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Abstract

The Gaussian hidden Markov model (HMM) is widely considered for the analysis of het-
erogeneous continuous multivariate longitudinal data. To robustify this approach with respect
to possible elliptical heavy-tailed departures from normality, due to the presence of outliers,
spurious points, or noise (collectively referred to asbad pointsherein), the contaminated Gaus-
sian HMM is here introduced. The contaminated Gaussian distribution represents an elliptical
generalization of the Gaussian distribution and allows for automatic detection of bad points in
the same natural way as observations are typically assigned to the latent states in the HMM
context. Once the model is fitted, each observation has a posterior probability of belonging to
a particular state and, inside each state, of being a bad point or not. In addition to the parame-
ters of the classical Gaussian HMM, for each state we have two more parameters, both with a
specific and useful interpretation: one controls the proportion of bad points and one specifies
their degree of atypicality. A sufficient condition for the identifiability of the model is given,
an expectation-conditional maximization algorithm is outlined for parameter estimation and
various operational issues are discussed. Using a large scale simulation study, but also an illus-
trative artificial dataset, we demonstrate the effectiveness of the proposed model in comparison
with HMMs of different elliptical distributions, and we also evaluate the performance of some
well-known information criteria in selecting the true number of latent states. The model is
finally used to fit data on criminal activities in Italian provinces.

Keywords:Robust model-based clustering, Expected-conditional maximization (ECM) algorithm,
Model selection, Elliptical distributions, Atypical data
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1 Introduction

Hidden Markov models (HMMs) are the state of the art in the analysis of time-dependent data.

HMMs have been applied in time series analysis for more than four decades (Baum and Petrie,

1966) and, more recently, in the longitudinal setting (see Bartolucci et al., 2013, Maruotti, 2011,

and the reference therein). Serial dependence and heterogeneity in sample units characterize the

longitudinal setting and can be properly investigated and accounted for in a HMM framework.

Being dependent mixture models, HMMs allow the unambiguously recover of the structure of the

data by rigorously defining homogeneous latent subgroups and, simultaneously, provide meaning-

ful interpretation of the inferred partition. For multivariate continuous data, attention is commonly

focused on Gaussian HMMs (Holzmann and Schwaiger, 2015; Volant et al., 2014; Bartolucci and

Farcomeni, 2010), with few notable exceptions (Lagona et al., 2015; Bulla et al., 2012; Bartolucci

and Farcomeni, 2009).

Unfortunately, real data are often contaminated by outliers, spurious points or noise (collec-

tively referred to asbad pointsherein, as in Aitkin and Wilson, 1980) that may affect parameters

estimates and the recovering of the latent structure. The attempt of robustly estimating mixture

models parameters has led to a heterogeneous literature that includes: noise approaches (Banfield

and Raftery, 1993; Fraley and Raftery, 2002), i.e. methods aiming at identifying a noise component

(modelled assuming a uniform component-specific distribution), while simultaneously clustering

non-noise observations; distance approaches (Rousseeuw and Leroy, 2005; Cerioli, 2010; Garcia-

Escudero et al., 2015); distribution-based robust approaches (Peel and McLachlan, 2000; Andrews

and Mcnicholas, 2012). While all these methods offer important contributions to the topic, the

last two methods do not allow for the direct detection of bad points. Approaches considering the

uniform distribution, if used for discriminant analysis, cannot recognize a new bad observation (an

observation that has not been used to fit the model) if it lies outside the support defined by the fitted

uniform distribution(s). An alternative to these methods aiming at identifying outlying observa-

tions which deviate from the cluster-specific distribution has been recently proposed by Evans et al.

(2015). Despite the wide literature on robust estimation of mixture models, there are not many pa-

pers dealing with robustness issues in HMMs. In the univariate case, Bulla (2011) introduces a

structured HMM to account for outliers in financial time series, Humburg et al. (2008) propose the
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use of thet distribution, and Maruotti (2014) considers a bi-square scale estimator in a regression

setting. In the multivariate case, Farcomeni and Greco (2015) introduce a robust S-estimator and

Bernardi et al. (2014) propose the use of the multivariatet distribution for multivariate financial

(time-series) data in a HMM framework.

In this paper, we extend this branch of literature by introducing a joint approach to time-varying

robust clustering and bad points detection under a longitudinal setting, extending the standard

HMM framework (see Section 2.1). As emphasized by Davies and Gather (1993, see also Hennig,

2002), bad observations should be defined with respect to a reference distribution. Accordingly, the

region of bad points can be defined, e.g., as a region where the density of the reference distribution

is low. In analogy with other distribution-based approaches (as those based on thet distribution),

we choose the Gaussian distribution as the reference distribution but, differently from thet HMM,

we replace the multivariate Gaussian state-dependent distribution with a two-component Gaussian

mixture (Tukey, 1960) where one (reference) component represents the data we would expect from

the given state (i.e. good points) while the other component clusters the bad points; the latter com-

ponent has a small prior probability, the same component-specific mean and an inflated covariance

matrix. Its investigation and use in a clustering framework is still in infancy, although some results

have been recently obtained by Punzo and McNicholas (2014a, 2015, 2014b) in a cross-sectional

setting. This change makes the model much more robust and allows for automatic detection of bad

points. With respect to the latter issue, as it will be better explained later, once the contaminated

Gaussian HMM is fitted to the observed longitudinal data, by means of maximuma posteriori

probabilities, each observation can be first assigned to one of the states and then classified as good

or bad; thus, we have a model for simultaneous robust clustering and detection of atypical observa-

tions in a longitudinal context. Of course, this is not the only attempt to deal with clustering under

a longitudinal setting. Our proposal is somehow related to the models proposed by De la Cruz-

Mesia et al. (2008), who introduce a (univariate) hierarchical mixture model, and by McNicholas

and Murphy (2010), who consider a (univariate) mixture model in which a decomposed covariance

structure is introduced to explicitly account for the relationship between measurements at different

time points. However, none of the aforementioned approaches allows for time-varying clustering

neither of bad points detection, and, moreover, both have been introduced in a univariate setting
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only.

After establishing a sufficient condition for the identifiability of the model (see Section 2.2),

in Section 2.3 we outline anad hocversion of the expectation-conditional maximization (ECM)

algorithm to estimate model parameters, extending the Baum-Welch iterative procedure (Baum

et al., 1970) to deal with contaminated Gaussian distributions. Further operational aspects are

discussed in Section 3. In Section 4.1, we illustrate the proposal by a large scale simulation study

in order to investigate the empirical behavior of the proposed approach with respect to several

factors – such as the number of observed units and times, and the nature of bad points – and in

comparison with HMMs of different elliptical distributions. Indeed, different aspects of robustness

are going to be described and analyzed. We will consider heavy tails (conditional) distributions as

data generation processes as well as distributions with contaminated units in the data. Furthermore,

in Section 4.2, we provide insights on information criteria performances in this framework. At last,

after an illustration on artificial data (see Section 5.1), we illustrate the proposal in Section 5.2 by

analyzing a longitudinal dataset of Italian provinces on which four different crimes rates have been

measured from 2005 to 2009, previously analysed in a different context by Viroli (2011). Provinces

are clustered and bad points are automatically detected.

2 Methodology

2.1 The model

Let {Yit ; i = 1, . . . , I , t = 1, . . . ,T} denote sequences of multivariate longitudinal observations recorded

on I units andT times, whereYit = (Yit1, . . . ,YitP)′ ∈ IRP, and let{Sit ; i = 1, . . . , I , t = 1, . . . ,T} be

a first-order Markov chain defined on the state space{1, . . . , k, . . . ,K}. A HMM is a particular kind

of dependent mixture. It is a stochastic process consisting of two parts: the underlying unobserved

process{Sit}, fulfilling the Markov property, i.e.

Pr(Sit = sit | Si1 = si1,Si2 = si2, . . . ,Sit−1 = sit−1) = Pr(Sit = sit | Sit−1 = sit−1) ,
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and the state-dependent observation process{Yit} for which the conditional independence property

holds, i.e.

f
(
Yit = yit | Yi1 = yi1, . . . ,Yit−1 = yit−1,Si1 = si1, . . . ,Sit = sit

)
= f

(
Yit = yit | Sit = sit

)
,

where f (∙) is a generic probability density function.

The hidden Markov chain hasK states with initial probabilitiesπik = Pr(Si1 = k), k = 1, . . . ,K,

and transition probabilities

πi,k| j = Pr(Sit = k | Sit−1 = j) , t = 2, . . . ,T and j, k = 1, . . . ,K. (1)

In (1), k refers to the current state, whereasj refers to the one previously visited; this convention

will be used throughout the paper. In the following, for simplicity of explanation, we will consider

a homogeneous HMM, that isπi,k| j = πk| j andπik = πk, i = 1, . . . , I . Such an assumption can be

easily relaxed to include covariates and/or unit-specific random effects as described in Maruotti

and Rocci (2012). Thus, we collect the initial probabilities in theK-dimensional vectorπ, whereas

the time-homogeneous transition probabilities are collected in theK × K transition matrixΠ. The

conditional density for the observed process is given by a contaminated Gaussian distribution, that

is

φ
(
yit | Sit = k;μk,Σk, αk, ηk

)
= αkNP

(
yit | Sit = k;μk,Σk

)
+ (1− αk)NP

(
yit | Sit = k;μk, ηkΣk

)
,

whereNP
(
∙;μk,Σk

)
denotes theP-variate Gaussian distribution with meanμk and covariance ma-

trix Σk, αk ∈ (0,1) is the proportion of good points in statek, andηk > 1 is an inflation parameter

in statek; the latter parameter can be also meant as a sort of “degree of atypicality” of the bad

point(s), i.e as a measure of how different atypical observations are from the bulk of the (clustered)

data.

2.2 Identifiability

An important issue in dealing with the proposed model is to establish its identifiability. Identifia-

bility is a necessary requirement,inter alia, for the usual asymptotic theory to hold for maximum

likelihood (ML) estimation of the model parameters.
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For HMMs, whose state-dependent distributions are assumed to belong to some parametric

family, Leroux (1992) shows that identifiability up to label switching follows from identifiability

of the marginal finite mixtures (cf. Dannemann et al., 2014, Section 2). In our case, the parametric

family is constituted by contaminated Gaussian distributions and the marginal finite mixtures are

represented by the finite mixtures of contaminated Gaussian distributions introduced by Punzo and

McNicholas (2015). These authors also provide a sufficient condition for the identifiability of their

mixture (cf. Punzo and McNicholas, 2015, Proposition 1) that can be summarized as follows:

If k , k1 implies
∥∥∥μk − μk1

∥∥∥2

2
+

∥∥∥Σk − aΣk1

∥∥∥2

2
, 0

for all a > 0, where‖∙‖2 is the Froebenius norm, then a finite mixture of contaminated

Gaussian distributions is identifiable.

Accordingly, a finite mixture of contaminated Gaussian distributions is identifiable if two of theK

Gaussian distributions representing the good observations have distinct component means and/or

non-proportional component covariance matrices. Based on Leroux (1992), the same sufficient

condition for identifiability is inherited by our contaminated Gaussian HMM.

2.3 Maximum likelihood estimation

In order to perform ML estimation of the proposed model on the basis of the sample
{
yit ; i = 1, . . . , I , t = 1, . . . ,T

}
,

the need arises of computing

L
(
ϑ
)
=

I∏

i=1

Li
(
ϑ
)
=

I∏

i=1

π′φ
(
yi1

)
Πφ

(
yi2

)
Π ∙ ∙ ∙φ

(
yiT−1

)
Πφ

(
yiT

)
1K , (2)

whereϑ =
{
π,Π,μk,Σk, αk, ηk; k = 1, . . . ,K

}
corresponds to the set of all model parameters,1K

denotes a vector ofK ones, andφ
(
yit

)
denotes aK × K diagonal matrix with conditional densities

φ
(
Yit = yit | Sit = k

)
on the main diagonal. Finding the value of the parametersϑ that maximizes

the log-transformation of (2) under the constraints
∑K

k=1 πk = 1,
∑K

k=1 πk| j = 1, αk ∈ (0,1) andηk >

1, k, j = 1, . . . ,K, is not an easy problem since (2) is not available in an analytically convenient

form. Efficient computation of (2) may be performed by exploiting a forward recursion described

in the HMM literature (see, e.g., Zucchini and MacDonald, 2009).
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In this relatively general framework, an expectation-conditional maximization (ECM) algo-

rithm (Meng and Rubin, 1993) is used for fitting our contaminated model. The ECM is a variant of

the classical EM algorithm (Baum et al., 1970; Dempster et al., 1977), which is a natural approach

for ML estimation when data are incomplete. In our setting, there are two sources of missing data:

one arises form the fact that we do not know state membership and its evolution over time, and the

other from the fact that we do not know whether an observation clustered in a specific state is good

or bad.

Formally, let us define the unobserved state membershipzit = (zit1, . . . , zitk . . . , zitK )′, the unob-

served states transition

zzit =




zzit11 ∙ ∙ ∙ zzit1k ∙ ∙ ∙ zzit1K

...
...

...

zzit j1 ∙ ∙ ∙ zzit jk ∙ ∙ ∙ zzit jK

...
...

...

zzitK1 ∙ ∙ ∙ zzitKk ∙ ∙ ∙ zzitKK




,

and the unobserved state-specific membership to the good pointsvit = (vit1, . . . , vitk, . . . , vitK )′, as

missing data, with

zitk =





1 if St = k

0 otherwise
, zzit jk =





1 if Sit−1 = j andSit = k

0 otherwise
,

andvitk = 1 if observationi at time t in statek is a good point andvitk = 0 if it is a bad point.

Therefore, the complete data are given byC =
{
yit , zit , zzit , vit ; i = 1, . . . , I , t = 1, . . . ,T

}
and the

complete-data log-likelihood can be written as

`c
(
ϑ | C

)
= `c1 (π | C) + `c2 (Π | C) + `c3 (α | C) + `c4

(
μ,Σ, η | C

)

7
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where

`c1 (π | C) =

I∑

i=1

K∑

k=1

zi1k log(πk)

`c2 (Π | C) =

I∑

i=1

T∑

t=2

K∑

k=1

K∑

j=1

zzit jk log
(
πk| j

)

`c3 (α | C) =

I∑

i=1

T∑

t=1

K∑

k=1

zitk
[
vitk log(αk) + (1− vitk) log(1− αk)

]

`c4

(
μ,Σ, η | C

)
= −

1
2

I∑

i=1

T∑

t=1

K∑

k=1

[

zitk log |Σk| + Pzitk(1− vitk) log(ηk)

+zitk

(

vitk −
1− vitk

ηk

)
(
yit − μk

)′
Σ−1

k

(
yit − μk

)
]

,

whereμ =
{
μk; k = 1, . . . ,K

}
,Σ = {Σk; k = 1, . . . ,K}, η = {ηk; k = 1, . . . ,K}, andα = {αk; k = 1, . . . ,K}.

The E-step, at the (r + 1)-th iteration, computes the conditional expectations of`c with respect

to ϑ, given the observed data and the current estimates of the parameters. To do this, we replace

zitk andzit jk with their conditional expectations, namely, ˜z(r)
itk andz̃(r)

it jk (for computational details, see

Section?? in the Supplementary Material) andvitk with

ṽ(r)
itk = E

(
Vitk | yit ,ϑ

(r)
)
=
αkNP

(
yit | Sit = k;μ(r)

k ,Σ
(r)
k

)

φ
(
yit | Sit = k;μ(r)

k ,Σ
(r)
k , α

(r)
k , η

(r)
k

) , (3)

whereVitk is the random variable related tovitk.
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At the first CM-step of the (r + 1)-th iteration, maximizing with respect toπk, Π, μk, Σk andαk

yields

π(r+1)
k =

I∑

i=1

z̃(r)
i1k

I
, π(r+1)

k| j =

I∑

i=1

T∑

t=2

z̃z(r)it jk

I∑

i=1

T∑

t=2

K∑

k=1

z̃z(r)it jk

, α(r+1)
k =

I∑

i=1

T∑

t=1

z̃(r)
itk ṽ(r)

itk

I∑

i=1

T∑

t=1

z̃(r)
itk

,

μ(r+1)
k =

I∑

i=1

T∑

t=1

z̃(r)
itk


ṽ

(r)
itk +

1− ṽ(r)
itk

η(r)
k


 yit

I∑

i=1

T∑

t=1

z̃(r)
itk


ṽ

(r)
itk +

1− ṽ(r)
itk

η(r)
k




, (4)

Σ
(r+1)
k =

I∑

i=1

T∑

t=1

z̃(r)
itk


ṽ

(r)
itk +

1− ṽ(r)
itk

η(r)
k


 (yit − μk)

(
yit − μk

)′

I∑

i=1

T∑

t=1

z̃(r)
itk

. (5)

At the second CM-step of the (r+1)-th iteration, we maximize the expectation of the complete-

data log-likelihood with respect toηk, fixing all other parameters to their estimated values at the

first CM-step. In particular, we have to maximize

−
P
2

I∑

i=1

T∑

t=1

z̃(r)
itk

(
1− ṽ(r)

itk

)
log(ηk) −

1
2

I∑

i=1

T∑

t=1

z̃(r)
itk

1− ṽ(r)
itk

ηk

(
yit − μ

(r+1)
k

)′ (
Σ

(r+1)
k

)−1 (
yit − μ

(r+1)
k

)

with respect toηk, under the constraintηk > 1, k = 1, . . . ,K. As a closed form solution is not

analytically available, theoptimize() function in thestats package of theR software (R Core

Team, 2013) is used to perform numerical search of the maximum of the previous expression.
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3 Operational aspects

3.1 Note on robustness

Let us focus on the weights
(
ṽitk +

1−ṽitk

ηk

)
in (4) and (5). We can rewrite ˜vitk as an explicit function

of the squared Mahalanobis distance, sayδ, as

h (δ;αk, ηk) =
αk exp

(
− δ2

)

αk exp
(
− δ2

)
+

(1−αk)
√
ηk

exp
(
− δ2ηk

) =
1

1+
(1−αk)
αk

1√
ηk

exp
[
δ
2

(
1− 1

ηk

)] ,

with δ ≥ 0.

Due toηk > 1, h (δ;αk, ηk) is a decreasing function ofδ. Accordingly,

w (δ;αk, ηk) =

(

ṽitk +
1− ṽitk

ηk

)

= h (δ;αk, ηk) +
1− h (δ;αk, ηk)

ηk
=

1
ηk

[
1+ (ηk − 1) h (δ;αk, ηk)

]
,

which is an increasing function ofh (δ;αk, ηk) and, thus, a decreasing function ofδ. Therefore

w (δ;αk, ηk) reduces the effect of bad points in the estimation ofμk andΣk, k = 1, . . . ,K, so

providing a robust way to estimate these parameters (see also Punzo and McNicholas, 2015).

3.2 Detection of bad points and further constraints

For the proposed model, the classification of an observationyit is a two-step procedure

Step 1. determine state membership via local or global decoding procedures (see Section?? in the

Supplementary Material);

Step 2. establish if it is either a good or a bad observation in that state.

Once the hidden path is inferred, for each observation, we look at ˜vitk for the inferred state andyit

is good if ṽitk > 0.5 and bad otherwise.

Bearing in mind that(1− αk) represents the proportion of bad points andηk denotes the degree

of contamination, we would require that in thekth hidden state,k = 1, . . . ,K, the proportion of

good data is at least equal to a fixed valueα∗k. In this case, theoptimize() function is also used
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for a numerical search of the maximumα(r+1)
k , over the interval (α∗k,1), of the function

I∑

i=1

T∑

t=1

z̃(r)
itk

[
ṽ(r)

itk logαk +
(
1− ṽ(r)

itk

)
log(1− αk)

]
.

In both the simulation study and the empirical application, we use this approach to updateαk and

we takeα∗k = 0.5, for k = 1, . . . ,K. The value 0.5 is justified because, in robust statistics, it is

usually assumed that at least half of the points are good (cf. Hennig, 2002, p. 250). Note that it is

also possible to fixαk and/or ηk a priori. This is somewhat analogous to the trimmed clustering

approach, where one must to specify the proportion of outliers (the so-called trimming proportion)

in advance (cf. Fritz et al., 2012).

4 Simulation studies

In this section we investigate various aspects of the proposed model through large-scale simulation

studies performed usingR (R Core Team, 2013).

4.1 Comparison between HMMs of elliptical distributions

The first simulation study aims to demonstrate the effectiveness of the proposed model in compari-

son with HMMs of some elliptical distributions. A general feedback on advantages and drawbacks

of each model is also given. We compare: the HMM of Gaussian distributions (NHMM); the HMM

of t distributions (tHMM); the HMM of contaminated Gaussian distributions (CNHMM). To gen-

erate the data, we consider the following five data generation processes with bivariate (P = 2)

state-specific distributions andK = 2 hidden states:

a) NHMM;

b) tHMM with ν1 = 4 andν2 = 10 degrees of freedom;

c) CNHMM with α1 = 0.9,α2 = 0.8, η1 = 2, andη2 = 20;

d) NHMM with 1% of points randomly substituted by high atypical points with coordinates
(
0, y∗it2

)
, wherey∗it2 is generated from a uniform distribution over the interval(10,15).

11
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e) NHMM with 5% of points randomly substituted by noise points generated from a uniform

distribution over the interval(−10,10) on each dimension.

All of these data generation processes share the following common parameters

π1 = 0.3, Π =



0.8 0.2

0.2 0.8


 , μ1 =




0

−3


 , μ2 = −μ1, Σ1 =




1 −0.5

−0.5 1


 , andΣ2 =




1 0.5

0.5 1


 .

The five scenarios above cover different situations which may arise dealing with real-world data:

no bad points for scenarioa), heavy-tails conditional distributions for scenariosb) and c), and

two different types of bad points for scenariosd) ande). Under each scenario, we simulate 100

samples considering two experimental factors: the number of analyzed unitsI (50, 100, and 200)

and the number of repeated measurementsT (5, 10, and 20). This yields a total of 4,500 generated

datasets. On each generated dataset, the EM-based algorithm of the three competing models is

directly run withK = 2, is initialized according to the partition provided by theK-means method,

and is stopped when the difference between the updated parameter estimates of two consecutive

iterations is less than 10−4.

For comparison’s sake, we report the bias (BIAS) and the standard deviation (STD) of the

estimates for the initial weightπ1, the transition probabilitiesπ1|1 andπ2|2 (diagonal elements ofΠ),

the univariate meansμ11 andμ21 (elements ofμ1), and the univariate meansμ12 andμ22 (elements of

μ2). We would remark that HMMs, and mixture models in general, are affected by label switching

issues (see, e.g., Yao, 2012), which render estimators evaluation using simulations more complex.

There are no generally accepted labeling methods. In our simulation study, because of true values

π1 = 0.3 andπ2 = 0.7, we simply attribute the label 1 to the state with the lowest estimated initial

probability.

The obtained results are reported in Tables??-?? in the Supplementary Material. As concerns

the estimates ofμ1 andμ2, we note the following general findings. Under scenarioa), that is when

there are no bad points, all the approaches perform comparably, as expected since, in this situation,

thetHMM and the CNHMM tend to the NHMM. Under scenariosb) andc), the robust approaches,

tHMM and CNHMM, are better than the traditional NHMM, especially when data are generated

by the CNHMM (see, e.g., Table?? in the Supplementary Material). Moreover, the fittedtHMM
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and CNHMM perform comparably in both scenarios; such a comparable behavior agrees with the

simulation results of Little (1988) about thet and the contaminated Gaussian distributions. Even

under scenariosd) ande), thetHMM and the CNHMM perform comparably and much better than

the NHMM. In particular, under scenariod), we note how the NHMM-estimates of the meansμ21

andμ22 for the second dimension are mainly affected by the bad points; this is a natural result if

we recall that these points are bad due to the value of the second dimension.

Referring to hidden parameters, as expected, under scenarioa) all the considered approaches

perform well, providing unbiased estimates for both the transition probability matrixΠ and the ini-

tial probabilitiesπ1 andπ2. Even under scenariob), the three approaches performs well and almost

comparably, with a slight worse performance for the NHMM. Under scenarioc), the traditional

NHMM underestimates the first elementπ1|1 on the main diagonal of the transition probability

matrix of the hidden chain. In other words, this approach estimates a higher number of transitions,

from state 1 to state 2, than the ones assumed by the model used to generate the data. Moreover,

the initial probabilityπ1 of state 1 is slightly underestimated too. Of course, these could represent

issues if the underlying latent structure is of interest. On the contrary, under the same scenario,

the tHMM and the CNHMM perform well, providing unbiased estimates forΠ, π1, andπ2. The

findings about scenariod) are similar to those under scenariob). Finally, scenarioe), that is the

noise case, is the most problematic for the traditional NHMM. In fact, being the noisy observations

drawn at random from a Bernoulli distribution with parameter equal to 0.05, they may produce sud-

den changes in the latent structure, altering its dynamics. In particular, the initial probabilityπ1,

as well as the the first elementπ1|1 on the main diagonal of the transition probability matrix of the

hidden chain, are strongly underestimated. Ana posteriorianalysis, as well as the magnitude of

the bias forπ1, reveals that the NHMM identifies a state (i.e. the persistent state) where all the

good observations are clustered and another state (i.e. the non-persistent state) where all the noisy

observations are grouped. The resulting hidden structure is, thus, characterized by sudden changes

towards the non-persistent state followed by successive changes to the persistent state.

Table ?? in the Supplementary Material summarizes the obtained average misclassification

rates. Misclassification rates are computed via theclassError() function of themclust package

for R (Fraley et al., 2015). Note that, under scenariosd) ande), misclassification rates are computed

13
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only with respect to the true good observations. The results in Table?? corroborate the previous

simulation findings; in particular, the robust approaches have a similar behavior and they, apart

from scenarioa), are better than the traditional NHMM, especially under scenariosc) ande).

Thus far, thetHMM and the CNHMM have shown a similar behavior; however, as previously

emphasized, the CNHMM has the advantage to allow for the automatic detection of bad points.

For the purpose of evaluation of this aspect, we report the true positive rate (TPR), measuring the

proportion of bad points that are correctly identified as bad points, and the false positive rate (FPR),

corresponding to the proportion of good points incorrectly classified as bad points.

Table 1 reports these measures for scenariosd) ande).

We note almost optimal results under scenariod) and for the FPRs under scenarioe). Fur-

thermore, the fact that the TPRs do not approach at one under scenarioe) is not necessarily an

error: the way the noisy points are inserted into the data makes possible that some of them will

have values related to good points and, as such, these points will be detected as good points by our

model.

Finally, to have an idea of the computational burden required by our ECM algorithm, Table 2

shows the average elapsed time (in seconds over 100 replications) to fit a single CNHMM under

scenarioc). Computation is performed on a Windows 8.1 PC, with Intel i7 3.50GHz CPU, 16.0

GB RAM, usingR 32 bit, and the elapsed time is computed via theproc.time() function of the

basepackage. To make the analysis finer, simulations withI = 150 andT = 15 have been added.

The minimum average elapsed time of 0.918 seconds is obtained in correspondence of the pair

(I = 50,T = 5), while the maximum (82.731 seconds) is obtained for the pair(I = 200,T = 20).

Furthermore, the average elapsed time seems to be a function of the overall sizeIT of the data,

although the time-length of the panel affects the elapsed time slightly more than the sample size;

this conjecture is corroborated by the plot in Figure 1.

4.2 Selecting the number of hidden states

The performance of the information criteria illustrated in Section?? in the Supplementary Ma-

terial is here investigated for the CNHMM. To generate the data, we consider the following two

CNHMMs with P = 2 dimensions:

14
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f) the same two-state model considered under scenarioc);

g) a three-state model with the following parameters

π1 = 0.16, π2 = 0.34, Π =




0.8 0.1 0.1

0.1 0.8 0.1

0.1 0.1 0.8




, μ1 =




0

−8


 , μ2 =



0

0


 ,

μ3 =



0

8


 , Σ1 =




1 −0.5

−0.5 1


 , Σ2 =



0.5 0

0 0.5


 , Σ3 =




1 0.5

0.5 1


 ,

α1 = 0.9, α2 = 0.8, α3 = 0.9, η1 = 2, η2 = 5, and η3 = 10.

Under each scenario, we simulate 500 samples considering two experimental factors: the number

of analyzed unitsI (50 and 200) and the number of repeated measurementsT (5 and 10). This

yields a total of 4,000 generated datasets. On each generated dataset, the ECM algorithm for the

CNHMM is run for K ∈ {1,2,3,4,5}, is initialized according to the partition provided by theK-

means method, and is stopped when the difference between the updated parameter estimates of

two consecutive iterations is less than 10−4.

Table?? in the Supplementary Material summarizes the obtained results in terms of selection

rate (over the 500 replications); the selection rate is defined here as the proportion of times each

value ofK is selected by the corresponding criterion shown on the top of the column. The rows

related to the true value ofK are highlighted in gray; to facilitate performance evaluation, the last

row of Table??gives the mean selection rate of each criterion, computed over the true values ofK

(i.e., computed over the gray rows).

The BIC and the ICL perform comparably and much better than the AIC that, especially under

scenariog), tends to overestimate the number of states.
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5 Illustrative examples

5.1 Artificial longitudinal blue crabs data

This section is based on an artificial longitudinal version of the very popular crab dataset of Camp-

bell and Mahon (1974). Attention is focused on the sample ofI = 100 blue crabs of the genus

Leptograpsus, subdivided in two groups of equal size (π1 = π2 = 0.5). For each specimen, we

considerP = 2 measurements (in millimeters), namely the rear width (RW) and the length along

the midline of the carapace (CL). Mardia’s test suggests that it is reasonable to assume that the two

group-conditional distributions are bivariate normal (see Greselin et al., 2011, Greselin and Punzo,

2013, and Bagnato et al., 2014 for details). The ML estimates of the parametersμ1, μ2, Σ1, and

Σ2 are given in Greselin et al. (2011, p. 158); based on these estimates, and further introducing a

transition probabilities matrix

Π =



0.9 0.1

0.1 0.9


 ,

we randomly generate a longitudinal version of this dataset onT = 5 times, based on the NHMM;

the dataset is available athttp://www.economia.unict.it/punzo/Data.htm. The scatter-

plots of the generated data, for eacht ∈ {1, . . . , 5}, are displayed in Figure 2.

In the fashion of Peel and McLachlan (2000), eight “perturbed” datasets are created by substi-

tuting the original value of CL for the 17th point at time 1 (highlighted by a bullet in Figure 2(a))

with eight atypical values shown in the first column of Table 3. We recall that, in the cross-section

setting, the aim of Peel and McLachlan (2000) was to show that, unlike Gaussian mixtures, mix-

tures oft-distributions are robust to these perturbations when applied for clustering.

Ceteris paribuswith Peel and McLachlan (2000), we directly fit the NHMM, thetHMM, and

the CNHMM, withK = 2. For each of the three competing models, Table 3 reports the number of

misallocated observations for each perturbed dataset.

It can be seen that, as expected, thetHMM and the CNHMM clusterings are more robust to

these perturbations than the NHMM clustering. However, the CNHMM is systematically the most

robust to these perturbations, with the number of misallocated observations remaining fixed at 3

regardless of the particular value perturbed; this is in contrast to the NHMM where the number of
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misclassifications changes as the extent of the perturbation increases. Interestingly, the CNHMM

always detects the perturbed value as a bad point regardless from its magnitude. Furthermore,

by recalling that the original value of CL for the 17th point at timet = 1 was 32.158, it is also

interesting to note that the estimated value ofηk (in the group containing the outlier, which is always

the first group) increases as the value of this point further departs from its true value (refer to the

fifth column of Table 3). In connection with this aspect, we also report the estimated posterior

probability to be a good point (see equation (3)) for the 17th observation at time 1 (refer to the

sixth column of Table 3); as we can see, farther the perturbed value is from its group, lower is its

probability to be a good point. Such a low probability is also related to the down-weighting of this

bad point in the estimation ofμ1 andΣ1, and this is an important aspect for the robust estimation

of these parameters (see Section 3.1).

Finally note that, in all the considered cases, the CNHMM detects a false positive bad point,

which can be easily seen at the bottom-left corner of Figure 2(c).

5.2 Criminal activities in Italian provinces

In this section we analyze data on criminal activities in Italy. Data are taken from an Italian

financial newspaper (Il Sole 24 Ore, www.ilsole24ore.com), and have been previously analyzed

by Viroli (2011). Italian crime has specific features. Firstly, criminal patterns may vary across

times and types of activity; secondly,organized crimehas often territorial roots in specific Italian

areas. Bearing this in mind, we would capture differences in (non-violent) criminal activities across

time, types of crimes and territorial units, aiming at identifying different levels of safety conditions

(represented by the hidden states).

Our analysis focuses on 103 NUTS3 (European Nomenclature of Territorial Units for Statistics)

units in Italy, on which we recordedP = 4 criminal indicators: home-invasion robberies (per

100,000 residents; HOME); teenage crime rate (per 1,000 residents; TEEN); reported robberies

(per 100,000 residents; ROB); rate of muggings and pickpockets (per 100,000 residents; PICK)

over five years, from 2005 to 2009. Summaries of the evolution over time of these variables are

reported in Figure?? in the Supplementary Material. We observe an increase in home-invasion

robberies over time, whilst all other indicators do not show, at first glance, any significant temporal
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variations. Moreover, it is clear, even from simple boxplots, that some units showunusual values.

In analyzing the dataset, the most interesting scientific question concerns the existence of areas

with similar criminal rates in Italy. Also of interest is the strength of time dependence as measured

by the transition probability matrix. Indeed, a strong time-dependence implies no improvements in

hindering criminal activities. As described in previous sections, we jointly allow for time-varying

clustering as well as for atypical data detections, that may affect the resulting clustering if not

properly accounted for. The central idea is that the hidden states cope with the temporal and

the spatial structure of the data, and that the contaminated Gaussian distributions can account for

atypical data.

On these data, we fit the proposed model with a number of hidden states ranging from 1 to 10.

For completeness, we also fit the NHMM and thetHMM. The results are reported in Table 4 in

terms of AIC, BIC and ICL. For each value ofK, we adopt aK-means approach, with 20 random

starting points, to initialize the ECM algorithm, and we report the results corresponding to the

best solution in terms of likelihood. On the basis of these results, we conclude thatK = 7 is a

suitable number of hidden states for the considered dataset. This value ofK corresponds to the

maximum value of both the BIC and ICL criteria, whereas the AIC selects 9 states. However, in

the simulation study of Section 4.2, we show that BIC and ICL perform well in recovering thetrue

number of hidden states, whereas the AIC may overestimate this number.

On the basis of the estimates of the parameters under the selected CNHMM withK = 7 (see

Table 5), we conclude that Italian provinces show territorial-specific characteristics and hetero-

geneous criminal-related situations. As it is clear from the estimated state-specific mean vectors

(Table 5) and the inferred clustering structure (Figure?? in the Supplementary Material), States

1, 4 and 7 are characterized by similar home-invasion robberies rates. They differ in the other

indicators. State 1 identifies high teen-crime and low robberies rates, whereas in State 7 home-

invasions arise along with reported robberies and pickpockets. State 4, instead, is characterized by

home robberies only. With few exceptions, these three states are observed in the most industrial-

ized areas, e.g. in North-North-West provinces. State 5 characterizes big cities (e.g. Rome, Turin

and Milan) and touristic places (e.g. Rimini). These are the provinces with the highest values of

home robberies, teenage crimes and reported muggings, and therefore the most dangerous ones
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in terms of the crime indicators considered in this analysis. Safer provinces are clustered in State

3, whereas unsafe southern provinces, which are notoriously and particularly unsafe in terms of

robberies and muggings are clustered in State 6. At last, North-East and Center-North provinces

with high rates of pickpockets are clustered in State 2. As we can note by the estimated transition

probability matrix

Π =




0.949 0.021 0.030 0.000 0.000 0.000 0.000

0.000 0.984 0.000 0.000 0.000 0.000 0.016

0.000 0.014 0.980 0.000 0.000 0.006 0.000

0.000 0.000 0.000 1.000 0.000 0.000 0.000

0.000 0.000 0.000 0.000 1.000 0.000 0.000

0.000 0.000 0.000 0.000 0.000 1.000 0.000

0.000 0.000 0.000 0.000 0.000 0.000 1.000




,

transitions between states are rare, persistence is the norm (as expected) and, as a consequence, the

global and local decoding procedures provide the same inferred clustering structure. As also dis-

cussed in Bulla (2011), the strong persistence is a consequence of the robustification of the HMM.

Indeed the NHMM withK = 7 has less persistent states. Furthermore, the few transitions are a

clear indication that the political action to reduce these criminal activities have not achieved any

improving results across the provinces. On the other hand, this very high persistence may indicate

the absence of a time-varying clustering structure. The time-varying clustering structure is thus

investigated. The data are fitted assuming an additional constraint on the selected model: the iden-

tity transition probability matrix is imposed to check for time-constant clustering. The AIC, BIC

and ICL values obtained under this model are -18486.29, -18797.19 and -18799.64, respectively;

all of them are lower than the values reported in Table 4. Therefore, the time-dependence for the

clustering structure is supported by the data.

Other considerations arising from Table 5 are that atypical data can be detected under specific

states only. Indeed, the probability of having good data in States 1, 3 and 4 is substantially 1,

i.e. all data are estimated as good points. Bad points identified by the CNHMM are displayed in

Figure?? in the Supplementary Material. Naples and Caserta are estimated as atypical in State 6,

the one clustering most of Southern provinces, over all the time periods. In Viroli (2011), a state is
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devoted to cluster these two provinces only (a similar result is obtained from thetHMM, in which

a further state is devoted to cluster Naples and Caserta only, i.e.K = 8, and a fuzzier clustering

is estimated). Few other provinces are also identified as possible bad points in other states. Theη

parameters provide the degree of atypicality of these bad points (cf. Section 5.1).

6 Discussion

We have presented a new model for clustering multivariate longitudinal data in a hidden Markov

framework, which is robust to outlying observations, spurious observations, or noise, which we

collectively referred to asbad points. On real and simulated data, we have demonstrated that our

model works better than the standard hidden Markov model based on the Gaussian distribution and

comparably well with respect to the hidden Markov model based on the heavy-tailst distribution.

The main advantage of our model lies in automaticbad pointsdetection that is performed by using

a maximuma posteriorirule. In addition to these advantages, the choice of this approach is mo-

tivated by considerable conceptual and computational simplicity in the attempt to generalize the

classical Gaussian HMM in terms of robustness and automatic detection of bad points; indeed, only

minor modifications to the standard EM algorithm for the Gaussian HMM are involved (cf. Sec-

tion 2.3). We also investigated information criteria behavior in this framework and observed good

BIC and ICL performances in recovering the hidden structure.

There are different possibilities for further work, three of which are worth mentioning. First of

all, our approach should be extended to large dimensions. This can be done for instance constrain-

ing the covariance matrices of the states, at the price of more complex estimation strategies. As

often in the longitudinal setting, covariates information are also available along with multiple re-

sponse variables. A straightforward extension would deal with the regression framework, in which

contamination may arise in the covariate part of the regression model. Similarly, the homogeneous

assumption on the hidden Markov chain can be easily relaxed, allowing for time and/or individual

specific Markov chains, as well as it is possible to allow for partially missing observations without

too much effort, in a missing at random setting.
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Figure 1: Average elapsed time (in seconds over
100 replications) to fit a CNHMM as a function
of IT .
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Figure 2: Scatterplots of the artificial data (× and◦ denote group 1 and group 2, respectively;•
denotes the observation perturbed for the analysis of Section 5.1).
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I T TPR FPR I T TPR FPR

Scenariod) 50 5 1.000 0.003 Scenarioe) 50 5 0.860 0.003
10 1.000 0.002 10 0.841 0.003
20 1.000 0.000 20 0.844 0.002

100 5 1.000 0.001 100 5 0.838 0.002
10 1.000 0.000 10 0.844 0.002
20 1.000 0.000 20 0.835 0.002

200 5 1.000 0.000 200 5 0.839 0.002
10 1.000 0.000 10 0.845 0.002
20 1.000 0.000 20 0.8390.002

Table 1: Values of TPRs and FPRs; they refers to rates across 100 replications.
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@
@
@
@@

I

T
5 10 15 20

50 0.918 1.897 3.955 7.215

100 2.252 8.522 16.039 24.153

150 3.627 14.779 29.357 40.727

200 5.662 24.205 51.47482.731

Table 2: Average elapsed time (in seconds over

100 replications) to fit a CNHMM as a function

of I andT.
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Value NHMM tHMM CNHMM η̂ v̂

−15 13 5 3 220.966 0.005
−10 12 5 3 174.162 0.006
−5 12 5 3 133.014 0.008

0 11 5 3 97.475 0.010
5 8 5 3 67.539 0.015

10 7 5 3 43.231 0.023
15 7 5 3 24.608 0.041
20 5 5 3 11.729 0.085

Table 3: Number of misallocated artificial blue crabs (N = 100 andT = 5). The last two columns
report the estimated value ofη in the group containing the outlier and its posterior probability to
be a good point, respectively.
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Number of hidden states (K)
1 2 3 4 5 6 7 8 9 10

AIC CNHMM -20495.69 -19649.58 -19093.36 -18737.51 -18584.11 -18443.71 -18341.15 -18298.57 -18222.24 -18237.17
NHMM -21507.87 -19768.81 -19106.63 -18792.78 -18597.50 -18471.70 -18402.28 -18322.74 -18251.39 -18173.76
tHMM -20442.14 -19647.40 -19088.17 -18750.09 -18595.55 -18498.36 -18375.11 -18274.80 -18200.13 -18129.92

BIC CNHMM -20537.84 -19741.79 -19240.90 -18945.65 -18858.12 -18788.86 -18762.71 -18801.81 -18812.42 -18919.56
NHMM -21544.75 -19850.49 -19238.37 -18979.85 -18845.17 -18785.23 -18786.95 -18783.81 -18794.01 -18803.46
tHMM -20481.67 -19734.35 -19227.81 -18947.70 -18856.39 -18827.70 -18778.22 -18756.95 -18766.60 -18785.97

ICL CNHMM -20537.84 -19743.67 -19247.93 -18949.27 -18866.21 -18794.69 -18768.71 -18811.05 -18819.57 -18925.40
NHMM -21544.75 -19853.99 -19244.35 -18986.99 -18856.12 -18791.33 -18798.01 -18795.69 -18797.59 -18811.22
tHMM -20481.67 -19735.65 -19232.32 -18953.05 -18864.92 -18833.48 -18785.28 -18770.45 -18775.57-18793.86

Table 4: Model selection.
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Hidden states
1 2 3 4 5 6 7

μ HOME 308.965 224.503 152.547 301.355 281.040 146.659 293.847
TEEN 21.814 15.317 9.545 8.707 22.807 8.672 13.838
ROB 25.145 27.223 22.736 39.350 94.426 81.336 47.521
PICK 110.239 160.512 49.022 100.677 651.558 130.300 261.593

α 0.999 0.965 0.999 0.999 0.832 0.775 0.951

η 1.001 5.266 1.014 1.001 2.421 12.370 3.575

Table 5: State-specific parameters.
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