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Abstract

Multilayer networks are a useful data structure for simultaneously capturing multiple types of 
relationships between a set of nodes. In such networks, each relational definition gives rise to a 
layer. While each layer provides its own set of information, community structure across layers can 
be collectively utilized to discover and quantify underlying relational patterns between nodes. To 
concisely extract information from a multilayer network, we propose to identify and combine sets 
of layers with meaningful similarities in community structure. In this paper, we describe the 
“strata multilayer stochastic block model” (sMLSBM), a probabilistic model for multilayer 
community structure. The central extension of the model is that there exist groups of layers, called 
“strata”, which are defined such that all layers in a given stratum have community structure 
described by a common stochastic block model (SBM). That is, layers in a stratum exhibit similar 
node-to-community assignments and SBM probability parameters. Fitting the sMLSBM to a 
multilayer network provides a joint clustering that yields node-to-community and layer-to-stratum 
assignments, which cooperatively aid one another during inference. We describe an algorithm for 
separating layers into their appropriate strata and an inference technique for estimating the SBM 
parameters for each stratum. We demonstrate our method using synthetic networks and a 
multilayer network inferred from data collected in the Human Microbiome Project.
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I. Introduction

Modeling relational information between a set of entities can often be successfully achieved 
through a network representation. Here, entities correspond to nodes and edges reflect some 
connection between them. In many applications, there are multiple ways to define an edge 
that can be collectively analyzed for a more thorough understanding of the data. Multilayer 
networks provide a framework to do this, in that each relational definition leads to a new 
layer in the network [1], [2], [3]. Such data and corresponding networks have shown to be 
useful in many contexts, such as, in the comparison of genetic and protein-protein 
interactions in a cell [4], in understanding underlying relationships and community structure 
across social networks [5], and in the analysis of temporal networks [6]. Furthermore, recent 
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advances in the mathematical foundations for multilayer networks have made analysis of 
these types of data more feasible. In particular, [3] has introduced a mathematical formalism 
with tensors. Doing so allows for the calculation of important network quantities, such as 
centrality and clustering coefficients, as well as modularity [6]. Thus, given the inherent 
multiplexity of network data across fields as well as recent theoretical developments for 
handling these types of data, there exists a need for the development of appropriate tools that 
can leverage information from all layers to elucidate structural patterns.

Each layer in a multilayer network provides its own information about interactions between 
nodes, and it is useful to ask whether sets of layers are providing redundant information. 
Addressing this question requires the development of an approach to compress networks into 
a reduced-layer representation such that it effectively retains the information from the 
original multilayer network. Aggregating layers can potentially result in a loss of 
information, but it can also successfully corroborate the existence of underlying structural 
patterns. Moreover, this can lead to improved identification of structural patterns, including 
enhanced community detection [7]. This idea of reducibility in multilayer networks was 
previously explored in [8]: using an information-theoretic notion of distance between pairs 
of network layers, the authors performed hierarchical clustering of layers and chose the 
partition that maximized a quality function reflecting information loss due to the aggregation 
of layers.

Inspired by the ideas in [8] that groups of layers often provide redundant information, we 
seek to further explore this idea to identify sets of layers, which we denote as “strata”, with 
each stratum described by a single probabilistic model based on community structure. This 
effectively amounts to defining local probabilistic network models, and is analogous to 
biclustering [9] or co-clustering [10] problems. Moreover, our method can be regarded as a 
joint clustering procedure, in which the nodes and layers of networks are clustered 
simultaneously. Just as in [10], where the objective is to jointly cluster words and documents 
such that joint word-document subgroups correspond to particular topics, our objective is to 
cluster network layers such that each stratum is a set of layers with a characteristic 
community structure. To achieve this goal, we have developed the strata multilayer 
stochastic block model (sMLSBM). We additionally emphasize that by collectively utilizing 
similar layers in a principled way, we can achieve more robust community detection and 
parameter inference for the probabilistic community detection models that describe each 
stratum.

A. Network Comparison Based on Community Structure

The problem of aggregating layers in a multilayer network is closely related to the problem 
of clustering networks. That is, given an ensemble of networks, one aims to identify sets 
such that networks within a set have similar characteristics. These characteristics, or 
“features” in this context, can describe any of the following: micro-scale structural 
properties such as subgraph motifs [11], [12]; multiscale properties such as community 
structure [13], [14], [15], the spectra of network-related matrices [16] and by defining latent 
roles [17]. Although clustering layers in a multilayer network is closely related to clustering 
networks in an ensemble, these are distinct problems with different difficulties and nuances. 
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We focus on the prior pursuit; however, we expect for certain network ensembles that it will 
be beneficial to modify and apply our methods to the clustering of networks.

In this work, we analyze and compare layers in a multilayer network based on their 
community structure. Community detection in single-layer networks is an essential tool for 
understanding the organization and functional relatedness between nodes in a network [18], 
[19]. Although there are many definitions for what constitutes a “community” [20], one 
often assumes an “assortative community” in which there is a prevalence of edges between 
nodes in the same community as compared to the amount of edges connecting these nodes to 
the remaining network. In seeking to identify such communities, numerous approaches have 
been proposed, including those based on maximizing a modularity measure [21] and fitting a 
generative probabilistic model [22]. Because each of these approaches present 
computational challenges for efficiently detecting communities, numerous heuristics exist 
for developing practical algorithms [23], [19], [24], [25], [26].

While our approach is to define a probabilistic model for multilayer community structure, 
we note that there have previously been approaches to understand similarities in network 
ensembles that are grounded in exploiting similarities in community structure between 
networks. In [14], the authors seek to partition a group of networks into subgroups through 
construction of a network of networks (NoN). Communities in the NoN are chosen such that 
the networks representing the nodes are sufficiently similar in their underlying community 
structure. In one significant application of this method, the authors clustered gene co-
expression networks and found an increased number of significant functional enrichment 
categories for biological processes. Similarly, in [15], the authors explore mesoscopic 
similarity between layers using an informational theoretic approach. While they have 
designed their method to handle any feature of network architecture, they highlight their 
ability to quantify similarity between network layers based on node-to-community 
assignments in the layers.

In seeking a statistically-grounded approach for studying communities in multilayer 
networks, we consider the stochastic block model (SBM) [27], a popular generative model 
for community structure in networks. The assumption of the SBM is that nodes in a 
particular community are related to nodes within and between communities in the same way, 
thus allowing SBMs to describe several types of communities (e.g., assortative, 
disassortative, core-periphery, etc. [20], [28]). There are many other appealing aspects of 
stochastic block models; for example, a model-based approach allows for the denoising of 
networks through the removal of false edges and the addition of missing edges [22], [29]. 
The inference procedure for fitting SBMs to an undirected network with N nodes and K 
communities involves learning the two parameters, π and Z. Parameter π is a K × K 
symmetric matrix, where πmn gives the probability of an edge existing between a given node 
in community m and another node in community n. Matrix Z is an N × K indicator matrix, 
wherein each binary entry Zim indicates whether or not node i is in community m. Each row 

of Z is constrained such that , i.e. each node only belongs to 1 community. We 
also define vector z, which has entries zi = argmaxm{Zim} that indicate the community to 
which node i belongs. For a given network, these parameters are often inferred through a 
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maximum likelihood approach, and once learned, they provide information about the within 
and between community relatedness.

B. Related Work on Multilayer SBMs

Due to the ubiquity of network data with multiple network layers, community detection in 
multilayer networks constitutes an important body of research. Important directions include 
generalizing the modularity measure [6] and studying dynamics [30] for this more general 
setting.

Given the usefulness of SBMs for the understanding of node organization in single-layer 
networks, it is important to extend SBMs to the multilayer framework, and indeed this 
direction of research is receiving growing attention [7], [31], [32], [33], [34]. In this context, 
the general assumption is that there are shared patterns in community structure across the 
layers of a multilayer network, and the goal is to define and identify a stochastic block 
model that captures this structure. These works have explored many types of applications 
that can arise involving multilayer networks, and have therefore given rise to several 
complementary models for multilayer stochastic block models (MLSBMs). We now briefly 
summarize this previous work that is very related, but notably different, from the model we 
study herein.

In Refs. [7], [31], [32], the authors studied situations in which many layers follow from a 
single SBM. In these instances, it is possible to obtain improved inference of the SBM 
parameters by incorporating multiple samples from a single model. For example, in Ref. [7] 
the authors considered an increasing number of layers, L, and explored asymptotic 
properties of the estimated SBM parameters. Specifically, they fit an SBM to each individual 
layer in a way that utilizes the information from all layers, and they showed convergence of 
these estimators to their true values as L → ∞. For a network with L layers and K 
communities in each layer, their approach requires an estimate of the community assignment 
matrix Zl and probability matrix πl for each layer l, the latter of which involves learning 
K(K + 1)L/2 parameters. To this end, the authors extended the variational approximation for 
approximating the maximum likelihood estimates of SBM parameters introduced in single-
layer SBMs introduced in [35] to the multilayer setting.

Ref. [7] was followed up by Ref. [31], wherein the authors addressed issues that can arise 
for the model when K and/or L is large, or if the network is sparse. They proposed a 
modified model called the restricted multilayer stochastic block model (rMLSBM). In this 

model, instead of learning a set of L independent parameters, , for each pair, (m, n), each 
entry in π is fully layer-dependent so as to produce a reduction in the number of free 
parameters. Specifically, to determine the probability of an edge between a node from 
community m and a node from community n in layer l, they use a logistic link function and 

model the probability as . The βl is an offset parameter representing the 
particular layer or type of edge. In this model, it is necessary to learn K(K + 1)/2 + L total 
parameters. Thus, the maximum likelihood estimate for an rMLSBM is a regularized 
estimator.
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Consistent with the theme of fitting a single block model to a collection of layers, Ref. [32] 
is similar to Refs. [7] and [31] in that the authors seek to leverage information from all 
layers by considering the joint distribution of layers. Using this, they estimated quantities 
such as the marginal probabilities of node assignments to communities and the edge 
probabilities within and between groups. An interesting aspect of their approach is that they 
introduce a covariate capturing the coupling between pairs of nodes. For a network with K 
communities and L layers, this requires the estimation of (2L − 1)K2 + (K − 1) parameters.

We summarize Refs. [33] and [34], which provide techniques to determine whether a single 
layer network is the result of an aggregation procedure in a multilayer network. In Ref. [33], 
the authors defined a version of multilayer stochastic block model and an inference 
procedure for assessing whether or not a single-layer network was actually obtained from an 
aggregation of layers in a multilayer network; they considered the aggregation of layers 
using boolean rules. Ref. [34] describes two possible generative processes for multilayer 
networks: the edge-covariate and independent-layer models. In the edge-covariate model, an 
aggregated network is defined in which a given edge (i, j) only appears in a single layer. 
Aggregating the layers in a multilayer network into a single network representation 
combines all of the edges from each of the layers. Thus, the translation of this idea into a 
generative model involves choosing a layer membership for each edge and sampling edges 
with a probability conditioned on adjacent nodes. In the independent-layer model, layers are 
generated independently from each other and the only constraint is that group membership 
of the nodes are the same across all layers.

While motivation to pursue this problem originated from [8], we point out that our approach 
does not provide a method for aggregating layers or reducing the number of layers in the 
network. Instead, it can in a sense compress the network in that the learned stochastic block 
model parameters for each stratum can be used to generate a sample network to serve as a 
consensus for that stratum.

C. Contributions

While the literature on MLSBMs has recently grown quickly, there is still a need for a 
probabilistic generative model that allows for the layers in a multilayer network to be 
described by multiple SBMs. To this end, we developed a novel multilayer stochastic block 
model, sMLSBM, that assigns network layers into disjoint sets that we call strata, where a 
collection of layers in a given stratum are assumed to be samples from the same underlying 
generative model. Our method can be viewed as a joint clustering procedure, where we seek 
to group layers into strata and nodes into communities. That is, we seek to simultaneously 
find layer-to-strata and node-to-community assignments.

In order to address practical applications that can involve multilayer networks with several 
strata, layers, communities and nodes, we introduce an algorithm that effectively partitions 
layers into strata and an inference procedure to learn the SBM parameters for each stratum. 
Importantly, these two steps— assigning nodes to communities and layers to strata—are 
combined in an iterative algorithm so that an improvement in community detection can lead 
to an improvement in the clustering of layers into strata, which can iteratively lead to further 
improvement in community detection, and so on.
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To describe the model, the algorithm for fitting the model, and its performance, the 
remainder of this paper is organized as follows. In Sec. II, we define the model and an 
algorithm for fitting it. In Sec. III, we perform numerical experiments on synthetic networks. 
In Sec. IV, we test the model on correlation networks constructed from data from the Human 
Microbiome Project.

II. SMLSBM: Strata Multilayer Stochastic Block Model

A. Network Definition

Let G(N, ℰ) define a single network with N nodes and a set of undirected edges, ℰ = {(i, j)}. 
We define a multiplex network, which is one kind of multilayer network [1], [2], by defining 
a set of network layers, Gl(N, ℰl), where l ∈ ℒ and the set ℒ = {1, 2, ⋯, L} indicates the 
layers’ indices. We denote the collection of L layers as a set, , such that  = {G1, G2, ⋯, 
GL} makes up the multiplex network and each element of the set is the network representing 
a layer. Furthermore, we define  = {A1, A2, ⋯, AL} to be the corresponding adjacency 
matrix representations of the network layers in .

B. Model Definition

Under the sMLSBM, the network layers, Gl(N, ℰl) are assumed to be generated by a set of S 
stochastic block models, where the layers in stratum s ∈ {1, 2, ⋯, S}, are parameterized by 

πs and Zs (or equivalently, vector zs, which has entries ). Note that the 
parameters πs and Zs for a single stratum are analogous in meaning to their respective 
parameters in the single-layer SBM case (see Sec. I-A). For each stratum s, we let ℒs ⊆ ℒ 
denote the set of layers corresponding to s, so that ℒ = ∪s ℒs and ∅ = ℒs ∩ ℒt for all s, t ∈ 
{1, …, S}, s ≠ t. We let Ls = |ℒs| denote the number of layers in strata s so that ∑s Ls = L. 
Finally, we allow the number of communities, Ks, to vary across the strata.

For a given multilayer network, our objective during inference is to identify the stratum 
assignment of each layer and to learn the collection of strata parameters, Π = {π1, π2, …, 
πS} and  = {Z1, Z2, …, ZS}. The learned SBM parameters for a stratum represent a 
consensus for the associated layers, and so in that sense can be interpreted as reducing the 
effective number of layers [8]. However, strata can also be interpreted as a way to simply 
identify layers with similarities in community structure. Figure 1 shows a toy example of a 
multilayer network with S = 3 strata, where each layer has N = 36 nodes and K = 3 
communities. Each individual network in this figure represents a layer in the network. The 
nodes in the layers belonging to each stratum are colored according to their stratum 
membership; moreover, it is easy to see that layers of a stratum exhibit high similarities in 
community structure.

As part of our procedure, we specify another parameter that we refer to as the adjacency 
probability matrix, θs, which can be computed from πs and Zs. Specifically, θs is an N × N 

matrix such that  gives the probability of an edge between nodes i and j in stratum s. That 

is, , where  specifies the community number for node i in stratum s. Finally, we 
define the matrix Y of size L × S, wherein an entry Yls is a binary indicator of whether or 
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not layer l is assigned to stratum s. Note that ∑s Yls = 1. We also define a vector y, which has 
entries yl = argmaxs{Yls} to indicate the strata to which layer l belongs.

C. Inference for sMLSBM

The procedure for fitting an sMLSBM to a given network requires finding the layer-to-strata 
memberships and node-to-community memberships that best describe the multilayer 
network. For notational convenience, we introduce hat notation to represent the learned 
parameter estimate from the inference procedure. We can write down the marginal 
likelihood for the collection of network layers, , as,

(1)

We assume the probability of an edge between two nodes in layer l belonging to stratum s 
can be modeled as a Bernoulli random variable, based on the community membership of the 

nodes. In particular, .

Since Y and  are both latent quantities, searching over all possible values quickly becomes 
intractable. To tackle this issue, we develop a two-phase algorithm that incorporates a 
clustering algorithm for choosing the best Y. This greedy approach leads to a significant 
reduction for the size of the search space since only  must be statistically inferred. 
Specifically, during Phase I, we infer an SBM for each layer in isolation, and we cluster 
together sets of layers that have similar SBM parameters. Using these results as an initial 
condition in Phase II, we develop an iterative method that jointly identifies layer-to-stratum 
and node-to-community assignments as well as the SBM parameters for each stratum. We 
provide a schematic of the algorithm in Fig. 2, and below we present the two-phase 
algorithm in detail.

Phase I—Phase I is comprised of two parts. First, we fit an SBM to each individual layer l 
∈ {1, …, L}, which yields inferred SBM parameters π̂l and node-to-community 
memberships Ẑl. Then we cluster the layers based on the similarities of π̂l and Ẑl. To infer 
π̂l and Ẑl, we use the the inference method described in [35]. Here, the authors used a 
variational inference technique to approximate the maximum likelihood estimates for the 
stochastic block model parameters. For the set of L layers, this produces sets of SBM 
parameters for each layer, which we denote by Π̂ = {π̂1, π̂2, …, π̂L} and  = {Ẑ1, Ẑ2, …, 
ẐL} (that is, at this stage of the procedure, each layer is temporarily treated as its own 
stratum). Note also that each Ẑl can be equivalently represented by vector ẑl, as described in 
Sec. I-A. Using the estimates π̂l and Ẑl for a given layer, l, we can construct the 

corresponding adjacency probability matrix, θ̂l, which is defined entry-wise by . 
Doing this for each layer results in a collection of adjacency probability matrices, Θ̂ = {θ̂1, 
θ̂2, …, θ̂L}.

Now, we seek an initial partition of layers into strata based on Θ̂. The goal is to identify S 
sets ℒs so that the matrices {θ̂l} with l ∈ ℒs are close to one another, but they are distant 
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from the remaining matrices, {θ̂l} with l ∈ ℒ \ ℒs. This is accomplished by treating each θ̂l 

as a feature vector and applying k-means clustering with S centers so as to identify S strata, 
ℒs. Note that S can be selected a priori, or approximated with a measure such as the gap 
statistic [36]. This gives us an initial estimate Ŷ for Y. Note that this procedure initially 
treats each layer as a separate stratum, but provides a principled agglomeration of layers into 
S ≤ L strata.

Phase II—After a first-pass approach for assigning layers to strata, we initialize an iterative 
phase to more effectively estimate layer-to-strata assignments as well as the model 
parameters. Specifically, we would like to find the consensus SBM for each strata—that is, 
the Ks × Ks matrix πs and the N × Ks matrix Zs that maximize the likelihood of the observed 
layers in each stratum. We let s = {Al} for l ∈ ℒs denote the collection of adjacency 
matrices corresponding to the Ls layers in stratum s.

We now proceed to maximize the likelihood in each stratum, by extending the framework of 
Ref. [35] to a multilayer context. Note that this is similar to Ref. [7], except that we are not 
aiming to infer an SBM probability matrix for each layer, individually. In particular, the 
complete-data log-likelihood for stratum s can be written as,

(2)

where

(3)

To write p(Zs), it is helpful to introduce a new parameter  that represents the probability 

that a randomly-selected node in stratum s belongs to community m, i.e. .

Note that . Using this parameter, we can write

(4)

It follows that the complete-data log-likelihood for the adjacency matrices representing the 
layers in stratum s can be expressed as,
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(5)

Problems of this variety that involve the need to compute maximum likelihood estimates 
with incomplete data are typically addressed with the expectation maximization (EM) 
framework [37]. Doing so requires the ability to compute P(Zs | s); however, Ref. [35] 
showed that it is intractable to calculate the conditional distribution for the single-layer 
network case. To address this challenge, we use a variational approximation, analogous to 
approaches in [7], [32], [35]. In general, a variational approximation seeks to optimize a 
lower bound on the log-likelihood. To do this, we first approximate the conditional 
distribution, P(Zs | s) ≈ R s, where

(6)

Here, matrix τs contains entries  that approximate the probability that node i belongs to 
community m in stratum s. Further, function h(·) represents the multinomial distribution, 

with parameters,  for m ∈ {1, …, Ks}. Using this, we define the variational 
approximation as

(7)

where ℓℓ is log likelihood and KL is the Kullback-Leibler divergence.

Through maximizing (R s), we minimize the KL divergence between the true conditional 
distribution, P(Zs | s), and its approximation, R s (Zs). Moreover, we follow the 

derivation in Ref. [35] and rewrite (R s) as

(8)
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We can now differentiate (R s) with respect to each parameter—while using Lagrange 
multipliers to enforce constraints (i.e. probabilities summing to 1)—to compute the updates. 
Doing so yields the following, where the hat notation symbolizes the current best estimate 
for the given parameter:

(9)

(10)

(11)

To find the best estimates for τ̂s and π̂s, we alternate between updating τ̂s and π̂s until 
convergence. When convergence has occurred, we refer to the resulting estimates as the 

consensus  and  for stratum s. Similarly,  represents the consensus indicator matrix 
of node-to-community assignments computed from . Note that we use the bar notation to 
reflect that the particular parameter estimate is for a stratum, rather than for an individual 
layer.

Since  and  are computed in terms of each other, we can use one of the consensus 
parameters to compute the other parameter in individual layers. In particular, using the fixed 
node-to-community assignments from , we compute the maximum-likelihood SBM 
parameters for a particular layer l, which we denote with a tilde and hence, π̃l and τ̃l. 
Similarly, for fixed , we compute the node-to-community assignments τ̃l. Such estimates 
allow us to determine whether or not the stratum consensus estimates are accurate estimates 
for the SBMs of individual layers of the stratum. More importantly, as we shall now 
describe, these layer-specific estimates allow us to design an iterative algorithm that allows 
for alternating between learning the node-to-community and layer-to-stratum assignments.

To this end, we represent each layer by the adjacency probability matrix, which we compute 
two different ways: letting θ(τ, π) represent the adjacency probability matrix specified by τ 
and π, we define

(12)

(13)
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Note that the first definition uses the strata-consensus estimate for τs and a layer-specific 
estimate for πs, whereas the latter uses a layer-specific estimate for τs and the strata-
consensus estimate for πs.

During Phase I, we identified strata by clustering the adjacency probability matrices for the 
L layers using the k-means algorithm. We employ a similar procedure here, but instead of 
clustering L matrices, we now cluster 2L matrices, since each layer is represented in two 
different ways. Moreover, clustering these 2L matrices yields two cluster assignments for 
each layer. Typically, both representations of a particular layer will receive identical cluster 

assignments—that is, for a given l,  and  are assigned to the same cluster, or strata. 
However, an interesting case arises when the two representations induce different stratum 

assignments for a given layer, because this implies that there is disagreement between 

and , which implies uncertainty in the strata assignment of that particular layer l. Because 
our iterative algorithm requires each layer to be assigned to a single stratum (i.e., we do not 
allow for mixed membership of layers into strata), layers with mixed membership according 

to  and  must be dealt with in some way. To account for these situations, we define 
additional strata for each combination of membership that arises. For example, if there are 

several layers {l} that are clustered into stratum 1 according to  and stratum 2 according 

to , then we define a new stratum that contains only these layers. We note that there 
exists a variety of options for handling layers with such mixed membership after applying k-

means clustering to  and  (e.g., one could assign such a layer to a stratum at random); 
however, we leave open for future work the exploration of these other options.

After a single pass of Phase II, which requires layer-to-strata assignments (which can be 
encoded by vector y) as input, the algorithm yields (ideally) improved layer-to-strata 
assignments (as well as consensus estimates for the SBM parameters of the strata,  and 

). Therefore, Phase II involves iterating the above procedure until the layer-to-strata 
assignments do not change. We note that in principle, it is possible for new strata to arise in 
each iteration (i.e., because we create strata to avoid mixed membership of layers), and this 
can allow the number of strata to grow with each iteration; however, we did not observe this 
issue in any of our synthetic or real data experiments. As we will show in the following 
section, convergence is typically observed after just a few iterations (e.g., see, for example, 
the second row of Fig. 4). If such an issue arises, it may be helpful to bound the number of 
iterations in Phase II.

III. Synthetic Data Experiements

A. Comparison of sMLSBM to other SBM Approaches

To demonstrate a situation where the sMLSBM framework has a clear advantage over other 
models, we designed a synthetic experiment and compared the results to two different SBM 
approaches: i) fitting a single SBM to all of the layers (denoted “single SBM”), and ii). 
fitting a stochastic block model to each layer individually (denoted “singlelayer SBM”). We 
generated a multilayer network, where each layer has N = 128 nodes, K = 4 communities 
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and an expected mean degree of c = 20 (i.e., every network layer is expected to contain cN/2 
= 1280 undirected edges). We specified an sMLSBM with S = 3 strata and 10 layers per 
strata, which resulted in L = 30 total layers. We defined πs for each stratum s in terms of two 

parameters,  and , which give the within-community edge probabilities and between-

community edge probabilities, respectively. That is, we define  when m = n and 

 when m ≠ n. It follows that the expected mean degree is given by 

. In our experiment, we select the following SBM parameters: 

; ; and . In Fig. 
3(A), we show an example network layer from each strata. Nodes are colored by their 
community assignments in stratum 1. Note that the node-to-community assignments are 
different in each stratum and that the extent of block structure decreases from stratum 1 to 
stratum 3.

In order to compare the accuracy of fit for the three models—single-layer SBM, single SBM 
and sMLSBM—we quantify the inference accuracy of the SBM parameters, , and 

community assignments, . First, for each layer and each model, we quantified the error 

(ℓ2 norm) between  and its true value, vec(πl). Note that vec(X) is the 
length vector representing the lower triangle of the matrix X. Moreover, to quantify error, we 

compute . We note that this error is well-defined because we identify 
K = 4 communities for all layers and all models. The mean error across layers under each 
model are shown in Fig. 3(B). In this example, sMLSBM outperforms the two other models. 
Second, we computed for each layer the mean normalized mutual information (NMI) [38] 
between the true node-to-community assignments, zl, and the inferred values, , under 

each model. In other words, for each layer, we compute, . Figure 3(C) shows the 
mean NMI for community assignments across layers. Indeed, the effects of fitting an 
incorrect model to a collection of layers in terms of ability to effectively estimate SBM 
parameters and community assignments is apparent. In particular, fitting a single SBM 
model results in both larger mean inference and community assignment error, compared to 
fitting single-layer SBMs and 3 strata sMLSBM. In other words, sMLSBM provides an 
efficient clustering into strata only when the layers are indeed related (i.e. generated from 
the same SBM), otherwise each layer is a stratum on its own.

B. Synthetic Experiment with Two Strata

Next, we further explored the performance of our algorithm (see Sec. II-C) for inferring an 
sMLSBM under various situations: 1) in comparison to baseline clustering methods; 2) in 
response to an increase in the number of layers; and 3) under variations in levels of 
detectability. Specifically, we designed synthetic experiments in which we generated 
multilayer networks with either L = 10 or L = 100 layers. Every multilayer network 
contained S = 2 strata (each having K1 = K2 = 4 communities), and in each layer there were 
N = 128 nodes (each having an expected mean degree of c = 16). Note that in this example 
both strata have the same node-to-community assignments. The strata were fixed to be the 
same size, L1 = L2 = L/2. Similar to the experiment described in Sec. III-A, the SBM 

parameters were constructed using  and . Since we have already specified the 
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expected mean degree, these parameters must satisfy the constraint  for 
both strata. In all simulations, we fixed the SBM parameters of the first strata as 

. It is also convenient to define the quantity, , 
which relates to the detectability of communities [39]. For example, the ability to detect 
community structure in a given layer and/or strata is, in general, expected to improve with 

increasing . For the second strata, we allow  to vary.

We present results for this experiment in Fig. 4, wherein the left and right columns give 
results for L = 10 and L = 100, respectively.

Symbols in each plot represent the mean over 50 multilayer networks, and error bars show 

standard error. In each plot, the vertical dotted line indicates , which 

represents the point where the two strata are indistinguishable since . In 
Fig. 4(A), we show the NMI between the true layer-to-strata assignments and those inferred 
by sMLSBM, or NMI(y, ŷ). As a baseline, we compare sMSLBM results to directly 
clustering the layers’ adjacency matrices using the k-means algorithm with K = 2. We 
consistently observe higher NMI as a result of sMLSBM compared to k-means. More 
interestingly is the case with L = 100, where both k-means and sMLSBM perform at least 
moderately well at partitioning layers into strata before the point where the strata are 
indistinguishable. In Fig. 4(B), we plot the number of iterations (NOI) required for Phase II 
of our algorithm to converge. We observe that as the number of layers in the network 
increases, so does the number of required sMLSBM iterations. Moreover, the peaks in panel 
B. correspond to the sudden jumps in strata NMI.

Finally, in Fig. 4(C) we show the quality of node-to-community assignments by plotting the 
NMI between the true and inferred node-to-community assignments as described in Sec. III-
A. Note that stratum 1 here represents the stratum where the majority of layers were 
generated from model S1 and analogously for stratum 2. Therefore, when the strata NMI is 
low (panel A.), we see poorer community detection results than expected, as layers get 
incorrectly mixed. As the strata NMI increases, layers from the same model are assigned 
together and the communities NMI stabilizes. Finally, by comparing the results for L = 100 
to those for L = 10, we observe an increase in number of layers, L, generally leads to an 
improvement in community detection and strata identification.

IV. Correlation Networks From the Human Microbiome Project

As an application of sMLSBM, we consider correlation networks constructed from data 
from the Human Microbiome Project [40]. For various sites on the body, the human 
microbiome project has successfully collected multiple human samples in order to better 
understand interactions between bacterial species. In this context, network inference is 
particularly interesting, as such methods aim to capture the relationships between various 
organisms. Microorganisms exhibit intricate ecologies within the gut of their human host 
and particular body sites have been shown to possess characteristic interactions. Further, 
certain interactions between microbes can often be associated with particular health and 
disease states [41]. Microbiome data is typically collected through metagenomic sequencing 
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and reads are further binned into groups, known as operational taxonomic units (OTUs), to 
represent particular organisms. The nature of this count-based sequencing data makes 
network inference challenging, and is thus an interesting field in itself. To demonstrate the 
potential use for sMLSBM in the context of the human microbiome, we applied our 
algorithm for learning sMLSBMs to multilayer networks constructed from the SparCC [42] 
network inference method.

SparCC is a correlation network inference method that aims to approximate the linear 
Pearson correlation between components in a system. This method performs favorably, as it 
accounts for the extent of diversity in the microbial community, which plays a significant 
role in detecting valid interactions. Furthermore, networks are constructed with the 
assumptions that the number of components in the system (e.g. OTUs) is large and that the 
correlation network should be sparse. As supplemental data in Ref. [42], the authors 
provided their inferred microbial interaction networks for 18 sites in the human body, using 
the sparse, SparCC framework. The edges in these networks have positive and negative real-
valued weights, based on the results of SparCC inference. In this analysis, we converted the 
SparCC networks into binary adjacency matrices by allowing a link only if the SparCC 
edge-weight between two OTUs was at least 0.15 (chosen as a value close to 0.2, given in 
Ref [42]). To convert the 18 single-layer networks corresponding to species interactions in 
18 body sites, we identified the collection of nodes (OTUs) that participated in at least two 
layers in terms of having at least one connecting edge weight value in the layer above the 
0.15 threshold. This resulted in N = 213 unique OTUs (nodes) for our multilayer network 
analysis. We emphasize that restricting attention to nodes that participate in multiple layers 
was a choice we made in our focus on identifying common community structures across 
layers, to demonstrate the accuracy in the algorithm and inference procedures of sMLSBM. 
A more biologically-relevant treatment of this dataset should of course consider domain-
specific expertise in formulating a network representation appropriate to the question at 
hand.

We inferred an sMLSBM for the multilayer network and chose to show results for S = 6 
strata. That is, this selection leads us to find 6 clusters of body sites such that the 
microbiomes are similar between sites in the same cluster but differ from microbiomes at 
sites in the remaining clusters.

We indicate these 6 strata with colored boxes in Fig. 5. We note that due to the stochasticity 
of k-means in our algorithm, the communities and strata fit by sMLSBM can vary from one 
realization to the next. The shown strata assignments reflect those observed to yield the 
highest log-likelihood.

To gauge the performance of our method, we compared our strata membership results to the 
hierarchy obtained as part of the reducibility method developed in [8]. To do this, we 
followed the following steps:

1. Compute the normalized Laplacian matrices for each of the 18 body site 
networks;

2. Compute the eigenvalues for each normalized Laplacian matrix;
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3. Use these eigenvalues to compute the Von Neumann entropies for individual 
layers and pairs of layers;

4. Use the Von Neumann entropies to compute Jensen-Shannon distances between 
pairs of networks;

5. Perform hierarchical clustering using the Jensen- Shannon distances and Ward 
linkage.

We show the results of this hierarchical clustering with a dendrogram in Fig. 5, which are in 
very good agreement with the sMLSBM results. However, as expected, we observe slight 
differences, since these methods cluster layers based on different criteria; in particular, 
sMLSBM partitioning reflects similarity only in community structure.

The results of both methods are relatively faithful to body regions in terms of groups of body 
sites that are spatially proximal. The only exception to this observation is the brown-colored 
stratum in Fig. 5, which is comprised of some seemingly unrelated body sites. While this 
grouping may not be intuitive, there is biological evidence to explain its plausibility. 
Specifically, Ref. [43] offers a state-of-the-art clustering of body sites based on biological 
expertise. Here, the authors have advanced understanding of microbial community 
composition through the application of a multinomial mixture model to define community 
types to characterize body sites. In particular, each sample collected through the Human 
Microbiome Project was assigned to 1 of 4 community types. They then quantified 
relationships between body sites using the p-value from a Fisher exact test on the 
membership of samples to community types. Similar to what we observe in the brown-
colored stratum, the authors of [43] found a surprising correlation between samples from 
stool and oral cavity, which is reflected in our result.

In Fig. 6, we illustrate network layers for 4 of the 6 strata that we identify to highlight one 
advantage of having a probabilistic generative model for microbial composition shared in 
subsets of body sites. Specifically, each row provides information about the network layers 
and their fitted sMLSBM model for a particular stratum. Each grid in the figure represents 
the binary adjacency matrix encoding interactions between OTUs: a colored dot at position 
(i, j) indicates the existence of an edge (i, j) in the corresponding network layer. In the first 
column of each row is a sample network generated with the learned SBM parameters of that 

stratum, π̅s and . Columns 2 and 3 show two representative network layers within the 
stratum. Note that while some strata have more than two members, for illustrative purposes 
we only show two example layers. It is easy to see the very similar block structure between 
all networks in a given row, corroborating the usefulness of the sMLSBM approach. Finally, 
we highlight the usefulness of fitting sMLSBM to this multilayer network as each stratum 
elucidates a mechanistic understanding of the relationship between groups of OTUs, which 
could inspire further biological understanding or inquiry.

V. Conclusion and Future Work

We developed a novel model for multilayer stochastic block models (MLSBMs) and an 
associated algorithm to jointly partition layers into strata and nodes into communities. Our 
model assumes that layers belonging to a stratum have community structure following the 
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same underlying SBM. To fit sMLSBM to a multilayer network, and more-specifically, a 
multiplex network, we iteratively alternate between rearranging layer-tostrata assignments 
and updating the model parameters for each stratum. Having multiple networks within a 
stratum—hence multiple realizations from some underlying model—helps to make inference 
more accurate. Particularly, more accurate assignments of nodes-to-communities within a 
stratum leads to improved estimation of SBM probability parameters, and vice versa. We 
have shown for multiplex networks with several strata (e.g., see Fig. 3) that inaccuracies can 
arise if one attempts to fit a single SBM to the network or study the network layers in 
isolation. In contrast, our model allows for an understanding of the similarities between 
layers in a network, in terms of their community structure.

The ability to identify strata within collections of network layers holds promise in numerous 
applications. One motivating application is network reducibility, whereby one compresses a 
multilayer network by aggregating similar layers [8]. We stress that although reducibility is a 
closely related pursuit, it is fundamentally different from our co-clustering pursuit of 
simultaneously identifying communities and strata. In particular, our approach does not 
provide a method for aggregating layers. Instead, sMLSBM compresses the network 
information in the sense that the learned SBM parameters represent a consensus for each 
stratum, and those consensus parameters can be used to generate a representative sample 
network for that stratum. For applications in which layer aggregation is sought, there are a 
variety of ways to aggregate layers in a strata. See, for example, Ref. [44], where the authors 
explore the effects on community structure for different aggregation methods. We highlight 
that the sMLSBM modeling approach is appropriate in situations where one seeks a 
generative model for community structure, and it may be particularly appropriate when 
application-specific evidence suggests that subsets of networks have characteristic 
differences in community structure.

Our comparison of sMLSBM to the reducibility method of Ref. [8] (see Fig. 5) for the 
application of studying microbial interaction networks reveals several extensions to 
sMLSBM that could make the approach more accurate and applicable to a wider range of 
applications. First, the reducibility method [8] does not require networks to be undirected 
and unweighted, and it could be quite useful to extend the sMLSBM framework to weighted 
and directed networks following the extensions for single-layer SBMs, as developed in [45] 
and [46], respectively. It would also be useful to extend to degree-corrected and overlapping 
(i.e., mixed-membership) communities [47], as well as mixed membership of layers into 
strata. Additionally, the Human Microbiome example reveals some interesting biological 
questions that could facilitate the development of more advanced network tools. To construct 
the multilayer network, negative edges were thresholded away; however, antagonistic 
relationships between microbes are known to be important [48]. Thus, it would be useful to 
develop a signed version of sMLSBM that allows edges to be either positive or negative.

The rise of a greater number of multilayer network datasets is providing the need for 
additional tools for the construction and analysis of such networks. The sMLSBM provides a 
new method to find signal in inherently noisy and complex network data.
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Fig. 1. Objective of strata multilayer stochastic block model (sMLSBM)
Each of the L = 9 networks here represents a layer in a multilayer network. Every network 
layer has N = 36 nodes that are consistent across all layers. There are S = 3 strata as 
indicated by the three rows and the colors of nodes. Clearly, network layers within a stratum 
exhibit strong similarities in community structure. That is, although each layer follows an 
SBM with K = 3 communities, the SBM parameters are identical for layers within a strata 
but differ between layers in different strata. We would like to partition the layers into their 
appropriate strata and learn their associated SBM parameters, πs and Zs.
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Fig. 2. Schematic illustration of our algorithm
Our algorithm for fitting an sMLSBM is broken up into two phases: an initialization phase 
to cluster layers into strata, and an iterative phase that allows learning of node-to-community 
and layer-to-strata assignments.
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Fig. 3. Synthetic experiment comparing sMLSBM to other SBMs
A. We specified a model with S = 3 strata and L = 10 layers per stratum. A representative 
layer from each stratum is plotted. Note that nodes in all networks are colored according to 
their community membership in stratum 1. Each network has N = 128 nodes, K = 4 

communities and mean degree, c = 20. The  parameters for s = 1, 2 and 3 are 0.6, 0.4 and 

0.25, respectively. Corresponding values of  were selected to maintain the desired 
expected mean degree, c=20. B. We fit 3 types of models to the 30 network layers: i) single 
SBM: fitting a single SBM to all of the layers; ii) single-Layer SBM: fitting an individual 
SBM to each layer; and iii) sMLSBM: identifying strata and fitting an SBMs for each strata. 
Each model yields an estimate  for the true SBM of each layer l, which is denoted πl. 
Here sl denotes the inferred strata for layer l. On the vertical axis we plot the mean ℓ2 norm 

error . C. For each of the three models, we computed the normalized 
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mutual information (NMI) between the true node-to-community assignments zl and the 
inferred values .
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Fig. 4. Synthetic experiment with two strata
We conducted numerical experiments with multilayer networks with N = 128 nodes, mean 
degree c = 16, S = 2 strata and K1 = K2 = 4 communities. The networks contained either L = 
10 (left column) or L = 100 layers (right column), which were divided equally into the two 

strata. For stratum 1, we fixed the quantity , which fully specifies 

 since setting c = 16 also constrains these parameters. In contrast, we vary 

. A. As a function of , we plot the mean NMI to interpret the 
ability of sMLSBM to recover the true layer-to-strata assignments. We compare the 
performance of sMLSBM (purple curve) to generic k-means clustering (green symbols) of 
adjacency matrices. B. We plot the mean number of iterations (NOI) required for Phase II of 
our algorithm(see Sec. II-C) to converge. C. Finally, we measure the quality of node-to-
community assignment results by plotting the mean NMI between the true node-to-
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community assignments and those inferred with sMLSBM in stratum 1 (red symbols) and 
stratum 2 (blue symbols).
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Fig. 5. 
Comparison of sMLSBM on the OTU interaction networks [42] for each of the body sites to 
a reducibility hierarchy [8]. As described in the text, we consider a multiplex network with L 
= 18 layers and N = 213 nodes, which we group here into S = 6 strata, while the dendrogram 
was generated by the method employed as the precursor to the reducibility framework. 
Colored boxes around the leaves of the dendrogram designate the body site to strata 
assignments obtained with sMLSBM.
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Fig. 6. Visualization of Strata in SparCC Networks
We visualize the adjacency matrices for SparCC networks that encode microbiome 
interactions at body sites. In each panel, a colored dot at position (i, j) indicates the existence 
of an edge (i, j) in the corresponding network layer. The four rows correspond to four 
different strata. In column 1, we show a sample network generated from the SBM 

parameters,  and , that we inferred for that stratum. In Columns 2 and 3, we show 
SparCC networks from that particular stratum. Note the strong similarity across each row.
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