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Clustering of 770,000 genomes reveals
post-colonial population structure of
North America
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Despite strides in characterizing human history from genetic polymorphism data, progress in

identifying genetic signatures of recent demography has been limited. Here we identify very

recent fine-scale population structure in North America from a network of over 500 million

genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US

origin. We detect densely connected clusters within the network and annotate these clusters

using a database of over 20 million genealogical records. Recent population patterns captured

by IBD clustering include immigrants such as Scandinavians and French Canadians; groups

with continental admixture such as Puerto Ricans; settlers such as the Amish and

Appalachians who experienced geographic or cultural isolation; and broad historical trends,

including reduced north-south gene flow. Our results yield a detailed historical portrait of

North America after European settlement and support substantial genetic heterogeneity in

the United States beyond that uncovered by previous studies.

DOI: 10.1038/ncomms14238 OPEN

1AncestryDNA, San Francisco, California 94107, USA. 2AncestryDNA, Lehi, Utah 84043, USA. 3Department of Computational Medicine and Bioinformatics,

University of Michigan, Ann Arbor, Michigan 48109, USA. 4Department of Computational Biology, School of Computer Science, Carnegie Mellon University,

Pittsburgh, Pennsylvania 15213, USA. 5W.E.B. Du Bois Research Institute, Hutchins Center for African and African American Research, Harvard University,

Cambridge, Massachusetts 02138, USA. * These authors contributed equally to this work. Correspondence and requests for materials should be addressed to

C.A.B. (email: cball@ancestry.com).

NATURE COMMUNICATIONS | 8:14238 | DOI: 10.1038/ncomms14238 | www.nature.com/naturecommunications 1

mailto:cball@ancestry.com
http://www.nature.com/naturecommunications


F
ollowing the arrival of Columbus and his contemporaries,
population expansion in the Americas has proceeded at an
exceptionally rapid pace, with factors such as war, slavery,

disease and climate shaping human demography. Recent genetic
studies of the United States and North America have drawn
insights into ancient human migrations1,2 and population
diversity in relation to global population structure3–11. These
insights have been primarily drawn from modelling variation in
allele frequencies (for example, refs 11–15), which typically
diverge slowly. This may in part explain why these studies have
revealed little about population structure on the time-scale of
post-European colonization (1500–2000 AD) that is not directly
tied to pre-Columbian diversity within the Americas nor to ‘Old
World’ populations outside the United States.

In this study, we analyse genome-wide genotype data from
over 777, 000 primarily US-born individuals. Among all pairs of
individuals, we identify genetic connections defined by sharing a
recent common ancestor; when these connections are aggregated
into a network, our computational methods reveal densely
connected clusters, in which the members of each cluster are
subtly more related to each other. Using a unique collection of 20
million user-generated genealogical records, we annotate these
densely connected clusters to identify the putative historical
origins of such population substructure, and to infer temporal
and geographic patterns of migration and settlement. With much
greater granularity than previously possible, our analyses
demonstrate the impact of subtle, complex demographic forces
in shaping the patterns of genetic variation among contemporary
North Americans.

Results
Identity-by-descent inference. To investigate recent, fine-scale
population structure in the United States, we leveraged one of
the largest human genetic data sets assembled to date: genome-
wide genotypes of 774, 516 individuals born (96%) or currently
residing (4%) in the United States (Supplementary Table 1;
Supplementary Fig. 1). All individuals were genotyped at 709, 358
autosomal single-nucleotide polymorphisms (SNPs) using the
Illumina Human OmniExpress platform as part of the Ances-
tryDNA direct-to-consumer genetic test, and have consented
to participate in research (Methods). In this sample, we analysed
patterns of identity-by-descent (IBD)16, which have been
shown to reveal signatures of recent demographic history3,17–21.
If two individuals share an ancestor from the recent past, they
will likely carry one or more long chromosomal segments
inherited IBD from that ancestor. However, a practical difficulty
is that since few pairs of individuals share large amounts
of IBD due to shared ancestors in recent generations, such
data are very sparse. For example, due to recombination and
independent assortment, the probability that a particular posi-
tion in the genome is shared IBD by two descen-
dants sharing a single common ancestor four or more
generations ago is o1%. Our large data set overcomes this
limitation; even though only 0.2% of possible IBD pairs in our
sample share 412 cM total detected IBD, in aggregate we
estimated over 500 million such pairs, providing a rich data
source for demographic inference.

Hierarchical clustering and spectral analysis of IBD network.
Our first indication that demography could be inferred from
genomic sharing among present-day Americans was the rela-
tionship we observed between US geography and the projection
of state-level IBD summary statistics onto their first two principal
components (PCs); PC 1 is correlated with north-south geo-
graphy, and PC 2 is correlated with east-west (Fig. 1;

Supplementary Data 1). Following this initial observation, we
turned to using IBD to discover previously unidentified popula-
tion structure. Similar in some respects to Gusev et al.16, and
based on principles developed in machine learning and statistical
physics, we used a model-free approach to learn structure in a
network22–24. We hypothesized that structural features of this
network could be related to population demography16,25–27,
analogous to the common use of PC analysis (PCA) to infer
structure from genetic polymorphism data without specifying a
demographic process11,14. To define the IBD network as a graph
(Fig. 2a), each individual is represented as a vertex, and IBD
between each pair of individuals is represented as an edge. We
applied a weight function to each edge, setting the edge weight
40 only if the estimated total IBD was 412 cM (Supplementary
Fig. 2). This choice allowed us to focus on IBD corresponding to
more recent demography while reducing spuriously identified
IBD28. On the basis of this choice, 769,444 (99.3%) of the vertices
(individuals) formed a completely connected network; the
remaining 0.7% of samples could correspond to populations
poorly represented in our sample, and they were not included in
our subsequent analyses.

We took a simple, hierarchical clustering approach to infer
structure in the IBD network by recursively identifying disjoint
sets that maximized the modularity22,23,29. Informally, maxi-
mizing the modularity partitions the network so that a relatively
large amount of IBD is contained within each of the parti-
tions (Fig. 2b). In the top level of the hierarchical clustering,
99.9% of the IBD network (768,758 out of 769,444 vertices) was
subdivided into only six clusters; of these, five each contained
over 10,000 individuals. The rest of the network was assigned to
many small clusters (at most 101 members). Since these small
clusters were difficult to interpret and may correspond to
subpopulations that have poor representation in our database,
or to unusually over-represented families, we did not investigate
them further.

To examine finer-scale population structure, we formed five
sub-networks corresponding to the five largest clusters, then
partitioned these sub-networks using the same clustering
algorithm. We complemented this two-level clustering with a
spectral dimensionality reduction technique for network
data24,26,30. This yielded a low-dimension representation of the
IBD network structure, analogous to PCA applied to genetic
polymorphism data. We took a simple approach to infer
population structure from the spectral dimensionality reduction
by projecting all samples labelled by the hierarchical clustering
onto this low-dimensional embedding, then using this data
visualization to extract further clusters. These clusters, which we
refer to as ‘stable subsets,’ are subsets that project away from the
origin in the spectral embedding, and represent unusually
disconnected parts of the network (Fig. 2c; Supplementary
Figs 3–5). While the hierarchical clustering identifies network
structure underlying systematic patterns of variation in IBD,
including continuous variation (for example, due to isolation-by-
distance), visualizing this structure via the spectral analysis allows
for isolation of the more discontinuous components of variation
in IBD that putatively reflect genetic sharing originating from
discrete populations (see Supplementary Fig. 6 for an illustration
of these principles in a simulated data set). The results of this
hierarchical clustering and the accompanying spectral analysis are
summarized in Table 1 (see Supplementary Data 2 for a more
detailed summary), and are the focus of our discussion as they
most strongly demonstrate the connection between IBD and
population structure. In examples below, we highlight the
distinction between the hierarchical clustering and stable
subsets. When the distinction is unimportant for the discussion,
we refer to both generally as clusters.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14238

2 NATURE COMMUNICATIONS | 8:14238 | DOI: 10.1038/ncomms14238 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


Historical annotation of clusters. Given the IBD network clus-
tering identified by hierarchical clustering and spectral analysis,
we used a combination of admixture estimates and genealogical
data to annotate these clusters and connect them to recent, fine-
scale demography in North America (Fig. 2d,e). First, we esti-
mated admixture proportions in 20 global populations from the
genotypes using ADMIXTURE12 (Supplementary Figs 7–11;
Supplementary Table 2). Characterization of the clusters with
respect to this estimated worldwide population structure is
summarized in Table 1. Second, user-generated pedigree data
linked to a large proportion of individuals in the data set provided
birth dates and locations the ancestors of cluster members
(Supplementary Figs 12–17). Such data allowed us to understand
the ancestral history of individuals assigned to identified clusters,
in particular suggesting birth locations that were over-represented
at particular time periods in the pedigrees of individuals assigned
to each cluster (Fig. 3; Supplementary Figs 18–21). The cluster
names in Table 1 and Fig. 3 were drawn from statistical
summaries of these admixture and genealogical data.

Discussion
Taken together with the IBD network clustering results (Table 1),
the visualizations of the genealogical data in North America
(Fig. 3) highlight broad-scale demographic trends, as well as
patterns specific to individual populations. While no two iden-
tified clusters have identical demographic histories, for conve-
nience of discussion we divide the clusters into four broad
categories, and present examples of each. The first grouping,

which we label as intact immigrant clusters, are likely driven by
population structure present before immigration that may have
been maintained post immigration. These clusters often feature
over-representation of a particular global admixture proportion,
localized ancestral birth locations at both the source and
destination of immigration, and genetic differentiation (FST)
comparable to those of the source populations. We label the
second grouping as continental admixed groups, the majority of
which represent Hispanic/Latino populations. While these
clusters all display a characteristic genetic mixture from two or
more continents, admixture proportions alone do not distinguish
them. Instead, we find that ancestral birth locations, primarily
from outside current US boundaries, reveal the groups’ more
recent origins. The vast majority of our samples are contained in
the third set of clusters, which we label as assimilated immigrant
groups. Although these clusters typically feature almost exclu-
sively mixed European ancestry and very low genetic differentia-
tion between one another, they can be distinguished primarily by
geographic localization of their ancestral birth locations within
the United States. Finally, the fourth set of clusters we label as
post-migration isolated groups; these groups have historically
resided in small or geographically isolated communities within
the United States, and are distinguished by stable subsets within
the IBD network, suggesting that reduced gene flow with
neighbouring groups may have contributed to the identified
structure.

The first grouping, intact immigrant clusters, can be attri-
buted to population structure existing prior to immigration to
the United States. Despite subsequent admixture following
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Figure 1 | Two-dimensional projection of US states based on cross-state IBD. Principal components (PCs) are computed using kernel PCA, in which the

kernel matrix is defined by total IBD between pairs of states, normalized to remove the effect of variation in within-state IBD. US states that share high

levels of IBD on average are placed closer to each other in the projection onto the first two principal components. The area of each circle is scaled by

number of self-reported birth locations in the state (Supplementary Fig. 1). US states are coloured by geographic region (Northeast, South, Midwest and

West). Maps were generated with the maps R package using data from the Natural Earth Project (1:50m world map, version 2.0). These data are made

available in the public domain (Creative Commons CC0).
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immigration, we found clusters corresponding to Finnish,
Scandinavian, Jewish and Irish ancestries—all groups who
immigrated to the United States in large numbers within the
past 150–200 years—as well as African Americans and indivi-
duals with Polynesian ancestry (labelled Hawaiian). Although
identification of these clusters was based solely on our IBD
clustering approach, their relationship to these immigrant groups
is demonstrated by their association with respective global
ancestries estimated using a simple, frequency-based model12

(Table 1). (Note that, since the OmniExpress genotyping chip
better captures European genetic variation, IBD detection may be
less accurate for non-European populations, and therefore the
association with global population structure could be partly
driven by large population-level differences in allele frequencies).
We further verify the identity of these clusters by examining
ancestral birth locations within the pedigrees of cluster members.
Births are generally over-represented within the expected
geographic origin of the cluster; for example, ancestral birth
locations associated with the Irish cluster are predominantly
found in Ireland (Supplementary Fig. 20), and Scandinavian
cluster birth locations are disproportionately found in Norway
and, to a lesser extent, Sweden and Denmark (Supplementary
Fig. 20). An exception is the African American cluster, which is
not associated with West African birth locations; this is
unsurprising given the lack of genealogical records tracing back
to Africa. The majority of these groups also show evident
geographic localization within the United States (Fig. 3),
corresponding to known migration patterns; for example, the
Scandinavian and Finnish clusters are concentrated in the
Midwest31, while the African American cluster closely coincides
with regions of high self-reported African ancestry32. Reinforcing
the connection between IBD clustering and global population
structure, we observe that the degree of disconnectedness in the

IBD network often correlates strongly with amount of admixture
(Supplementary Fig. 22; Jewish r2¼ 0.97, Finnish r2¼ 0.67). Also,
FST (which measures differentiation in common genetic variation)
between the Jewish, Irish, Scandinavian, Finnish, Hawaiian and
African American clusters (FST¼ 0.001–0.084; Supplementary
Table 4 and Supplementary Discussion) closely matches FST
estimated from comparable worldwide populations sampled from
the geographic locations representing these population’s origins
(for example, refs 5,33,34).

We highlight two additional immigrant clusters with clear
geographic concentrations both within and outside the United
States: Acadians and French Canadians. During the mid 18th
century, Acadian residents (modern-day Atlantic Canada) were
expelled by the British and took refuge in various colonies,
eventually including Louisiana, then under Spanish control35. On
the other hand, in the late 19th century, large numbers of French
Canadians left rural Quebec in search of economic opportunities
in New England and the northern United States36. We identified
two clusters in the IBD network likely corresponding to these
distinct descendant groups (Table 1). Pointing to their common
origins, these two clusters overlap substantially in the spectral
analysis, though they can each still be identified as stable subsets
(Supplementary Fig. 4). The genealogical data allow us to
corroborate both the shared and unique portions of these migra-
tory histories with exceptional detail, highlighting the historical
forces that may have led to the enrichment of IBD within these
clusters (Fig. 4). As a final point, the low genetic differentiation
(FST¼ 0.001) between these groups, and their nearly indistin-
guishable admixture proportions, illustrates that standard
methods may have difficulty separating them as we do here.

Next, we identified continentally admixed clusters, including
Colombians and groups in Central America and the Caribbean,
labels which are primarily inferred from the ancestral birth
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locations of cluster members. While these groups all display a
characteristic signature of ancestry from multiple continents, it is
difficult to distinguish among them using only global admixture
proportions. Several genetic studies have sought to identify
genetic structure within the Caribbean and Central America6–10.
However, none have been able to confidently distinguish these
groups based on genetic data alone, likely due to their high shared
levels of Native American, European and, in some cases, West
African ancestry, with only subtle levels of population
differentiation between them (FST¼ 0.001–0.011; Supplementary
Table 4). This example again highlights the power of using IBD to
identify recent population structure.

It should be noted that, in some cases, the clusters we identify
using IBD could be more reflective of US immigration patterns than
inherent structure within source locations10. For example, two of the
Mexican clusters we identified are annotated with birth locations
most concentrated in Jalisco and Monterrey, the predominant
traditional sources of emigration to the United States37,38. The over-
representation of West Mexican birth locations in southwestern
United States and Northeast Mexican birth locations in Texas,
particularly South Texas in recent generations (Supplementary
Figs 20,23), confirms known patterns of migration from eastern
versus western Mexico to the United States37. Such genetic
structure, particularly as it relates to Mexican migration to the
United States, has not yet been identified from genetic data.

The five largest clusters (third set of rows in Table 1), which we
describe as assimilated immigrant clusters, account for a large

portion (60%) of the IBD network and exhibit a markedly
different profile. Lacking distinctive affiliations to non-US
populations, they show almost no differentiation in allele
frequencies (FST at most 0.001; Supplementary Table 5) and high
levels of IBD to non-cluster members (Supplementary Data 2),
suggestive of high gene flow between these clusters. Moreover,
few members of these clusters could be assigned to a stable subset,
indicating that this clustering is largely driven by continuous
variation in IBD. Genealogical data reveal a north-to-south trend
(Fig. 5), most consistently east of the Mississippi River (Fig. 3).
These findings imply greater east-west than north-south gene
flow, which is broadly consistent with recent westward expansion
of European settlers in the United States, and possibly somewhat
limited north-south migration due to cultural differences. While
the precise numbers and boundaries of these clusters are not
necessarily meaningful and may be partly driven by the
assumption that inter-cluster connectivity follows a random
graph model39,40, these findings demonstrate that isolation-by-
distance, and specifically geography in the continental United
States, can be captured from IBD alone.

Finally, we identified several clusters corresponding to post-
migration isolated groups—historical groups who, despite
possibly maintaining high levels of diversity and gene flow, likely
experienced some geographic or cultural isolation during or
following migration to the United States. One such cluster
represents the Amish, a distinct ethno-religious minority that first
arrived to the United States from Europe in the 18th century41;

Table 1 | Summary of IBD network clustering.

Cluster Samples Birth location 1000 Global admixture proportions

Annotations Genomes Admixture Statistic In (%) Out (%)

African Americans* 44,966 172,087 ASW, ACB West Africa40.5 95 1.2

European Jewish* 26,547 261,655 — Jewish40.1 99 0.4

Irish* 20,747 222,198 — Celtic40.25 93 21

French Canadians* 9,689 363,916 — Westþ South Europe40.75 88 72

Acadians* 6,615 204,131 — Westþ South Europe40.75 83 72

Scandinavians* 4,189 97,496 — Scandinavia40.2 96 14

Portuguese, including Azores and Madeira Is.w,z 3,468 32,703 — Iberian40.1 66 12

Finnish* 1,687 29,850 FIN Finland and NW Russia40.2 97 0.2

Hawaiians* 583 4,715 — Polynesia40.2, Asia East40.2 94, 35 0.1, 0.7

Northeast Mexico* 6,311 61,391 — Iberian40.1 and Nat. Am.40.1 81 3

New Mexicans* 5,291 65,236 — Iberian40.1 and Nat. Am.40.1 79 4

West Mexico* 1,356 5,924 MXL Iberian40.1 and Nat. Am.40.1 90 4

Caribbeans* 9,315 73,274 PUR Iberian40.1 84 11

Dominicans*,y 779 1,698 — Iberian40.1 and W. Africa40.1 80 1

Central Americans*,|| 1,407 6,971 — Iberian40.1 and Nat. Am.40.1 80 4

Colombians*,|| 710 3,261 CLM Iberian40.1 and Nat. Am.40.1 88 4

Lower Midwest and Appalachiansw 108,786 4,131,104 — West Europe40.75 87 56

Northeast and Utahw 99,315 4,088,040 — West Europe40.75 80 57

Upland Southw 93,305 3,341,813 — West Europe40.75 88 56

Pennsylvaniaw 80,754 2,370,273 — West Europe40.75 71 59

Lower Southw 77,581 2,608,314 — West Europe40.75 88 57

Utahz 4,519 283,911 CEU West Europe40.75 96 61

Mennonitesw,z 2,139 52,216 — West Europe40.75 70 60

Appalachiansz 2,048 87,725 — West Europe40.75 99 61

Amishz 1,067 42,903 — West Europe40.5 94 74

ACB, African Caribbean in Barbados; ASW, people with African Ancestry in Southwest USA; CEU, Utah residents with Northern and Western European ancestry; CLM, Colombians from Medellin,

Colombia; FIN, Finnish in Finland; MXL, Mexican ancestry from Los Angeles; Nat. Am., Native American; PUR, Puerto Rican.

Rows are grouped to coincide with the discussion. Admixture statistics are expressed as d4x, Pin%, Pout%, meaning that Pin% individuals assigned to the cluster and Pout% outside the cluster have

estimated admixture proportions for ancestral population d4x. The ‘1000 Genomes’ column summarizes population labels of any 1000 Genomes samples that project onto the same stable subsets

defined in spectral embedding (Fig. 6; Supplementary Figs 4,5). See Supplementary Data 2 for a more detailed summary of the clustering results, including definition of the population labels (d).

* A stable subset including more than 5% of a hierarchical cluster.

wA hierarchical cluster in which no detected stable subset includes more than 5% of the cluster.

z Interpretation of cluster is uncertain; label represents our best estimate.

yDominicans cluster is contained within Caribbean cluster.

|| Not shown in Fig. 3.

zA stable subset accounting for less than 5% of a hierarchical cluster.
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the genealogical data associated with the Amish cluster pinpoint
individual counties in Midwestern states and Pennsylvania with
present-day Amish communities (Fig. 3; Supplementary Fig. 20).
The clustering of IBD in Utah is most likely attributed to

population growth of descendants of Mormons, who settled in
Utah in the mid-1800s (ref. 42; Supplementary Figs 20,24).
In addition, we identified a cluster concentrated near the
Cumberland Mountain range that is suggestive of residents
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of Appalachia, people who experienced delayed economic
development and regional isolation up until the 20th
century43,44. We emphasize that identification of IBD clusters

coinciding with distinct historical groups does not imply they
are ‘genetic isolates’; these groups still could have maintained
high levels of diversity and gene flow. We also stress that these

6–9 Generations ago (1649−1791 AD) 3–5 Generations ago (1785−1878 AD) 0–2 Generations ago (1882−1962 AD)
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Figure 4 | Genealogical data traces origins of Cajuns/Acadians in Atlantic Canada (blue) and migration of French Canadians (magenta) to the US.

Map locations are plotted if OR410 within the indicated range of pedigree generations (date ranges give the 5th and 95th percentiles of birth year

annotations). Points are scaled by number of pedigree annotations, separately for each of the six maps. Note that not all current political borders are shown.

See Fig. 2 for more details. Maps were generated with the maps R package using data from the Natural Earth Project (1:50m world map, version 2.0). These

data are made available in the public domain (Creative Commons CC0).
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clusters are not necessarily representative of the entire population
suggested by our labelling.

Our discussion thus far has centred on a simple two-level
clustering of IBD and related stable subsets identified within the
top 40 eigenvectors in the Laplacian matrix. An unresolved issue
common to both hierarchical clustering and spectral analysis is
that stopping criteria are not well established: when to stop
subdividing clusters in hierarchical clustering and how many
dimensions to analyse in spectral analysis. While stopping
conditions have previously been proposed for both methods22,24,
our experience with these data suggests these criteria either do not
apply or do not work well in this context (Supplementary
Materials for additional discussion of this topic). We expect
that with more data, it will be possible to continue to improve
the resolution of our clustering. Indeed, additional clusters
informative of population structure emerged when we proceeded
to the third level of the hierarchical clustering (Supplementary
Figs 25–27). For example, additional clustering discriminated
Italians, Scottish, Norwegians and Eastern Europeans, and yielded
fine-scale geographic structure in Ireland (Supplementary
Fig. 26), the southern United States (Supplementary Fig. 27),
and on the Island of Puerto Rico (Supplementary Fig. 21).
However, since the clustering of successively smaller sub-
networks is complicated by several factors, including the rapid
decline in IBD signal, interpretation of these clusters requires
additional validation.

Finally, for additional validation of our demographic inferences
and methodology, we estimated IBD among individuals in a
publicly available genetic data set—1,816 genotype samples from
the 1000 Genomes Project33. We then compared the expert-
provided population labels accompanying these samples against
their projection onto the spectral embedding generated from the

AncestryDNA genotype data (Fig. 6; Table 1; Supplementary
Figs 4,5; Supplementary Table 3). We found that 1000 Genomes
samples from Finland (FIN, Finnish in Finland) projected onto
the same region as our identified ‘Finnish’ cluster (Fig. 6b), and
Puerto Rican (PUR) samples projected onto our identified
‘Caribbeans’ cluster (Supplementary Fig. 4). As another
example, many 1000 Genomes samples with Mexican ancestry
from Los Angeles (MXL) projected onto the West Mexico cluster
(Supplementary Fig. 4), supporting the possible connection
between identified clusters and sources of Mexican immigration
to the United States. Finally, European-descent samples collected
in Utah (CEU, Utah residents with Northern and Western
European ancestry) also projected onto the Utah cluster we
identified (Supplementary Fig. 5). This analysis underscores that
the population structure we identified from IBD data corresponds
in several cases to structure that has been well characterized in
other data sets.

We have demonstrated that patterns of IBD can be used to
infer population structure indicative of very recent, documented
historical patterns. Some of this population structure has been
previously identified using genetic data, whereas the genetic
separation of other groups of historical importance—such as
regions of Mexico corresponding to different sources of US
immigration, and the New Mexican cluster corresponding to the
Nuevomexicanos, European colonial settlers from New Spain45—
is a major contribution of this work.

While IBD is clearly a rich data source for detecting subtle
genetic differentiation, it is also subject to inherent limitations
requiring large, unbiased sample collections. For example, the
inclusion of a small number of Jamaicans in the Portuguese
cluster (Fig. 3) defies any documented historical explanation that
we could identify and most likely arises from fitting clusters to a
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small number of genetic connections; this illustrates that robust
clustering of IBD requires large samples. Also, although our
results recapitulate much recent demography in the United States
and North America, we do not identify known structure in the
United States among some present-day immigrant and other
groups that are poorly represented in our sample, such as
Southeast Asians and Chinese. This suggests that additional
structure will emerge with larger and more diverse samples.

Our interpretation of the IBD network clustering partially
relied on genealogical data generated by individuals who
have taken an AncestryDNA test. These genealogies are in part
biased by the type and scope of historical records made avail-
able at Ancestry.com, as well as by user generation of these
data. In the supplement, we briefly discuss some of the challenges
and possible limitations in using genealogical data collec-
tions to interpret population structure. Several challenges include
missing data (for example, Jewish genealogical records from
many parts of Europe), and the fact that using measures of
pedigree over-representation to characterize clusters may omit
areas of relevance to a particular population if they are less
distinctive (for example, Northern US cities do not feature
prominently as over-represented in the African American
cluster even though African Americans are historically well
established in many of these cities). Despite such challenges, the
scale and diversity of these data—322,683 pedigrees linked
to genotyped samples in the United States alone and over
20 million total pedigree annotations—allow us to infer detailed
historical portraits of the identified clusters, and would have
been difficult to achieve by curation from professional genealo-
gists. The geographic patterns of the clusters revealed by
this data demonstrate that user annotation errors are over-
whelmed by the abundance of high-quality information for
annotation.

Our main methodological contribution was to demonstrate
that existing network analysis techniques can be leveraged to
uncover extensive, fine-scale population structure of histo-
rical relevance from IBD data. Similar ideas have been explored
in previous research16,25–27. In our work, we investigated the
benefits and limitations of two complementary approaches to
analysing IBD network structure. Both approaches can be rapidly
applied to large networks, provided that the networks are
sparsely connected. The first approach was based on partition-
ing the network to approximately maximize the modularity
measure22,23,29. This approach automatically detected interesting
population structure, but did not provide control over the
number of clusters. The second approach was based on spectral
analysis techniques24,26,30. A key feature of this approach is that it
provided a low-dimensional representation of network structure,
potentially overcoming the unnatural assumption that each
sample belongs to a single cluster. Our method for extracting
discrete clusters, or ‘stable subsets,’ from the spectral analysis was
motivated by the need to implement a practical solution to
summarizing the network structure, analogous to the use of PCA
to identify clusters (for example, refs 15,46).

Hierarchical clustering based on variation in haplotype
frequencies, such as that implemented by fineSTRUCTURE13,
has also recently yielded new findings into fine-scale popu-
lation structure47,48. Since it is best suited to smaller genetic data
sets (o10,000 samples), and scales poorly to large samples,
fineSTRUCTURE should be viewed as complementary to our
approach, which is expected to be most successful when applied
to very large cohorts due to the sparseness of IBD data. Although
our study focused on the pattern of genetic connections defined
by long IBD segments suggestive of recent common inheritance,
in principle these same techniques could be used to recover
structure from connections representing more distant common

ancestry provided that the shorter IBD segments are still
estimated with high accuracy.

In summary, the discovery of fine-scale structure from IBD
has highlighted detailed substructure of the United States, and
a demographic portrait that is remarkably consistent with
geography and post-European colonization of North America.
In addition to demographic insights, the identification of clusters
corresponding to genetically differentiated groups may aid in the
development of targeted biomedical research cohorts. For
example, we find clear examples in our data where disease-risk
variants are present at higher frequencies in identified clusters
(Supplementary Table 6); these include a risk allele for prostate
cancer49 that has a frequency of 5.6% in the African American
cluster but is very rare (0.1%) outside the cluster, and a protective
allele for squamous cell lung carcinoma50 that is 10 times more
common in the Finnish cluster. It is likely that a more
comprehensive examination of disease-related genetic variation
in some of the less well-characterized clusters that we identified
may provide novel insights into fine-scale patterns of genetic
disease risk in the US population.

Methods
Sample collection. All AncestryDNA samples included in this study were col-
lected from AncestryDNA customers, who have agreed to the informed consent for
the Independent Review Board approved Ancestry Human Diversity Project
(Quorum Review #26168/1)—an AncestryDNA sponsored research project.
Samples obtained from external sample collections were included only in the
ADMIXTURE reference panel and were used in accordance with any applicable
restrictions. Following sample quality-control steps described in Supplementary
Methods, we obtain a final panel of 774,516 genotyped samples consented to
participate in research. Consult Supplementary Methods for more details on
sample collection procedures.

Genealogical data. We compile statistics from pedigree data linked to genotyped
individuals to better understand the historical and geographical context for the IBD
clustering. After quality-control steps (Supplementary Methods), we obtain a final
set of 432,611 genotyped samples linked to non-private pedigrees. We only include
pedigree nodes corresponding to ancestors of the genotyped individuals. We use
two types of information in our analyses of associated pedigree data: birth year and
birth location (longitude and latitude). Among DNA samples linked to pedigrees,
322,683 (96% of reported birth locations) were born in the United States, 13,748
(4% of reported birth locations) were born outside the United States and 96,180
(22% of all DNA samples linked to pedigrees) have unreported birth locations. See
Supplementary Methods for additional details.

Genotyping. Customer saliva sample accessioning, DNA extraction, and geno-
typing were completed by the Illumina FastTrack Microarray Services labs.
Customer genotype data for this study was generated using the Illumina Human
OmniExpress platform. This genotyping array assays 730,525 SNPs (709,358 SNPs
are on autosomal chromosomes) and small indels across the genome. The SNPs on
this array were carefully selected to capture the majority of common genetic var-
iation in European and other worldwide populations. (Note that genotype data on
sex-linked chromosomes are not used in this study). Genotypes were called by
Illumina technicians using the GenomeStudio platform.

Genotype quality-control procedures. We perform extensive quality-control
checks for each processed AncestryDNA customer sample. We have developed an
almost entirely automatic workflow to signal problematic genotype samples. This
process includes the following steps: (1) identifying and removing any duplicate
samples (these samples are possibly identical twins); (2) identifying and removing
samples with a per-sample call rate o98%, since low call rate can be indicative of
either a poor-quality DNA sample or a technical failure in the genotyping array;
(3) identifying discrepancies between gender inferred from the DNA sample and
self-reported gender recorded by the customer during test activation; and (4)
flagging an unusually high rate of genotype heterozygosity, which can indicate
sample cross-contamination. We tolerate small numbers of samples failing checks 3
and 4. Additional tests are applied to each batch of 96 samples on a genotyping
plate to identify and remove cases of large-scale laboratory mistakes such as
incorrect plate rotation. If more than two samples on a single plate have mis-
matching genders or high heterozygosity, the entire plate of samples is withheld for
manual examination. Samples that pass all quality-control tests proceed to the
analysis pipeline; samples that fail one or more of the above tests must be collected
again from customers, or manually cleared for analysis by lab technicians.
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SNP quality-control procedures. As these data were generated over a period of 3
years, the DNA product has gone through three revisions, mainly due to beadpool
depletion and updates to array geometry. To minimize the impact of different
versions of the array on any inferences made from the genotype data, we have
developed a versioning quality-control procedure. Briefly, we re-genotype a
collection of 180 reference samples for each new array version, and assess
genotyping performance in terms of SNP presence/absence, genotype call rate and
genotype discordance. If a SNP fails at least one of these assessments for a parti-
cular version of the array—for example, the SNP is absent due to probe dropout in
re-manufacturing, its call rate is o95%, or its genotype discordance is 41%—the
genotypes for that SNP are treated as missing for all samples processed on this
version of the array. In the worst case, the genotypes of B2.6% SNPs were treated
as missing. Any genotypes treated as missing were later imputed (see below).

Genotyping phasing. Our method for phasing genotypes is similar to BEAGLE51,
but with substantial improvements to achieve high phasing accuracy on a large
scale. Our strategy is to first learn BEAGLE haplotype models from a reference
panel of 217,722 genotype samples previously phased at 633,299 autosomal SNPs,
which includes 558 phased samples from Phase 1 of the 1000 Genomes project34,51,
then we use these models to quickly phase new samples. See Supplementary
Methods for details on design of the phasing reference panel, modifications to
BEAGLE to accommodate large data sets, and empirical evaluation of the phasing
algorithm.

Detecting IBD. For computational scalability, we have developed our own dis-
tributed-processing implementation of the GERMLINE algorithm52 to detect long
chromosome segments suggestive of inheritance from a recent common ancestor
(‘IBD segments’). We apply this method to the phased genotypes to detect pairs
with total shared IBD 45 cM. Although other methods have been developed for
accurate detection of IBD53, most of these methods scale quadratically with the
number of samples, hence are not suitable for our data. GERMLINE has been
shown to be particularly inaccurate for IBD segments o4 cM28, but this is less of a
concern here since these short IBD segments contribute little or no weight to the
IBD network.

Our algorithm produces the same output as GERMLINE, but offers two
computational advantages that allow us to efficiently handle hundreds of thousands
of phased genotypes: first, it distributes the computation over a Hadoop compute
cluster; second, it stores the phased genotypes in a database so that new samples
can be efficiently compared with previously processed samples. The inputs to our
GERMLINE implementation are the phased genotypes, and the genetic distances
(in cM) between consecutive pairs of SNPs. (We use interpolated HapMap genetic
distances54). The algorithm output reproduces the same result as GERMLINE 1.5.1
with the following command-line arguments: germline -bits 96 -err_hom

0 -err_het 0 -min_m 5. In an effort to reduce computational cost and the rate
of false positives in identifying IBD segments 45 cM among all pairs of 4700,000
individuals, we set the ‘bits’ parameter to a value slightly larger than some have
recommended55, and we do not tolerate homozygous or heterozygous mismatches.
The empirical distribution of IBD grows exponentially with decreasing IBD length,
as expected (Supplementary Fig. 28).

Visualizing geographic patterns of IBD. To get an initial suggestion that IBD in
our large, un-curated sample might be informative of demography within the
United States, in a preliminary phase of our study we compiled IBD statistics
aggregated by US state, in which samples are assigned to states based on self-
reported birth location. More precisely, we tabulate the total amount of IBD shared
by individuals born in the same state (‘within-state IBD’) and between states
(‘cross-state IBD’) from 322,683 genotypes with self-reported US birth locations.
We only count pairs if total IBD is412 cM. To summarize the state-level IBD data
in a single figure (Fig. 1), we use kernel PCA56, implemented in R package
kernlab57. We project US states onto the first two PCs, in which the kernel matrix is
defined by total cross-state IBD, normalized to eliminate the effect of variation in
total within-state IBD on the projection. More precisely, we define an n� n kernel
matrix with entries K(i, j)¼ t(i, j)/{d(i) d(j)}1/2, where n¼ 51 is the number
of states including Washington, DC, t(i, j) is the cross-state IBD for iaj and
within-state IBD for i¼ j, (Supplementary Data 1), and d(i)¼ t(i, 1)þ t(i, 2)
þyþ t(i, n) is the total IBD between state i and all other states, including within-
state IBD t(i, i).

Estimating admixture proportions from genotype data. Based on an indivi-
dual’s genotypes at 112,909 SNPs, we estimate the proportion of their genome that
is attributed to different ancestral populations. We have subdivided the global
human population into K¼ 26 regions (Supplementary Fig. 7; Supplementary
Table 2). We use the program ADMIXTURE12, together with a curated reference
panel of 3,000 putatively single-origin (‘labelled’) genotype samples, to jointly
estimate admixture proportions in the unlabelled customer samples from their
genotypes. This panel includes 855 samples from the Human Genome Diversity
Project58,59, samples from a proprietary AncestryDNA reference collection, and
putatively single-origin samples from consenting AncestryDNA customers.

To validate our admixture estimates against public collections where the
genotype samples have been annotated by experts, we estimated admixture
proportions in 1,043 Human Genome Diversity Project (HGDP) samples (of which
855 are also included in the reference panel) and 1,816 unrelated samples
genotyped as part of the 1000 Genomes project33 using the Illumina OMNI 2.5M
genotyping chip. (Note that none of these 1000 Genomes samples are included in
the reference panel). These results are summarized in Supplementary Data 3.
Overall, the admixture estimates align closely with the expert-provided population
labels; that is, individuals are assigned higher proportions in the appropriate
ancestral populations. For example, the Han HGDP samples are attributed 86–96%
to the Asia East population. Many of these test samples are expected to be admixed
(for example, ASW and MXL), and exhibit admixture in the expected proportions.
Two of the defined ancestral populations, ‘Mali’ and ‘European Jewish’, could not
be validated from these data because these ancestral populations contribute at most
a small proportion to any of the test samples. We note that admixture proportions
for populations that are less genetically differentiated, such as Great Britain and
Europe West, are expected to exhibit less accurate admixture estimates using
ADMIXTURE; these are typically combined in our calculations when reporting
final admixture statistics for each cluster (Table 1; Supplementary Data 2). Finally,
since few samples included in our IBD analyses have large contributions from
individual West African ancestral populations, we collapse admixture proportions
for all West African regions into a single statistic, for a total of 20 reported
populations. Consult Supplementary Methods for more details on design of the
reference panel, selection of SNPs for admixture calculations, and ADMIXTURE
parameter settings.

Constructing the IBD network. To define the IBD network, we apply a weight
function, w[e(i, j)] E [0,1], to each edge e(i, j). We define w[e(i, j)] as the proportion of
total IBD lengths observed in simulated genotypes that are due to relationships
separated by at most eight reproductive events, or meioses (corresponding to com-
mon ancestors at most four generations back), although it may reflect more distant
relationships for subpopulations that conform less closely to our simulations. This
empirical distribution is fit to the Beta cumulative density function, and this fitted
distribution (with scale parameters a¼ 2, b¼ 200) defines the weights for all edges in
the network (see Supplementary Fig. 2 for more details). We remove all edges cor-
responding to pairs with total IBD o12 cM since they signal the target familial
relationships o6% of the time, and therefore contribute little weight to the network.
See Supplementary Methods and Supplementary Figs 29,30 for a description of the
simulations, and a detailed rationale for this choice of edge weight function.

Hierarchical clustering of IBD network. To identify network modules, we employ
a simple and fast heuristic algorithm, the multi-level or Louvain method29,
implemented in the igraph R package60, which heuristically maximizes the
modularity by recursively merging subgraphs. (Note that the multi-level algorithm
internally generates a hierarchy as it iteratively optimizes the modularity, but we do
not use this internal hierarchy in our results). In an attempt to reduce clustering of
‘extended families,’ before running the clustering algorithm we remove all edges in
the network corresponding to total shared IBD 472 cM. Since this represents only
0.2% of all edges, removing these edges has little effect on our ability to detect
larger modules. In addition to the multi-level method, we tested two other
methods, both implemented in igraph, that have low computational complexity—
O(m), where m is the number of edges—and so could feasibly be applied to our
network: the Infomap method61, and the label propagation method of Raghavan
et al.62. Although all three provided similar higher-level clustering, only the multi-
level method was able to identify substructure within the portion of the network
that represents the vast majority of the sample—samples primarily of European
or African descent (African Americans). Even though the multi-level method
partitions this sub-network of 687,470 genotyped individuals into only two clusters,
no other tested algorithms were able to identify non-trivial structure within this
sub-network. This constitutes the main motivation for using the multi-level
community detection algorithm. See Supplementary Methods for more details,
including the procedure for recursively subdividing the IBD network using the
multi-level algorithm.

Spectral analysis of IBD network. The spectral analysis is based on the Laplacian
eigenmaps method30, which has close connections to spectral clustering24. Here we
briefly describe computation of the spectral embedding; our procedure for
identifying ‘stable subsets’ from the spectral embedding is described in the
Supplementary Methods. The Laplacian eigenmaps method is derived from a
spectral decomposition of the (normalized) Laplacian matrix, L¼D� 1/2 WD� 1/2,
where W is the n� n weighted adjacency matrix with entries W(i, j)¼w[e(i, j)],
and D is the n� n diagonal matrix in which diagonal entry D(i, i) is equal to the
degree of node i, or the sum of the edge weights w[e(i, j)] for individual i. Here we
defineW(i, i)¼ 1 for all i, so that there is always a nonzero probability of remaining
at the same occupancy state in a random walk of the graph24. We define the
spectral embedding as the first m eigenvectors of the normalized Laplacian. Here we
limit each spectral embedding to the top m¼ 40 eigenvectors, primarily for
manageability of the analysis procedure. We cannot use the ‘eigengap’ heuristic26
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to choose m because it only appropriate to use if the network contains
well-pronounced modules24, which is not the case here.

Once we have completed the spectral analysis of the completely connected
graph with 769,444 vertices, we compute a second spectral embedding from a
subgraph with 586,147 vertices that is obtained by first removing the small sets of
individuals and the clusters that project away from the origin in the initial spectral
embedding. This step is taken because the spectral decomposition captures the
most dominant modular structure in the network, and possibly obscures other,
more subtly disconnected subsets. Briefly, to define stable subsets, we visualize the
spectral embedding, labelled by the hierarchical clustering, and extract subsets with
the same label that project away from the origin. Using this method (described in
detail in the supplement and in Supplementary Fig. 31), we identify 18 stable
subsets from the spectral embedding (Supplementary Data 2): 10 in the initial
spectral embedding, and 8 more in the subgraph embedding. Projecting new
samples not included in the IBD network onto the spectral embedding—in
particular, the 1000 Genomes samples used as a validation—is described in the
supplement.

Historical and geographic interpretation of clusters. Once we have completed
hierarchical clustering and spectral analysis of the IBD network, we use the
available annotations to investigate how the clusters relate to demography. To
accomplish this, we identify features that distinguish members of the cluster, then
we deduce a likely demographic scenario from these distinguishing features. For
this analysis, we rely on two sets of features: (1) admixture proportions in 20 global
populations estimated from the genotypes; and (2) ancestral birth dates and
locations from pedigrees associated with some genotyped individuals. To simplify
the presentation of admixture summary statistics, some population labels used to
define the summary statistics are taken as combinations of ancestral populations;
for example, we define ‘Europe West’ as Ireland, Great Britain, Scandinavia, and
the region containing Germany and France.

We generate birth location maps by converting each birth location, within a
specified range of generations, to the nearest coordinate on a two-dimensional grid,
with grid points every 0.5� of latitude and longitude. Then, we count the number of
birth locations at each grid point. The location of each grid point plotted on the
map is the mean latitude and longitude over all the annotations assigned to that
grid point. By scaling the area of each grid point by the number of birth
annotations at that location, the maps yield population density estimates, and
highlight large urban areas, at different time periods in the United States and
Europe. All maps are produced in the same way, differing only in the granularity of
the grid and the scale of the plotted points. The distribution of ancestral birth
locations by generation recapitulate broad population trends in the United States
and in Europe, such as increasing concentration in urban areas over time, increases
in population density west of the Mississippi River reflecting westward expansion
of European settlement, and migration trends from Europe to the United States
(Supplementary Figs 16,17).

To discover geographic features characteristic of a given cluster, we compile
statistics from genealogical data specific to each cluster. Specifically, we compute,
for each grid point, the odds ratio (OR) for a given cluster—the odds that the grid
point is associated with a cluster member over the odds that the grid point is
associated with a non-member—then we visualize the distribution of map locations
with the largest odds ratios. One rationale for using the OR statistic is that it is
informative of cluster prediction accuracy; if we label all map locations with OR4x
as ‘ground-truth cluster locations’, then cluster assignments will yield a higher rate
of true positives (recovered ground-truth cluster locations) for larger x (assuming
the map location frequency remains the same). To highlight the geographic
concentration of individual clusters in Fig. 4, we plot only locations satisfying
OR4x, with x chosen separately for each cluster. All plotted map locations require
a minimum of 10 birth locations associated with cluster members. In some cases,
the geographic concentration of birth locations becomes more apparent when the
OR calculations are restricted to certain pedigree generations; for example, the
birth locations of ancestors 0–5 generations ago associated with the Utah cluster
are more highly concentrated in Utah, and other ancestral generations are more
dispersed across the eastern United States (Supplementary Fig. 24). Although this
strategy is useful for characterizing most clusters, in the Supplementary Discussion
we point out some limitations in using the genealogical data to interpret the
clusters. For example, our ability to accurately infer demographic trends depends
on the composition of the AncestryDNA database, and the availability of
genealogical records. Also, note that ORs are more relevant than evidence for
enrichment (for example, P value); for example, consider that we would often
expect strong evidence for enrichment in large US cities even when the OR is only
slightly 41 (for example, association of Chicago with African American cluster),
but these locations would provide relatively little information for interpreting the
cluster given that many other groups have typically settled in large US cities.

Genetic differentiation between clusters. We calculate pairwise FST to assess
genetic differentiation in common variation between clusters. We include 611,560
SNPs on autosomal chromosomes in the FST calculations, a subset of the 633,299
SNPs used in phasing that have genotype call rate 495% in the sample. We use the
ratio-of-averages formula that also adjusts for differences in sample size63.

Data availability. The HGDP58,59 genotype samples included in the ancestry
reference panel were obtained from the HGDP website (http://www.hagsc.org/
hgdp). 1000 Genomes Project Phase 3 (ref. 33) genotype samples that were used for
validation of admixture estimates and the spectral analysis were downloaded from
the NCBI FTP site (ftp://ftp-trace.ncbi.nih.gov/1000genomes). For the purpose of
ensuring reproducibility, we will share the IBD network topology, edge weights,
and cluster labels on request and subject to relevant data use policies. Although
we cannot make the genealogical and genotype data widely available to the
academic community in light of our commitment to our customers, we are
interested to pursue research collaboration opportunities. Please contact C.A.B.
(cball@ancestry.com) for guidelines on submitting a research proposal.
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