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Abstract

A new procedure is proposed for clustering attribute�value data. When used in con-
junction with conventional distance based clustering algorithms this procedure encourages
those algorithms to automatically detect subgroups of objects that preferentially cluster on
subsets of the attribute variables rather than on all of them simultaneously. The relevant
attribute subsets for each individual cluster can be di¤erent and partially (or completely)
overlap with those of other clusters. Enhancements for increasing sensitivity for detecting
especially low cardinality groups clustering on a small subset of variables are discussed.
Applications in di¤erent domains, including gene expression arrays, are presented.

Keywords or phrases: distance based clustering, inverse exponential distance, clustering
on variable subsets, targeted clustering, feature selection, mixtures of numeric and categor-
ical variables, gene expression microarray data, genomics, bioinformatics

1 Introduction

The goal of cluster analysis is to partition a data set of N objects into subgroups such that those
in each particular group are more similar to each other than to those of other groups. De�ning
an �encoder�function c(i) that maps each object i to a particular group Gl (1 � l � L)

c(i) = l) i 2 Gl; (1)

one can formalize this goal as �nding the �optimal�encoder c�(i) that minimizes a criterion Q(c)
that measures the degree to which the goal is not being met

c� = argmin
c
Q(c): (2)

One such criterion is

Q(c) =
LX
l=1

Wl

N2
l

X
c(i)=l

X
c(j)=l

Dij ; (3)

where Dij is a de�ned distance or dissimilarity measure between every pair of objects (i; j), and
Nl is the number of objects assigned to the lth group

Nl =
NX
i=1

I(c(i) = l); (4)

where the �indicator� function I(�) 2 f0; 1g indicates truth of its argument, and where fWlgL1
in (3) are cluster weights. Thus criterion (3) is a weighted average over the groups, of the
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within group mean distance between pairs of objects assigned to the same group. The cluster
weights fWlgL1 are taken to be functions of the group sizes fNlgL1 and can be used to regulate
the distribution of groups sizes of the solution (2). (See Hubert, Arabie, & Meulman 2001, p.19
for a review of possible heterogeneity measures within a subset.) The usual choice fWl = N

2
l gL1

gives the same in�uence to all object pairs in the criterion (3), encouraging equal sized solution
clusters.

2 Attribute�value data

When each object i is characterized by a set of n measured attributes (variables),

xi = (xi1; :::; xik; :::; xin);

distances between pairs of objects Dij as in (3) are based on their respective values (xik; xjk) on
each attribute k. A well-known example is the Gower (1971) coe¢ cient of similarity. One de�nes
a distance dijk between objects (i; j) separately on each attribute k, and then Dij is taken to be
a (weighted) average of the respective attribute distances

Dij =

nX
k=1

wkdijk (5)

with

fwk � 0gn1 and
nX
k=1

wk = 1: (6)

For example, the individual attribute distances can be taken as

dijk = �ijk=sk (7)

where for numeric valued attributes

�ijk = jxik � xjk j; (8)

or often its square, and for categorically valued (nominal) attributes

�ijk = I(xik 6= xjk): (9)

There are numerous suggestions in the literature for distance measures on individual attributes
other than (8) and (9). Particular choices re�ect the goal of the cluster analysis. The approach
presented in this paper applies to any such de�nitions. The denominator sk (7) provides a scale
for measuring �closeness�on each attribute. It is often taken to be

sk =
1

N2

NX
i=1

NX
j=1

�ijk (10)

or some other measure of spread or dispersion of the fxikgNi=1 values over all objects. For equal
attribute weights fwk = 1=ngn1 , this gives the same in�uence to all of the attributes in de�ning
the criterion (3) and thereby on the solution (2). Sometimes the weights in (5) are set to unequal
values to further re�ne relative in�uence based on user domain knowledge or intuition, if it is
suspected that particular attributes are more relevant than others to clustering the objects.
From (3) and (5) one can express the (equal weight) clustering criterion as

Q(c) =
LX
l=1

Wl

 
1

n

nX
k=1

Skl

!
(11)
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where
Skl =

1

N2
l

X
c(i)=l

X
c(j)=l

dijk (12)

is a measure of the dispersion (scale) of the data values on the kth attribute for objects in
the lth group, fxik j c(i) = lg. For example, if one uses dijk = (xik � xjk )2=s2k then Skl =
2 � varfxik=sk j c(i) = lg. Thus, using (5) to de�ne distance encourages (2)-(3) to seek clusters
of objects that simultaneously have small dispersion on all or at least many of the attributes.
That is, the objects within each solution subgroup are simultaneously close on a large number
of the attributes.

3 Feature selection

De�ning clusters in terms of simultaneous closeness on all attributes may sometimes be desirable,
but often it is not. In data mining applications, the values of many attributes are often measured
and it is unlikely that natural groupings will exist based on a large number of them. Usually,
clustering, if it exists, occurs only within a relatively small unknown subset of the attributes. To
the extent all of the attributes have equal in�uence, this type of clustering will be obscured and
di¢ cult to uncover.
The relative in�uence of each attribute xk is regulated by its corresponding weight wk in

(5). Formally, feature selection seeks to �nd an optimal weighting w = fwkgn1 as part of the
clustering problem by jointly minimizing the clustering criterion according to (3) and (5) with
respect to the encoder c and weights w. That is,

(c�;w�) = arg min
(c;w)

Q(c;w) (13)

where

Q(c;w) =
LX
l=1

Wl

N2
l

X
c(i)=l

X
c(j)=l

Dij [w]; (14)

and Dij [w] is given by (5), here emphasizing its dependence on the weights. The solution w�

has high weight values for those attributes that most exhibit clustering on the objects, and small
values for those that do not participate in the clustering. The solution encoder c� identi�es the
corresponding clusters. There is a vast literature on feature weighting/selection in clustering and
classi�cation; among others, see DeSarbo, Carroll, Clarck, & Green 1984, De Soete, DeSarbo, &
Carroll 1985, De Soete 1986, 1988, Fowlkes, Gnanadesikan, & Kettenring 1988, Milligan 1989,
Van Buuren & Heiser 1989, Gnanadesikan, Kettenring, & Tsao 1995, and Brusco & Cradit 2001.

4 Clustering on di¤erent subsets of attributes

Although feature selection is often helpful, it only seeks groups that all cluster on the same subset
of attributes. Those are attributes with large solution weight values (13). However, individual
clusters may represent groupings on di¤erent (possibly overlapping) attribute subsets, and it is
of interest to discover such structure. With feature selection, clustering on di¤erent subsets of
attributes will still be obscured and di¢ cult to uncover.
One can generalize (14) to �nd clusters on separate attribute subsets by de�ning a separate

attribute weighting wl = fwklgnk=1 for each individual group Gl, and jointly minimizing with
respect to the encoder and all the separate weight sets associated with the respective groups.
That is,

(c�; fw�
l gL1 ) = arg min

(c;fwlgL1 )
Q(c; fwlgL1 ); (15)
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where

Q(c; fwlgL1 ) =
LX
l=1

Wl

N2
l

X
c(i)=l

X
c(j)=l

Dij [wl]; (16)

and

Dij [wl] =
nX
k=1

wkldijk: (17)

As before (6), the attribute weights satisfy

fwkl � 0gn1 and
nX
k=1

wkl = 1; 1 � l � L: (18)

For any given encoder c, the solution to (15)-(16) for the corresponding attribute weights is
w�kl = I(k = k

�
l ) where k

�
l = argmin1�k�n Skl, with Skl given by (12). That is, the solution will

put maximal (unit) weight on that attribute with smallest dispersion within each group Gl, and
zero weight on all other attributes regardless of their respective dispersions within the group.
Therefore, minimizing criterion (16) will produce solution groups
that tend to cluster only on a single attribute. This type of clustering can be detected by

simple inspection of the marginal data distributions on each attribute separately. Our goal is
�nding groups of objects that simultaneously cluster on subsets of attributes, where each subset
contains more than one attribute.
This goal can be accomplished by modifying the criterion (16) with an incentive (negative

penalty) for solutions involving more attributes. One such incentive is the negative entropy of
the weight distribution for each group

e(wl) =

nX
k=1

wkl logwkl: (19)

This function achieves its minimum value for equal weights and is correspondingly larger as the
weights become more unequal. Incorporating (19), the modi�ed criterion becomes

Q(c; fwlgL1 ) =
LX
l=1

Wl

N2
l

X
c(i)=l

X
c(j)=l

D
(�)
ij [wl]; (20)

with

D
(�)
ij [wl] =

nX
k=1

(wkl dijk + �wkl logwkl) + � log n: (21)

(The last term simply provides a translation so thatminwl
D
(�)
ij [wl] = 0 whenever fdijk = 0gnk=1:)

The quantity � � 0 controls the strength of the incentive for clustering on more attributes. It
is a meta�parameter of the procedure and provides control over the type of clustering sought.
Increasing/decreasing its value will encourage clusters on more/less attributes.
For a given encoder c, the solution to (15), minimizing (20)-(21) for the corresponding opti-

mizing weight values is

wkl = exp(�Skl=�)
,

nX
k0=1

exp(�Sk0l=�); (22)

with Skl given by (12). This solution puts increased weight on attributes with smaller dispersion
within each group Gl, where degree of this increase is controlled by the value of �. Setting � = 0
places all weight on the attribute k with smallest Skl, whereas � =1 forces all attributes to be
given equal weight for each group Gl.
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Since all individual attribute distances (7) are normalized as in (10), the quantity Skl will
tend to be near unity for attributes that do not contribute to the clustering of group Gl, and
smaller for those that do. In this sense the value chosen for � de�nes the meaning of �clustering�
on an attribute. A group of objects Gl = fi j c(i) = lg is said to �cluster�on attribute k, if Skl
for group Gl is smaller than the value of �. Considerations governing the choice for its value are
discussed in Section 6.1 below.
For a given encoder c, one can minimize (20)-(21) with respect to all the weights fwlgL1 (22),

thereby producing a criterion Q (c) that depends only on the encoder. The result is

Q(c) =
LX
l=1

Wl �
"
�� log

 
1

n

nX
k=1

exp(�Skl=�)
!#

; (23)

where the optimal encoder is given by (2). The bracketed quantity in (23) is proportional to a
generalized (Orlicz) mean

f�1

"
1

n

nX
k=1

f(Skl)

#
(24)

of fSklgnk=1, where here
f(z) = 1= exp(z=�) (25)

is the inverse exponential function with scale parameter �. This criterion (23) can be contrasted
with that for ordinary clustering (11). Clustering based on distances using (5) with equal (or
other prespeci�ed) attribute weights minimizes the arithmetic mean of the attribute dispersions
within each cluster; separate optimal attribute weighting within each cluster of objects minimizes
the inverse exponential mean (24)-(25).

5 Search strategy

De�ning the clustering solution as the minimum of some criterion does not fully solve the prob-
lem. One needs a method for �nding the minimizing encoder c� that identi�es the solution
clusters. This is a combinatorial optimization problem (among others, see Hansen & Jaumard
1997, Hubert, Arabie, & Meulman, 2001, Van Os, 2001) for which a complete enumeration search
over all possible encoders is computationally impractical for large problems. For these one must
employ less than thorough heuristic search strategies.
For ordinary clustering based on (3) or similar criteria, a large number of heuristic search

strategies have been proposed. These are known as distance based �clustering algorithms�
(for example, see Hartigan 1975, Späth 1980, Jain & Dubes 1988, Kaufman & Rousseeuw 1990,
Arabie, Hubert, & De Soete 1996, Mirkin 1996, Gordon 1999). For attribute�value data (Section
2), clustering algorithms equivalently attempt to minimize (11) by using (5) with equal (or
prespeci�ed) weights to de�ne the distances Dij between object pairs.
The criterion (23) is a more complicated highly non convex function of the fSklg. The

approach used here is to apply an alternating optimization strategy based on (20). One starts
with an initial guess for the weight values, for example all values equal fwkl = 1=ng. The
criterion (20) is then minimized with respect to the encoder given those weight values. Given
that encoder, (20) is minimized with respect to the weights, producing a new set of values for
fwlgL1 . These are then used to solve for a new encoder, and so on. This iterative procedure is
continued until a (local) minimum is reached.
From (21) the criterion (20) can be expressed as

Q(c; fwlgL1 ) =
LX
l=1

Wl

N2
l

X
c(i)=l

X
c(j)=l

Dij [wl] + �

LX
l=1

Wl

nX
k=1

wkl logwkl; (26)

where Dij [wl] is given by (17).
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For a given encoder c(�), the minimizing solution for the weights is given by (22). Given a
set of weight valuesW = fwlgL1 2 Rn�L, the solution encoder c�(� jW) minimizes

Q(c jW) =
LX
l=1

Wl

N2
l

X
c(i jW)=l

X
c(j jW)=l

Dij [wl]: (27)

The form of this criterion is similar to that of (3) where distance between objects assigned to
the same group, c(i jW) =c(j jW) = l, is given by Dij [wl]. However, conventional clustering
algorithms cannot be directly used to attempt to minimize (27) since they require distances to
be de�ned between all object pairs, not just those assigned to the same group. The strategy
employed here is to de�ne a distance Dij [W] between all object pairs that when used with
standard clustering algorithms produces an encoder that approximates the solution c�(� jW)
minimizing (27).
The starting point for deriving such a distance measure is the assumption that c�(� jW) has

the property

1

N2
l

X
c�(i jW)=l

X
c�(j jW)=l

Dij [wl] <
1

NlNm

X
c�(i jW)=l

X
c�(j jW)=m

Dij [wl]; m 6= l; (28)

for all solution groups Gl = fi j c�(i jW) = lg. That is, the average distance between pairs of
objects within the same group Gl, based on the weights for that group wl, is smaller than the
corresponding average distance between groups based on wl. If this were not the case, the value
of (27) could be further reduced by merging Gl with all groups Gm (m 6= l) for which (28) was
violated. Furthermore from (28) one has

1

N2
l

X
c�(i jW)=l

X
c�(j jW)=l

Dij [wl] <
1

NlNm

X
c�(i jW)=l

X
c�(j jW)=m

max(Dij [wl]; Dij [wm]) (29)

for m 6= l: Therefore, de�ning

D
(1)
ij [W] = max(Dij [wc(i jW)]; Dij [wc(j jW)]) (30)

one has
1

N2
l

X
c�(i jW)=l

X
c�(j jW)=l

Dij [wl] =
1

N2
l

X
c�(i jW)=l

X
c�(j jW)=l

D
(1)
ij [W]; (31)

and from (29)

1

N2
l

X
c�(i jW)=l

X
c�(j jW)=l

D
(1)
ij [W] <

1

NlNm

X
c�(i jW)=l

X
c�(j jW)=m

D
(1)
ij [W]; m 6= l: (32)

That is, the solution encoder c�(� jW) minimizing (27) has the property that the average within
group distance, using (30), is smaller the the corresponding between group average. The solutions
produced by standard clustering algorithms also attempt to achieve this goal. Therefore, apply-
ing a standard clustering algorithm based on D(1)

ij [W] (30) will attempt to produce a solution
minimizing (27).
The distance de�ne by (30) is not the only one that satis�es properties (31) (32). Any

�majorizing�distance that is equal to D(1)
ij [W] when c(i jW) = c(j jW) and is larger otherwise

will share these properties. An example is

D
(2)
ij [W] =

nX
k=1

max(wk;c(i jW); wk;c(j jW)) dijk: (33)

Any such distance could be used to produce a surrogate criterion for (27) in the form of (3) to
be minimized by conventional clustering algorithms. Speci�c choice will depend on performance
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in the context of a particular clustering algorithm. This situation is common in optimization
problems using heuristic search strategies, where one often chooses to optimize a surrogate
criterion with the same solution as the desired one. The choice of a surrogate is based solely on
performance in the context of the chosen search strategy. Empirical evidence so far suggests that
both (30) and (33) yield similar results using common clustering algorithms, with (33) sometimes
providing superior performance.
In summary, an alternating optimization algorithm attempting to minimize (23) would initial-

ize all weight values toW = fwkl = 1=ng. A solution encoder c�(� jW) is obtained by applying
a clustering algorithm using either (30) or (33) to de�ne interpoint distances. New weight values
W are computed based on c�(� jW) using (12) (22). These weight values de�ne new inter object
distances for the clustering algorithm. These steps are iterated until the solution stabilizes.

6 Weighted inverse exponential distance

The alternating optimization strategy outlined in the previous section is unlikely to produce
satisfactory results if applied straightforwardly. The highly non convex nature of (23) induces a
very large number of distinctly suboptimal local solutions. If the initial weight valuesW = f1=ng
are far from their (global) minimizing values, it is likely that the alternating strategy will converge
to one of these suboptimal local solutions. This will especially be the case when there is clustering
on small subsets of the attributes. In order to be successful, it is necessary either to �nd good
initial weight values close to the solution values, or to use an alternative surrogate criterion for
which the weight valuesW = f1=ng provide a good starting point. Since it is usually di¢ cult to
assign good starting values without knowing the ultimate solution, the latter strategy is pursued
here.
For any set of weights w = fwkgn1 consider the interpoint distance measure

D
(�)
ij [w] = min

ftkgn1

nX
k=1

tk dijk + � tk log
tk
wk
;

nX
k=1

tk = 1; (34)

= �� log
nX
k=1

wke
�dijk=�:

This is a distance between objects (i; j) based on a weighted inverse exponential mean (24) (25)
of fdijkgnk=1 with scale parameter �.
As � becomes large , D(�)

ij [w] approaches the ordinary distance (5),

lim
�!1

D
(�)
ij [w] =

nX
k=1

wk dijk: (35)

Therefore, as the limit is approached this distance de�nition (34) can be used on the right hand
side of (30) or (33) to produce equivalent surrogate criteria for (27).
For �nite values of � alternate surrogate criteria are de�ned. These alternatives need not

lead to equivalent surrogates for (27) since they will not necessarily satisfy properties (31) (32).
However, setting the value of � in (34) to be the same as that used for � in (23) produces a
criterion quite similar to (23) when all weight values are taken to be equal W = f1=ng. This
can be seen by �rst using (12) to express (23) as

Q(c) = ��
LX
l=1

Wl log
1

n

nX
k=1

0BB@ Y
c(i)=l
c(j)=l

e�dijk=�

1CCA
1

N2
l

: (36)
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Setting � = � and then substituting (34) into (30) or (33) with all weight values equal to 1=n
produces the surrogate criterion

~Q(c) = ��
LX
l=1

Wl log

0BB@ Y
c(i)=l
c(j)=l

1

n

nX
k=1

e�dijk=�

1CCA
1

N2
l

: (37)

Each term in both (36) and (37) contains the logarithm of a measure of central tendency of
fe�dijk=�g; for all c(i) = c(j) = l and 1 � k � n. For Q(c) this measure is the arithmetic
mean over k of the geometric mean over (i; j). For ~Q(c) it is the geometric mean over (i; j) of
the arithmetic mean over k. Both of these criteria are similar in that they are most strongly
in�uenced by the dijk that have small values compared to �, and correspondingly less in�uenced
by those with larger values. By contrast, directly using (30) or (33) based on (17) using equal
weight valuesW = f1=ng produces the criterion

�Q(c) =
LX
l=1

Wl

N2
l

X
c(i)=l

X
c(j)=l

1

n

nX
k=1

dijk: (38)

Each term in (38) contains a measure of central tendency of fdijkg; for all c(i) = c(j) = l and
1 � k � n, based on the arithmetic mean. This criterion is independent of � and most strongly
in�uenced by the larger valued dijk. Therefore, to the extent that the respective geometric and
arithmetic means of fe�dijk=�g appearing in (36) and (37) are not too di¤erent, solutions mini-
mizing (37) would likely be much closer to those minimizing (23) (36) than solutions produced
by minimizing (38). (Note that 0 < e�dijk=� � 1.) Empirical evidence suggests that this is
indeed the case.
Since Q(c) and ~Q(c) are not identical, applying a clustering algorithm based on (30) or (33),

substituting (34) in place of (17) (with � = � and equal weightsW = f1=ng) does not produce
the solution minimizing (23). It only provides a potentially good starting point for the iterative
algorithm described in Section 5. From (35), as � !1 this substitution produces the distance
measure used by that algorithm. This suggests a homotopy optimization strategy in which (34)
replaces (17) in (30) or (33), with � being the homotopy parameter. Its value is initialized to
that of �, and then gradually increased as iterations proceed. This smoothly transforms the
criterion being minimized from (37), to (27) based on (30) or (33), as the weight values progress
from W = f1=ng to their minimizing values. Such a strategy leads to the following algorithm
for clustering objects on subsets of attributes (COSA):

Algorithm COSA1

1 Initialize: W = f1=ng; � = �
2 Loop {
3 Compute distances Dij [W] (30) (33) (34)
4 c clustering algorithm (fDij [W]g)
5 Compute weightsW = fwlgL1 (12) (22)
6 � = � + � � �
7 } UntilW stabilizes
8 Output: c� = c

For a given value of �, the value of � (line 6) controls the rate of increase in the value of the
homotopy parameter �. There is as yet no theory to suggest appropriate values of � in particular
applications. Setting � = 1 causes this algorithm to compute the solution minimizing (37) at
the �rst iteration, and then immediately to switch to the algorithm described in Section 5, based
on ordinary distance, (17), (30) or (33), starting at that solution. Smaller values of � cause
a more gradual evolution from weighted inverse exponential distance (34) to ordinary distance
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as the weight values in turn evolve. Empirical evidence suggests that if the clustered groups
tend to concentrate on small subsets of the attributes the value of � should be taken to be
fairly small (� . 0:1), causing a slow evolution. Otherwise, the weighted inverse exponential
distance approaches ordinary distance too rapidly, thereby causing the algorithm to converge to
an inferior local minimum in spite of its potentially good starting point.
In order for inverse exponential distance (34) to closely approximate ordinary distance (35)

the value of the homotopy parameter � must become large compared to typical values of the
interpoint distances dijk on each attribute k. As a consequence of their normalization (7) (10)
these attribute interpoint distances have expected values of unity with typical values in the range
0 . dijk . 2. For example, with normally distributed attribute values fxikg and equal weights
fwk = 1=ngn1 , the correlation of the distances (34) for � = 1 with those produced by � = 1
(35) is already 0:97, and for � = 2 it is 0:99. This suggests that the transition of (34) to (35) is
achieved when � reaches values in this range.
The algorithm however usually converges to equivalent solutions for much smaller values of �.

This is caused by the weighting of the respective attributes within each clustered group after the
�rst iteration (line 5). Attributes k with typically large interpoint distances (dijk >> �) receive
small weights through (12) (22) compared to those characterized by small interpoint distances
(dijk . �). Thus, both distance measures (34) (35) are primarily in�uenced by those attributes
k for which dijk . �. This mechanism causes the transition of (34) to (35) to occur for much
smaller values of �, typically � ' �, when there is preferential clustering on attribute subsets.
In fact, for all the applications presented in Section 12 below, using 0 � � � 0:25 caused the
algorithm to converge to equivalent solutions, with some being invariant over a much broader
range.
In applications where clustering tends to occur on relatively large numbers of attributes,

larger values of � will tend to produce better results. However, it is in precisely these settings
that the usual clustering algorithms (3) (5) based on unweighted distances fwk = 1=ngn1 perform
well, and there is little advantage associated with the COSA strategy.

6.1 Scale parameter

The primary tuning parameter of the COSA procedure is the scale parameter � (22). The goal
is to identify groups of objects Gl = fi j c(i) = lg (clusters) such that on subsets of the attributes
k, the characteristic interpoint distances dijk within each are relatively small fdijk << 1 j c(i) =
c(j) = lg. From (12) (22) the value of � de�nes the characteristic scale of these �small�interpoint
distances to which the procedure will have sensitivity. For large values � & 1 (� � �) both (34)
and (35) reduce to ordinary distance with equal weights fwkl = 1=ngn1 on all attributes within
each cluster, so that COSA approximates ordinary clustering based on (3) (5). Thus if the goal
is to uncover preferential clustering on subsets of attributes the value of � should be taken to be
small (� << 1).
As the value of � is reduced however, fewer objects within each group Gl have in�uence

on the estimated weights through (12) (22), thereby increasing the variance of these estimates
and reducing the power of the procedure. Thus, � can be regarded as �smoothing�parameter
controlling a kind of bias�variance trade�o¤ in analogy with more general density estimation
procedures. Values that are too large give rise to over�smoothing reducing sensitivity to narrow
clustering on small subsets of attributes. Values of � that are too small (under�smoothing)
increase variance that also reduces power to uncover the overall clustering structure. Ideally, the
value of � should be set to the characteristic scale of the small distances dijk on those attributes
k upon which each of the groups Gl preferentially cluster. This is of course unknown. Variance
considerations suggest somewhat larger values for smaller sample sizes.
Since an optimal value of � is situation dependent and there is as yet no theory to suggest

good values, the only recourse is to experiment with several values and examine the results.
Empirical evidence so far suggests that in the presence of sharp clustering on small subsets of
attributes the procedure is usually not highly sensitive to values in the range 0:1 � � � 0:4.
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However, in the presence of more subtle structure the results can be fairly sensitive to a choice
for its value.

7 Hierarchical Clustering

The COSA1 algorithm of the preceding section uses a conventional iterative clustering method as
a primitive (line 4). It can be viewed as a �wrapper�placed around a chosen clustering algorithm
extending that algorithm to clustering on subsets of attributes. As with most conventional
iterative clustering methods, the number of clusters sought L must be speci�ed.
A very popular class of clustering techniques, especially with gene expression microarray

data, are hierarchical methods. These do not require prespeci�cation of the number of clusters.
Instead, they arrange potential clusters in a hierarchy displayed as a binary tree (�dendrogram�).
The user can then visualize this representation to assess the degree of clustering present in the
data, and manually choose a particular partition of the objects into groups. Using COSA1 as
a wrapper around such a manually driven procedure is cumbersome at best. For hierarchical
clustering, one needs a version of the algorithm that provides inter object distances fDijg en-
couraging clustering on subsets of attributes, without requiring the speci�cation of a particular
iterative clustering algorithm or the number of groups L.
The key ingredient to producing such a version is based on the de�nition of clustering: pairs of

objects (i; j) within the same solution clustered group c�(i) = c�(j), using a particular distance
de�nition Dij , will tend to have relatively small values of Dij . This is the goal driving all
clustering methods. Let KNN(i) be K closest objects to i based on Dij ,

KNN(i) = fj jDij � di(K)g (39)

where di(K) is the Kth order statistic of fDijgNj=1 sorted in ascending values. Then among those
objects j 2 KNN(i) there will be an over representation of objects for which c�(i) = c�(j). That
is,

1

K

X
j2KNN(i)

I [c�(j) = c�(i)] >
1

N

NX
j=1

I [c�(j) = c�(i)]: (40)

The more pronounced the clustering, the stronger this inequality becomes. Therefore, to the
extent (40) holds, statistics computed on KNN(i) will re�ect those computed on fj j c�(j) =
c�(i)g. In particular, for the scale measure (12) this implies

Sk;c�(i) w
1

K2

X
j2KNN(i)

X
j02KNN(i)

djj0k: (41)

This represents a measurement of scale of the attribute xk for objects fj j j 2 KNN(i)g. Fur-
thermore, in the interest of reduced computation (41) can in turn be approximated by

Ski =
1

K

X
j2KNN(i)

dijk: (42)

Under these assumptions one can modify the COSA1 algorithm by replacing the clustering
algorithm (line 4) by a procedure that computes fKNN(i)gN1 , and replacing wc(i jW)  wi =
fwkignk=1 in (30) (33) (34) for computing the distances (line 3), with

wki = exp(�Ski=�)
,

nX
k0=1

exp(�Sk0i=�) (43)

for calculating the weights (line 5). With this substitution, the matrix of weights W becomes
an n�N matrix with entries wki. These changes produce the following algorithm:
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Algorithm COSA2

1 Initialize: W = f1=ng; � = �
2 Loop {
3 Compute distances Dij [W] (30) (33) (34)
4 Compute fKNN(i)gN1 (39)
5 Compute weightsW = fwkig (42) (43)
6 � = � + � � �
7 } UntilW stabilizes
8 Output: fDij = Dij [W]g

The purpose of this algorithm is to obtain a good set of weight valuesW 2 Rn�N for calcu-
lating interpoint distances fDijg (line 8) by approximately minimizing the criterion

Q(W) =
NX
i=1

24 1
K

X
j2KNN(i)

Dij [wi] + �
nX
k=1

wki logwki

35 : (44)

These distances can then be input to hierarchical clustering algorithms.
The weight values W� = fw�

i gN1 minimizing (44) are those that create the smallest K�
nearest neighborhoods, subject to the negative entropy incentive (19). Here the size of each
neighborhood is measured by the average distance to its center point xi, using attribute weights
wi = fwkign1 . This is inversely related to an estimate, based on KNN(i), of the probability
density p(xi jwi). In this sense, the solution weights minimizing (44) are chosen to maximize
these probability density estimates.
The considerations concerning the value of the scale parameter � and homotopy rate para-

meter � (line 6) are the same as those for the COSA1 algorithm discussed in Section 6 above.
The size K chosen for the nearest neighborhoods is not critical and results are fairly stable over
a wide range of values. It should be large enough to provide stable estimates of Ski (42) but
not too much larger than the size of the cluster containing the ith object. Setting K w

p
N is a

reasonable choice, although some experimentation may be desirable after reviewing the sizes of
the uncovered clusters.

8 Robust dispersion measures

Measurements of the dispersion of attribute values for sets of objects (10) (12) (42) play an
important role in the COSA procedures. These dispersion measures are based on computing
mean values of the inter object distances on the respective attributes. For numeric valued
attributes (8), mean statistics are known to be highly sensitive to a small number of objects
with unusually large values (�outliers�). Using medians as an alternative measure of central
tendency eliminates this problem making the overall procedure more robust. Since robustness
is an important property for any data mining method, we replace the respective mean values
in (10) (12) (42) with medians for numeric valued attributes. Furthermore, for computational
e¢ ciency, (10) is approximated by

sk ' IQR(fxikgNi=1)=1:35 (45)

where IQR is the interquartile range. The divisor in (45) is the value appropriate for a normally
distributed variate. (The corresponding values for a uniform and log�normal distributions are
1.12 and 1.62 respectively, so that 1.35 represents an average choice.) For categorical (nominal)
attributes there is no corresponding outlier issue so that (10) (12) and (42) can be used to
compute the respective attribute dispersions.
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9 Interpretation

If the clustering procedure is successful in uncovering distinct groups (clusters), one would like
to know whether each such group represents clustering on a subset of the attributes, and if so, to
identify the relevant attribute subsets for each of the respective groups. Clustering algorithms
used with COSA only report group membership (1). With this approach, there is no explicit
attribute subset selection. However, the relative importance (relevance) of each attribute k to
the clustering of each clustered group Gl is given by (22) substituting the robust (Section 8)
analog of Skl (12)

Skl =
1

Nl

X
i2Gl

medianfdii0kgi02Gl
(46)

for numeric valued attributes.
An unnormalized �rst order approximation

Ikl = [Skl + "]
�1 (47)

can be interpreted as an absolute measure of the importance Ikl of attribute k to the clustering
of solution group Gl. Here, "�1 represents the maximum obtainable importance value. When
computed over all objects in the data set, rather than over objects within an individual cluster,
(47) evaluates to Ik = [1 + "]�1for all attributes, due to the normalization in (7) and (10).
Thus one can interpret (47) as inversely measuring the spread of xik values within the group Gl
relative to its corresponding spread over all objects. For example, a value of Ikl = 4 implies that
the spread of xik values within Gl is roughly one quarter of that over all of objects in the data
set. Large values of Ikl indicate that Gl is highly clustered on attribute xk, whereas small values
indicate the opposite. Inspection of the values of fIklgnk=1 for each cluster Gl, allows one to
ascertain the relevant attributes contributing to the clustering of the lth group Gl. Illustrations
are provided in Section 12.

10 Missing values

In many applications there are incomplete data; some of the attribute values for the objects
are missing. The distance measure (34) can be modi�ed to accommodate missing values while
taking advantage of the information present in the non missing values. One simply makes the
modi�cation

wk  wk � I(xik 6= missing) � I(xjk 6= missing) (48)

in (34), and then renormalizing the weights to sum to one. This assigns a weight value of zero to
the kth attribute in the distance calculation if its value is missing on either object i or object j.
If the two objects have no non missing values in common, they are assigned an in�nite distance
so that they will not be placed in the same cluster.
For the calculation of the weights (22) and (43) on the kth attribute, only non missing values

of that attribute (xk) are used to calculate Skl (12) or Ski (42). If in (42) object i is missing a
value for xk, or all K nearest nearest neighbors of object i are missing values of xk , then the
corresponding weight is set to zero, wki = 0.

11 Targeted clustering

The COSA algorithms attempt to uncover distinct groups of objects that have similar joint
values on subsets of the attributes. The actual joint values of the attributes in the subset about
which the objects cluster is unspeci�ed; the attempt is to �nd clustering centered about any
possible joint values of the attributes. This may not always be the goal; there may be preferred
values on some or all of the attributes about which one would like to focus.
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For example, one might have data on the spending habits of consumers in terms of amounts
spent on various products or activities. The goal might be to identify groups of consumers
(objects) that spend relatively large amounts on subsets of the products (attributes), and be
unconcerned with those who spend moderate to small amounts. Attempting to �nd arbitrary
clustering could obscure small but potentially interesting clusters of such high spenders. Al-
ternatively, one might be interested in identifying clusters of low spenders, or perhaps clusters
of extreme spenders who either spend excessively large or small but not moderate amounts on
various items. In contrast, speci�c consumer research might want to focus on consumers that
do in fact spend moderate amounts of money. Similarly, in gene expression data one might seek
clusters of samples (objects) that have preferentially high/low or extreme expression levels on
subsets of the genes (attributes). Again seeking clusters centered at arbitrary values can cause
di¢ culty in uncovering the structure of interest, especially if it is fairly subtle.

11.1 Single target clustering

Focused or targeted clustering can be accomplished by modifying the distance de�nitions (7)
on selected individual attributes. Let tk be a prede�ned target value on the kth attribute and
(xik; xjk) be the corresponding respective values of objects i and j on that attribute. De�ne the
�targeted�distance between objects (i; j) on the kth attribute as

dijk(tk) = max[dk(xik; tk); dk(xjk; tk)]; (49)

where
dk(x; t) = jx� t j=sk; (50)

with sk given by (45) for numeric attributes, and

dk(x; t) = I(x 6= t)=sk (51)

with sk given by (10) for categorical (nominal) attributes. This distance (49�51) is small only
if both the values of xik and xjk are close to each other and close to the target value tk. Using
(49�51) in place of (7�9) for any attribute or set of attributes will cause the clustering algorithm,
when considering groupings on those attributes, to only consider clusters near the targeted values.
This can substantially reduce the cluster search space, making subtle clustering near the target
values easier to uncover.
For the consumer spending data example, setting target values near the maximum data value

on each attribute will cause a clustering algorithm to only seek clusters of high spenders. Simi-
larly clusters of only high (or low) gene expressions can be sought through the same mechanism.
In both cases restricting the search makes it more likely to �nd the targeted clusters of interest,
since the algorithm will not be distracted by other perhaps more dominant (but less interesting)
clustering.

11.2 Dual target clustering

Single target clustering (49�51) can be quite powerful in uncovering subtle clustering e¤ects as
will be illustrated in Section 12.1. However, for some applications it can be too restrictive. In
the consumer spending problem one may be interested in clusters of �extreme�spenders, people
that either spend unusually high or low amounts on sets of items. Similarly, one might be seeking
clusters of samples with unusually high or low (but not moderate) gene expression levels. This
type of clustering can be accomplished by using �dual target�distances

dijk(tk; uk) = min[dijk(tk); dijk(uk)] (52)

on selected attributes xk, where dijk(�) is the corresponding single target distance (49). This
distance (52) is small whenever xik and xjk are either both close to tk or both close to uk. In
the consumer spending and gene expression examples one might set tk and uk respectively to
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values near the maximum and minimum data values of the attributes. Using (52) with COSA
will cause the clustering algorithm to seek clusters of extreme attribute values, ignoring (perhaps
dominant) clusters with moderate attribute values.

12 Illustrations

In the following sections we illustrate COSA on several data sets. In all the examples presented
here COSA2 (Section 7) was employed with average linkage hierarchical clustering so that the
resulting cluster structures can be visualized. The value of the scale parameter � (23) was taken
to be � = 0:2 and the number of nearest neighbors K (39) was taken to be the square�root of
the sample size. For the attribute importance calculations (47), " was set to 0:05.

12.1 Simulated data

In this section we present a modest systematic investigation of the properties of COSA based
clustering, and its relation to traditional approaches based on Euclidean distance. Both are ap-
plied to a series of simulated data sets of size characteristic of those produced by gene expression
microarray experiments. Speci�cally all data sets consisted of N = 100 objects and n = 10000
attributes. To aid interpretation, the simulated clustering structure was taken to be very simple.
Each data set consisted of two groups (clusters). The �rst group was a random sample of 85

objects drawn form a 10000�dimensional standard normal distribution. The second group of 15
objects was also drawn from a 10000�dimensional normal distribution, but its �rst n0 attributes
each had a mean of � = 1:5 and standard deviation � = 0:2. The remaining (10000 � n0)
attributes of the second group each had zero mean and unit standard deviation. Thus, the
population distributions of the two groups di¤er only on the �rst n0 attributes. After generation,
the pooled sample was standardized to have zero mean and unit variance on all attributes.
These data thus contain a small group that exhibits clustering on only a few (n0) attributes,
together with a large non�clustered background. The purpose is to study the ability of the
respective clustering approaches to uncover the second small group as a function of the number
of attributes n0 upon which it clusters. Figure 1 shows histograms of the pooled data on the
�rst nine attributes (n0 > 9). Histograms of the other (n0 � 9) clustered attributes are similar
in that they show little evidence of clustering on any of the individual marginal distributions of
the attributes relevant to the clustering.
Clustering based on three distance measures are compared: squared Euclidean distance, non�

targeted COSA distance, and single target COSA distance with the target on each attribute set
to 95 percentile of its data distribution. Figure 2 shows average linkage dendrograms for three
values of n0: 10, 60, 150 (top to bottom) for each of the three distance measures (left to right).
For n0 = 10, clustering based on targeted COSA distance readily distinguishes the small

15�object cluster from the background; Euclidean and non�targeted COSA distances are unable
to do so. At n0 = 60, targeted COSA dramatically distinguishes the small group, whereas
non�targeted COSA is seen to barely be able to provide separation (extreme left). Euclidean
distance still shows no evidence of the smaller group. With n0 = 150, Euclidean distance begins
to provide evidence of the smaller group, whereas both COSA distances clearly delineate it.
While simple in structure, this example provides some insight into the relative strengths of

the three distance measures. It illustrates the ability of COSA based procedures to separate
small groups clustering only on a tiny fraction of the total number of attributes. Non�targeted
COSA was able to detect clustering on less than half of the number of attributes required by
Euclidean distance. Targeting, when appropriate, is seen to be especially powerful. It was able
to detect a cluster involving only 15% of the objects and 0.1% of the attributes.
The above example is especially simple in that the only structure present is the existence of

the small cluster; the larger distances re�ect pure unstructured noise. In actual problems this
is seldom the case. Larger distances on the attributes are likely to exhibit considerable struc-
ture that may or may not be associated with clustering. Since Euclidean distance is especially
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Figure 1: The distribution of the simulated clustered data on the �rst nine attributes. There is
little evidence of obvious clustering in these marginal distributions.
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Figure 2: Average linkage dendrograms for Euclidean (left), non�targeted COSA (center), and
targeted COSA (right) distances for three simulated data sets of 100 objects with 10000 at-
tributes. Each data set consists of a small 15 object group clustering on n0 = 10; 60; 150 at-
tributes (top to bottom), nested within an unclustered background of 85 objects. Euclidean
distance requires clustering on more attributes than are required by the COSA distances to
detect the smaller group. Targeted COSA provides the most power in this setting.
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sensitive to the larger distances on individual attributes, this large scale structure can obscure
the detection of smaller groups clustering on subsets of the attributes. COSA is designed to be
especially sensitive to small distances on the attributes, thereby being more sensitive to this type
of structure.
The upper (black) curve in Fig. 3 shows the 100 largest attribute importance values (47)

evaluated on the 15 object group detected with targeted COSA on the simulated data for n0 = 10
(Fig. 2, upper right panel). The importance values for the �rst ten (most important) attributes
are seen to be sharply higher that those for the other attributes. Their importance values range
from 3.4 to 6.0 with a mean of 4.8. The population values are all 5.0 (� = 0:2). The ten lower
(green) curves represent the 100 highest attribute importance values for ten groups, each of 15
objects randomly selected from the data; the central red curve is their average. The importance
spectrum of the actual clustered group closely coincides with those of the randomly selected
groups except for the ten highest importance values. These ten attributes that are estimated to
be the most important turn out to be x1; :::; x10, the ones actually relevant to forming the small
cluster in the generating population.
The above example demonstrates the sensitivity of COSA based clustering in uncovering

small groups that cluster only on very small subsets of the attributes. A potential worry is that
such groupings may exist with su¢ cient strength in random data, sampled from an unstructured
population, so that they will also be detected by COSA. The examples shown in Fig. 4 indicate
that this is not likely. Shown are nine average linkage dendrograms resulting from applying single
target COSA to nine di¤erent data sets of 100 objects, each randomly sampled from a 10000�
dimensional standard normal distribution. As can be seen, there are no obvious indications of
clustering in these plots. The corresponding dendrograms based on dual target and non�targeted
COSA (not shown) are similar in that they also show no obvious clustering.

12.2 mRNA relative abundance data

This data set consists of n = 6221 mRNA relative abundance estimates derived from gene
expression data (attributes), with N = 213 samples (objects). The data are an agglomeration
of samples from 12 experiments derived from nine studies (Aach, Rindone, and Church 2000).
Attributes with more than half of their values missing were deleted from the analysis leaving
6141 attributes still containing many missing values.
Figure 5 displays the average linkage dendrogram obtained from squared Euclidean distance

on the standardized attributes. Substantial clustering is apparent. Five distinct groups that
each contain ten or more objects can be identi�ed. These are delineated in the top panel of Fig.
7. Figure 6 shows the corresponding dendrogram based on (standard) COSA distance. With
COSA, the separation into distinct clusters is seen to be much sharper, and at least nine distinct
groups (containing more than 10 objects) can be identi�ed. These are delineated in the bottom
panel of Fig. 7.
Each of the Euclidean clusters (Fig. 7, top panel) uniquely contain all of the objects (samples)

arising from �ve of the 12 experiments. These are identi�ed in Table 3 with the delineated clusters
labeled sequentially from left to right. Unsupervised Euclidean distance clustering was able to
separate these �ve experiments from the rest of the data in the absence of an experiment label.
Eight of the nine clusters identi�ed in the COSA dendrogram (Fig. 7, bottom panel) contain

objects (samples) from unique experiments. These are identi�ed in Table 4 with the COSA
clusters in Fig. 7 labeled sequentially from left to right. COSA clusters 3, 6, 7, and 8 contain all
of the objects from each of the corresponding experiments. Clusters 1 and 2 partition all of the
Hol experimental samples into two distinct groups, whereas clusters 4 and 5 similarly divide all
of the samples of the Spe_cdc experiment. Cluster 9 is the only impure one, containing all of
the Der_duix samples and a few samples from other experiments as well.
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Figure 3: The 100 largest attribute importance values for the 15 object group detected by
targeted COSA on the simulated data for n0 = 10 (upper black curve). The lower (green) curves
represent the 100 highest attribute importance values for ten groups, each of 15 objects randomly
selected from the data. The central (red) curve is the average of the green curves. The detected
group shows strong evidence of clustering on 10 attributes, with little or no evidence of clustering
on the remaining 9990 attributes.
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Figure 4: Average linkage dendrograms resulting from applying single target COSA distance
to nine di¤erent data sets of 100 objects randomly drawn from a 10000�dimensional standard
normal distribution. No indications of obvious clustering appears in any of these plots.
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Figure 5: Average linkage dendrogram based on Euclidean distance for the yeast mRNA relative
abundance data. Substantial clustering is indicated.
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Figure 6: Average linkage dendrogram based on COSA distance for the yeast mRNA relative
abundance data. Very sharp clustering is apparent.
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Figure 7: Average linkage dendrograms based on Euclidean (top) and COSA (bottom) distance
for the yeast mRNA relative abundance data, with clustered groups involving ten or more objects
delineated.
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Table 3

Experiments comprising each of the Euclidean distance clusters for the yeast mRNA relative
abundance data.

Cluster: 1 2 3 4 5
Exp: Cho Hol Spe_alpha Spe_elut Spe_cdc

Table 4

Experiments comprising each of the COSA distance clusters for the yeast mRNA relative
abundance data.

Cluster: 1 2 3 4 5
Exp: Hol Hol Cho Spe_cdc Spe_cdc

Cluster: 6 7 8 9
Exp: Spe_elut Spe_alpha Chu Der_diux (+)

The results from COSA clustering suggest that the Hol and Spe_cdc experiments each par-
tition into two distinct groups of similar size. This is not evident from Euclidean distance based
clustering.
Figure 8 illustrates the attribute importance values (upper black curves) for the two Hol

groups. The lower (green) curves are the corresponding ordered attribute importances for same
sized groups randomly selected from the whole data set. Both of the Hol subgroups strongly
cluster on a relatively small fraction of all of the attributes. The concentration is somewhat
sharper for the �rst (left) group. The attribute subsets on which the two groups strongly cluster
are not identical, but substantially overlap. There were 41 common attributes among the 100
most relevant for each group.
Euclidean distance based clustering was able to partition �ve of the six experiments that

contain more ten or more samples (objects) into separate groups. (The other six experiments
contained less than ten samples.) COSA clustering (more sharply) separated all six of these
experiments, (with a contaminated seventh cluster), and in addition was able to detect strong
clustering structure within two of them.

12.3 Medical data

These data were collected at the Leiden Cytology and Pathology Laboratory (see Meulman,
Zeppa, Boon, & Rietveld 1992). They consist of n = 11 manually observed features (attributes)
of cells taken from pap smears of N = 242 patients (objects) with cervical cancer or its precursor
lesions (dysplasias). Attributes (x1; :::; x4) and (x6; :::; x8) are abnormality ratings by a pathol-
ogist of various aspects of each cell. The ratings range from 1 (normal) to 4 (very abnormal).
Most of these attributes have only three distinct values (normal ratings were rare) so they were
treated as being categorical. The remaining four features (x5; x9; x10; x11) are numerical (counts)
with many distinct values.
The strongest clustering was revealed by using dual target distance (52), with the targets set

respectively to the 5 and 95 percentiles of the data distribution on each numeric attribute. There
were no targets speci�ed for the categorical attributes. Figure 9 shows the resulting average�
linkage dendrogram. These data are seen to partition into nine fairly distinct groups, containing
ten or more objects, delineated by the corresponding rectangles. Moderate additional clustering
within some of these groups is also indicated.
The attribute importances (47) for each of these nine groups are plotted (on a square root

scale) in Fig. 10. The groups are displayed in their dendrogram (Fig. 9, left to right) order.
All of the groups exhibit very strong clustering on one to three attributes, with some groups
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Figure 8: Ordered attribute importances for each of the two Hol clusters. The lower (green)
curves represent the corresponding ordered importances for randomly selected groups of the same
size. The central (red) curve is their average. Both of these groups exhibit strong clustering only
on a small subset of the attributes (genes).
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Figure 9: COSA average�linkage dendrogram for the medical data using high/low dual target
dissimilarities on the numeric variables. These data are seen to partition into nine fairly well
separated groups of more than ten objects each as delineated by the rectangles.
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showing moderately strong clustering on a few other attributes as well. Each group is seen to
cluster on a di¤erent small subset of the attributes, with some overlap among the subsets.
In addition to the eleven cell features taken from their pap smears, each patient was diag-

nosed in a subsequently performed biopsy. Each of these histological diagnoses was assigned a
numerical score, with values ranging from one to �ve, re�ecting the severity of the dysplasia
(mild, moderate, or severe) or cervical carcinoma (in situ, or invasive). Figure 11 shows the dis-
tribution (boxplot) of these score values for patients assigned to each of the nine clustered groups
identi�ed in Fig. 9 (left to right) and shown in Fig. 10. The labels along the abscissa show the
median of the index values within each of the respective groups. Each of the uncovered clusters,
based only on the cell features, is seen to correspond to a relatively narrow range of increasing
score values, indicating a substantial relationship between the COSA group membership and the
severity of the diagnosis, with a clear separation between carcinoma (severity scores 4 and 5)
and dysplasia (severity scores1, 2 and 3).

13 Discussion

COSA can be viewed as an enhancement to distance based clustering methods enabling them to
uncover groups of objects that have preferentially close values on di¤erent, possibly overlapping,
subsets of the attributes. There do not appear to be other distance based methods directly
focused on this goal. There are however non distance based modeling methods that have been
proposed for this purpose.
The one closest in spirit is product density mixture modeling (AutoClass �Cheesman and

Stutz 1996, see also Ban�eld and Raftery 1993). The joint distribution of the attribute values
is modeled by a mixture of parameterized component densities. Each component in the mixture
is taken to be a product of individual probability densities on each of the attributes. Prior
probability distributions are placed all model parameter values and a heuristic search strategy
is used to attempt to maximize posterior probability on the data. Each of the components in
the resulting solution is considered to be a �soft�cluster.
As with COSA, the (posterior probability) criteria being optimized by these methods are

highly non convex functions of their parameters and avoiding convergence to distinctly inferior
local optima is a problem (see Ghosh and Chinnaiyan 2002). Furthermore for large data sets,
such as those derived from gene expression microarrays, the very large number of associated
model parameters causes severe computational and statistical estimation di¢ culties. Therefore,
specialized preprocessing and screening procedures are required to substantially reduce the size of
the problem to manageable proportion. Also, experimenting with various data transformations
is often required in an attempt to bring the data into conformity with the parametric model
(Yeung, Fraley, Murua, Raftery and Ruzzo 2001). COSA is distinguished from these methods by
its nonparametric formulation and computational feasibility on large data sets, thereby reducing
or eliminating dependence on customized preprocessing and screening procedures. It can be
used with hierarchical clustering methods, and it employs a search strategy using a particular
homotopy technique in an attempt to avoid distinctly suboptimal solutions.
Motivated by gene expression microarray data, several recent techniques have been proposed

to uncover clustering by directly modeling the (numeric) data matrix X = [xij ] 2 RN�n by
additive decompositions. Each additive term is interpreted as a cluster. Plaid models (Lazzeroni
and Owen 2000) treat the objects and attributes symmetrically. The data matrix is represented
by an expansion analogous to the singular value decomposition. The components of the singular
vectors for each term (�layer�) in the expansion are restricted to the two values f0; 1g. A value
1 (0) for the ith component of a left singular vector indicates that the corresponding ith row of
the data matrix does (does not) contribute to the clustering represented by that layer. Similarly,
a value 1 (0) for the jth component of a right singular vector indicates that the corresponding
column does (does not) contribute. Each layer is interpreted as modeling the data matrix after
subtracting the contributions of all previous layers. Gene shaving (Hastie, Tibshirani, Eisen,
Brown, Ross, Scherf, Weinstein, Alizadeh, Staudt and Botstein 2000) seeks to decompose the
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Figure 10: Attribute importances for each of the nine groups uncovered in the medical data set
shown on a square�root scale. Each of these groups tend to cluster on a relatively small subset
of the eleven attributes.
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Figure 11: Distribution of diagnosis indices (from mild dysplasia = 1 to invasive carcinoma =
5) within each of the nine clusters delineated (left to right) in Fig. 9. The median index value
for each group is shown along the abscissa. Each respective group corresponds to a relatively
narrow range of increasing index values, indicating a relationship between cluster membership
and disease severity.
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N � n data matrix into a set of smaller Nk � n matrices (1 � k � K, Nk << N) such that
within each the components of the row mean vector (averaged over the columns) exhibit high
variance. The rows within each such matrix are interpreted as clusters.
Although by no means the same, the underlying goals of all of these methods are somewhat

similar. As with all such methods, a major component is the particular heuristic search strategy
employed. Even with similar (or the same) goals, di¤erent search strategies have the potential
to reach quite di¤erent solutions representing di¤erent clustering structures, many of which may
be interesting and useful. The particular characteristics of the COSA method proposed in this
paper include the �crisp� or �hard� clustering of objects on possibly overlapping subsets of
attributes, the use of targets anywhere within the domain of each attribute to focus the search
on particular types of �interesting�structure, and as noted above, a homotopy technique based
on weighted inverse exponential distance to avoid suboptimal local solutions. We conjecture that
the use of the latter is crucial in �nding the weights for the attributes that de�ne the subsets for
each separate cluster of objects. The COSA technique can be used in conjunction with a wide
variety of (distance based) clustering algorithms, including hierarchical methods, each employing
its own particular encoder search strategy. As with any data analytic procedure, the validity
and usefulness of the output of di¤erent clustering methods can only be evaluated by the user
in the context of each particular application.
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