-art methods for
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Fig. 8 PM10 particles overall mean curve and its variation expressed in each group func-
tional subspace. Blue (resp. red) curve shows the effect of adding (resp. subtracting) a
multiple of the first eigenfunction and represents the first source of the overall mean varia-
tion

clustering multivariate functional data. Notice also that this new algorithm
works in the univariate case as well and, therefore, generalizes the original fun-
HDDC algorithm (Bouveyron and Jacques (2011)). It is available on CRAN as
the funHDDC package. The proposed methodology has been applied to ana-
lyze one-year pollution records in 84 cities in France, with meaningful results.
It is worth noticing that smoothing data with basis functions allows to both
filter the level of information one wants to keep and to deal with missing data.
Let also remark that wavelet smoothing may keep more information in the
case of peaked data than B-spline smoothing. It can be the subject of future
work because a new model will have to be adapted to this smoothing. Sim-
ilarly, further developments of the proposed approach could be investigated
in order to take into account dependency between observations, following the
large literature about dependent functional data.
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Fig. 9 Histogram of days in each group, from 1/01/2017 (0) to 31/12/2010 (364). Spring
is from day 79 to 171, Summer from day 172 to 264, Fall from day 265 to 354 and Winter
from day 355 to 365 and day 1 to 78.
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A Appendix: proofs

A.1 Proof of Proposition 1.

l(θ) =
n
∑

i=1

K
∑

k=1

zkilog(πkf(xi, θk)),

where zki=1 if xi belongs to the cluster k and zki = 0 otherwise. f(xi, θk) is a Gaussian
density, with parameters θk = {µk, Σk}. So the complete log-likelihood is written:
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Let nk =
∑n

i=1 zki be the number of curves within cluster k, the complete log-likelihood is
then written:
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where Ck = 1
nk

∑n
i=1 zki(xi − µk)

t(xi − µk) is the empirical covariance matrix of the k-th

element of the mixture model. The ∆k matrix is diagonal, so we can write:
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where qkj is j-th column of Qk.
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dk
∑

j=1

log(akj) +
R
∑

j=dk+1

log(bk) +

dk
∑

j=1

qtkjW
1/2CkW

1/2qkj

akj

+
R
∑

j=dk+1

qtkjW
1/2CkW

1/2qkj

bk
] +

nR

2
log(2π).

A.2 Proof of Proposition 2.

Hk(x) = −2log(πkf(x, θk))

= −2log(πk)− 2log(f(x, θk))

= −2log(πk)− 2log(
1

(2π)R/2|Σk|1/2
exp(

−1

2
(x− µk)

tΣ−1
k (x− µk))

= −2log(πk)− 2log(
1

(2π)R/2|Σk|1/2)
) + (x− µk)

tΣ−1
k (x− µk)

= −2log(πk) +Rlog(2π) + log|Σk|+ (x− µk)
tΣ−1

k (x− µk).

But, Σk = Qk∆kQ
t
k and Qt

kQk = IR, hence:

Hk(x) = −2log(πk) +Rlog(2π) + log|Σk|+ (xk − µk)
t(Qk∆kQ

t
k)

−1(xk − µk).

Let Qk = Q̃k + Q̄k where Q̃k is the R × R matrix containing the dk first columns of Qk

completed by zeros and where Q̄k = Qk − Q̃k. Notice that Q̃k∆
−1
k Q̄t

k = Q̄k∆
−1
k Q̃t

k = Op

where Op is the null matrix. So,

Qk∆
−1
k Qt

k = (Q̃k + Q̄k)∆
−1
k (Q̃k + Q̄k) = Q̃k∆

−1
k Q̃k + Q̄k∆

−1
k Q̄k.

Hence,

Hk(x) = −2log(πk) +Rlog(2π) + log|Σk|+ (x− µk)
tQ̃k∆

−1
k Q̃t

k(x− µk)

+ (x− µk)
tQ̄k∆

−1
k Q̄t

k(x− µk).

With definitions Q̃k[Q̃
t
kQ̃k] = Q̃k and Q̄k[Q̄

t
kQ̄k] = Q̄k, we can rephrase Hk(x) as:

Hk(x) = −2log(πk) +Rlog(2π) + log|Σk|+ (x− µk)
tQ̃kQ̃

t
kQ̃k∆

−1
k Q̃t

kQ̃kQ̃
t
k(x− µk)

+ (x− µk)
tQ̄kQ̄

t
kQ̄k∆

−1
k Q̄t

kQ̄kQ̄
t
k(x− µk)

= −2log(πk) +Rlog(2π) + log|Σk|+ [Q̃kQ̃
t
k(x− µk)]

tQ̃k∆
−1
k Q̃k

t
[Q̃kQ̃

t
k(x− µk)]

+ [Q̄kQ̄
t
k(x− µk)]

tQ̄k∆
−1
k Q̄k

t
[Q̄kQ̄

t
k(x− µk)].
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We define Dk = Q̃k∆
−1
k Q̃t

k and the norm ||.||Dk
on Ek such as ||x||Dk

= xtDkx. So, on one
hand:

[Q̃kQ̃
t
k(x− µk)]

tQ̃k∆
−1
k Q̃t

k[Q̃kQ̃
t
k(x− µk)] = ||Q̃kQ̃

t
k(x− µk)||

2
Dk

.

On the other hand:

[Q̄kQ̄
t
k(x− µk)]

tQ̄k∆
−1
k Q̄t

k[Q̄kQ̄
t
k(x− µk)] =

1

bk
||Q̄kQ̄

t
k(x− µk)||

2.

Consequently,

Hk(x) = −2log(πk) +Rlog(2π) + log|Σk|+ ||Q̃kQ̃
t
k(x− µk)||

2
Dk

+
1

bk
||Q̄kQ̄

t
k(x− µk)||

2.

Knowing Pk, P
⊥

k and ||µk − P⊥

k ||2 = ||x− Pk(x)||
2, we have:

Hk(x) = ||µk − Pk(x)||
2
Dk

+
1

bk
||x− Pk(x)||

2 + log|Σk| − 2log(πk) +Rlog(2π).

Moreover, log|Σk| =
∑dk

j=1 log(akj) + (R− dk)log(bk).
Finally,

Hk(x) = ||µk − Pk(x)||
2
Dk

+
1

bk
||x− Pk(x)||

2 +

dk
∑

j=1

log(akj) + (R− dk)log(bk)− 2log(πk)

+ Rlog(2π).

A.3 Proof of Proposition 3.

Parameter Qk We have to maximise the log-likelihood under the constraint qtkjqkj = 1,

which is equivalent to looking for a saddle point of the Lagrange function:

L = −2l(θ)−
R
∑

j=1

ωkj(q
t
kjqkj − 1),

where ωkj are Lagrange multiplier. So we can write:

L =

K
∑

k=1

ηk[

dk
∑

j=1

(log(akj) +
qtkjW

1/2CkW
1/2qkj

akj
)

+
R
∑

j=dk+1

(log(bk) +
qtkjW

1/2CkW
1/2qkj

bk
)− 2log(πk)] +

nR

2
log(2π)

−

R
∑

j=1

ωkj(q
t
kjqkj − 1).

Therefore, the gradient of L in relation to qkj is:

∇qkj
L = ∇qkj

(
K
∑

k=1

ηk[

dk
∑

j=1

qtkjW
1/2CkW

1/2qkj

akj
+

R
∑

j=dk+1

qtkjW
1/2CkW

1/2qkj

bk
]

−
R
∑

j=1

ωkj(q
t
kjqkj − 1)).
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As a reminder, when W is symmetric, then ∂
∂x

(x−s)TW (x−s) = 2W (x−s) and ∂
∂x

(xT x) =
2x (cf. Petersen and Pedersen (2012)), so:

∇qkj
L = ηk[2

W 1/2CkW
1/2

σkj
qkj ]− 2ωkjqkj

where σkj is the j-th diagonal term of matrix ∆k.
So,

qtkj∇qkj
L = 0 ⇔ ωkjqkj =

ηk

σkj
qtkjW

1/2CkW
1/2qkj

⇔ W 1/2CkW
1/2qkj =

ωkjσkj

ηk
qkj .

qkj is the eigenfunction of W 1/2CkW
1/2 which match the eigenvalue λkj =

ωkjσkj

ηk
=

W 1/2CkW
1/2. We can write qtkjqkl = 0 if j 6= l. So the log-likelihood can be written:

−2l(θ) =
K
∑

k=1

ηk[

dk
∑

j=1

(log(akj) +
λkj

akj
) +

R
∑

j=dk+1

(log(bk) +
λkj

bk
)] + Cte,

we substitute the equation
∑R

j=dk+1 λkj = tr(W 1/2CkW
1/2)−

∑dk
j=1 λkj :

−2l(θ) =

K
∑

k=1

ηk[

dk
∑

j=1

log(akj) +

dk
∑

j=1

λkj

akj
+

R
∑

j=di+1

log(bk) +
1

bk
(tr(W 1/2CkW

1/2)−

dk
∑

j=1

λkj)] + Cte

=
K
∑

k=1

ηk[

dk
∑

j=1

log(akj) +

dk
∑

j=1

λkj(
1

akj
−

1

bk
) +

R
∑

j=di+1

log(bk) +
1

bk
tr(W 1/2CkW

1/2)] + Cte

=
K
∑

k=1

ηk[

dk
∑

j=1

log(akj) +

dk
∑

j=1

λkj(
1

akj
−

1

bk
) + (p− dk)log(bk) +

tr(W 1/2CkW
1/2)

bk
] + Cte.

In order to minimize−2l(θ) compared to qkj , we minimize the quantity
∑K

k=1 ηk
∑dk

j=1 λkj(
1

akj
−

1
bk

) compared to λkj . Knowing that ( 1
akj

− 1
bk

) ≤ 0, ∀j = 1, ..., dk, λkj has to be as high as

feasible. So, the j-th column qkj of matrix Q is estimated by the eigenfunction associated

to the j-th highest eigenvalue of W 1/2CkW
1/2.

Parameter akj As a reminder (ln(x))′ = x′

x
and ( 1

x
)′ = − 1

x2 . The partial derivative of
l(θ) in relation to akj is:

−2
∂l(θ)

∂akj
= ηk(

1

akj
−

qtkjW
1/2CkW

1/2qkj

a2kj
)

The condition
∂l(θ)
∂akj

= 0 is equivalent to:

ηk(
1

akj
−

qtkjW
1/2CkW

1/2qkj

a2kj
) = 0

⇔
1

akj
=

qtkjW
1/2CkW

1/2qkj

a2kj

⇔ akj = qtkjW
1/2CkW

1/2qkj

⇔ akj = λkj



30 Amandine Schmutz et al.

Parameter bk The partial derivative of l(θ) in relation to bk is:

−2
∂l(θ)

∂bk
= ηk

R
∑

j=dk+1

(
1

bk
−

qtkjW
1/2CkW

1/2qkj

b2k
)

= ηk(
R− dk

bk
−

R
∑

j=dk+1

qtkjW
1/2CkW

1/2qkj

b2k
)

But,

R
∑

j=dk+1

qtjW
1/2CkW

1/2qj = tr(W 1/2CkW
1/2)−

dk
∑

j=1

qtjW
1/2CkW

1/2qj ,

so:

−2
∂l(θ)

∂bk
= ηk

(R− dk)

bk
−

ηk

b2k
(tr(W 1/2CkW

1/2)−

dk
∑

j=1

qtkjW
1/2CkW

1/2qkj)

= ηk
(R− dk)

bk
−

ηk

b2k
(tr(W 1/2CkW

1/2)−

dk
∑

j=1

λkj)

The condition
∂l(θ)
∂bk

= 0 is equivalent to:

ηk
(R− dk)

bk
−

ηk

b2k
(tr(W 1/2CkW

1/2)−

dk
∑

j=1

λkj) = 0

⇔ ηk
(R− dk)

bk
=

ηk

b2k
(tr(W 1/2CkW

1/2)−

dk
∑

j=1

λkj)

⇔ bk =
ηk

ηk(R− dk)
(tr(W 1/2CkW

1/2)−

dk
∑

j=1

λkj)

⇔ bk =
1

(R− dk)
(tr(W 1/2CkW

1/2)−

dk
∑

j=1

λkj)
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