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Abstract A mechanism of formation of small-scale inhomogeneities in spatial
distributions of aerosols and droplets associated with clustering instability in the
atmospheric turbulent flow is discussed. The particle clustering is a consequence
of a spontaneous breakdown of their homogeneous space distribution due to the
clustering instability, and is caused by a combined effect of the particle inertia and
a finite correlation time of the turbulent velocity field. In this paper a theoretical
approach proposed in Elperin et al. (2002) Phys Rev E 66:036302 is further developed
and applied to investigate the mechanisms of formation of small-scale aerosol inho-
mogeneities in the atmospheric turbulent flow. The theory of the particle clustering
instability is extended to the case when the particle Stokes time is larger than the
Kolmogorov time scale, but is much smaller than the correlation time at the integral
scale of turbulence. We determined the criterion of the clustering instability for the
Stokes number larger than 1. We discussed applications of the analyzed effects to the
dynamics of aerosols and droplets in the atmospheric turbulent flow.
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1 Introduction

It is known that turbulence enhances mixing (see, e.g., [1–9]). However, numerical
simulations, laboratory experiments and observations in the atmospheric turbulence
revealed formation of long-living inhomogeneities in spatial distribution of aerosols
and droplets in turbulent fluid flows (see, e.g., [10–21]). The origin of these inhomo-
geneities is not always clear but their influence on the mixing can be hardly overesti-
mated.

It is hypothesized that the atmospheric turbulence enhances the rate of droplet
collisions (see, e.g., [18,22–25]). In particular, the turbulence causes formation of
small-scale droplet inhomogeneities, and it also increases the relative droplet velocity.
In addition, the turbulence affects the hydrodynamic droplet interaction. The latter
increases the rate of droplet collisions. These effects are of a great importance for
understanding of rain formation in atmospheric clouds. In particular, these effects
can cause the droplet spectrum broadening and acceleration of raindrop formation
[18,23]. Note that clouds are known as zones of enhanced turbulence. The preferential
concentration of inertial particles (particle clustering) was recently studied in numer-
ical simulations in [26–28]. The formation of network-like regions of high particle
number density was found in [28] in high resolution direct numerical simulations of
inertial particles in a two-dimensional turbulence.

The goal of this study is to analyze the particle–fluid interaction leading to the
formation of strong inhomogeneities of aerosol distribution due to a particle cluster-
ing instability. The particle clustering instability is a consequence of a spontaneous
breakdown of their homogeneous space distribution. As a result, at the nonlinear
stage of the clustering instability, the local density of aerosols may rise by orders of
magnitude and strongly increase the probability of particle–particle collisions.

It was suggested in [29–31] that the main cause of the particle clustering instability
is their inertia: the particles inside the turbulent eddies are carried out to the boundary
regions between the eddies by the inertial forces. This mechanism of the preferential
concentration acts in all scales of turbulence, increasing toward small scales. Later,
this was contested in [32,33] using the so-called “Kraichnan model” [34] of turbulent
advection by the delta-correlated in time random velocity field, whereby the clustering
instability did not occur.

However, it was shown in [35] that accounting for a finite correlation time of
the fluid velocity field results in the clustering instability of inertial particles. Note
that the particle inertia results in the compressibility of particle velocity field. The
effects of compressibility of the velocity field on formation of small-scale inhomo-
geneities in spatial distribution of particles were first discussed in [36,37]. In this study
a theoretical approach proposed in [35] is further developed and applied to inves-
tigate the mechanisms of formation of small-scale aerosol inhomogeneities in the
atmospheric turbulent flow. In particular, we extended the theory of particle cluster-
ing instability to the case when the particle Stokes time is larger than the Kolmogorov
time scale, but is much smaller than the correlation time at the integral scale of
turbulence.

Remarkably, the particle inertia also results in formation of the large-scale inho-
mogeneities in the vicinity of the temperature inversion layers due to excitation of the
large-scale instability (see [29,32,38]). This effect is caused by additional non-diffusive
turbulent flux of particles in the vicinity of the temperature inversion (phenomenon
of turbulent thermal diffusion). The characteristic time of excitation of the large-scale



Environ Fluid Mech (2007) 7:173–193 175

instability of concentration distribution of aerosols varies in the range from 0.3 to 3 h
depending on the particle size and parameters of the atmospheric turbulent boundary
layer and the temperature inversion layer. The phenomenon of turbulent thermal dif-
fusion was recently detected experimentally using two very different turbulent flows
created by oscillating grids turbulence generator [39–41] and multi-fan turbulence
generator [42] for stably and unstably stratified fluid flows.

The paper is organized as follows. In Sect. 2 we present governing equations and
a qualitative analysis of the clustering instability that causes formation of particle
clusters in a turbulent flow. In Sect. 3 we estimate the scalings of the particle velocity
in the turbulent fluid for the case when the particle Stokes time is much larger than the
Kolmogorov time scale, but is much smaller than the correlation time at the integral
scale of turbulence. In Sect. 4 we perform a quantitative analysis for the clustering
instability of the second moment of particle number density for St > 1, where St is the
Stokes number. This allows us to generalize the criterion of the clustering instability
obtained in [35]. Finally, in Sect. 5 we overview the nonlinear effects which lead to
saturation of the clustering instability and determine the particle number density in
the cluster. In Sect. 5 we perform numerical estimates for the dynamics of aerosols
and droplets in atmospheric turbulent flow. The conclusions are drawn in Sect. 6. The
detail analysis of the scalings of the particle velocity in the turbulent fluid is given in
Appendix A. The detail analysis of the clustering instability of the inertial particles is
given in Appendix B.

2 Governing equations and qualitative analysis of particle clustering

To analyze dynamics of particles we use the standard continuous media approxima-
tion, introducing the number density field n(t, r) of spherical particles with radius a.
The particles are advected by an incompressible turbulent velocity field u(t, r). The
particle material density ρp is much larger than the density ρ of the ambient fluid.
For inertial particles their velocity v(t, r) �= u(t, r) due to the particle inertia and
div v(t, r) �= 0 (see [43,44]). Therefore, the compressibility of the particle velocity
field v(t, r) must be taken into account. The growth rate of the clustering instabil-
ity, γ , is proportional to 〈|div v(t, r)|2〉 (see [29,30,37]), where 〈·〉 denotes ensemble
average.

Let �(t, r) be the deviation of the instantaneous particle number density n(t, r) from
its uniform mean value N ≡ 〈n〉: �(t, r) = n(t, r)− N. The pair correlation function of
�(t, r) is defined as �(R, r, t) ≡ 〈�(t, r + R)�(t, r)〉. For the sake of simplicity we will
consider only a spatially homogeneous, isotropic case when �(R, r, t) depends only on
the separation distance R and time t, i.e., �(t, R, r) = �(t, R). Clearly, a large increase
of �(t, R) above the level of N2 can lead to a strong grows in the frequency of the
particle collisions.

In the analytical treatment of the problem we use the standard equation for n(t, r):

∂n(t, r)
∂t

+ ∇ · [n(t, r)v(t, r)] = D�n(t, r), (1)

where D is the coefficient of molecular (Brownian) diffusion. We study the case of
small yet finite molecular diffusion D of particles. The equation for �(t, r) follows
from Eq. 1:
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∂�(t, r)
∂t

+ [v(t, r) · ∇]�(t, r) = −�(t, r) div v(t, r)

+D��(t, r). (2)

To study the clustering instability we use Eq. 2 without the source term ∝ −N div v,
describing the effect of an external source of fluctuations. Particle clustering can also
occur due to this source of fluctuations of particle number density. Such fluctuations
were studied in [27,28,45]. In the present study we considered the particle clustering
due to the clustering instability. Particle clustering caused by the self-excitation of
fluctuations of particle number density (the clustering instability) is much stronger
than that due to the source of fluctuations of particle number density.

One can use Eq. 2 to derive equation for �(t, R) by averaging the equation for
�(t, r + R)�(t, r) over statistics of the turbulent velocity field v(t, r). In general this
procedure is quite involved even for simple models of the advecting velocity fields
(see, e.g., [35]). Nevertheless, the qualitative understanding of the underlying physics
of the clustering instability, leading to both, the exponential growth of �(t, R) and its
nonlinear saturation, can be elucidated by a more simple and transparent analysis.

Let us consider turbulent flow with large Reynolds numbers, Re � 1. Therefore,
the characteristic scale L of energy injection (outer scale) is much larger than the
length of the dissipation scales (viscous scale η) L � η. In the so-called inertial inter-
val of scales, where L > r > η, the statistics of turbulence within the Kolmogorov
theory is governed by the only dimensional parameter, ε, the rate of the turbulent
energy dissipation. Then, the velocity u(r) of turbulent motion at the characteris-
tic scale r (referred below as r-eddies) may be found by the dimensional reasoning:
u(r) ≈ (εr)1/3 (see, e.g., [1,46,47]). Similarly, the turnover time of r-eddies, τ(r), which
is of the order of their life time, may be estimated as τ(r) ≈ r/u(r) ≈ ε−1/3r2/3.

To elucidate the clustering instability let us consider a cluster of particles with a
characteristic scale 	 moving with the velocity Vcl(t). The scale 	 is a parameter which
governs the growth rate of the clustering instability, γ . It sets the bounds for two dis-
tinct intervals of scales: L > r > 	 and 	 > r > η. Note also that we cannot consider
scales which are smaller than the size of particles. Large r-eddies with r > 	 sweep the
	-cluster as a whole and determine the value of Vcl(t). This results in the diffusion of
the clusters, and eventually affects their distribution in a turbulent flow.

On the other hand, the particles inside the turbulent eddies are carried out to the
boundary regions between the eddies by the inertial forces. This mechanism of the
preferential concentration acts in all scales of turbulence, increasing toward small
scales. The role of small eddies is multi-fold. First, they lead to the turbulent diffusion
of the particles within the scale of a cluster size. Second, due to the particle inertia
they tend to accumulate particles in the regions with small vorticity, which leads to
the preferential concentration of the particles. Third, the particle inertia also causes a
transport of fluctuations of particle number density from smaller scales to larger scales,
i.e., in regions with larger turbulent diffusion. The latter can decrease the growth rate
of the clustering instability. Therefore, the clustering is determined by the competition
between these three processes.

Let us introduce a dimensionless parameter σv, a degree of compressibility of the
velocity field of particles, v(t, r), defined by

σv ≡ 〈[div v]2〉
〈|∇ × v|2〉 . (3)
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This parameter may be of the order of 1 (see [32]). One of the reasons for the cluster-
ing instability is the particle inertia which results in the parameter σv �= 0. The particle
response time is given by

τp = mp

6π ν ρ a
= 2ρp a2

9ρ ν
, (4)

and the particle mass mp is mp = (4π/3) a3 ρp. The ratio of the inertial time scale
of the particles (the Stokes time scale τp) and the turnover time of η-eddies in the
Kolmogorov micro-scale τ(η) = η/u(η) = η2/ν, is of primary importance, where u(η)

is the characteristic velocity of η-scale eddies. The ratio of the time-scales τp and τ(η)

is the Stokes number:

St ≡ τp

τ(η)
= 2ρp a2

9ρ η2 . (5)

For τp 
 τ(η) all particles are almost fully involved in turbulent motion, and one
concludes that u(t, r) ≈ v(t, r) and v(	) ≈ u(	). The compressibility parameter σv of
particle velocity field for St 
 1 is given by:

σv ∼
(

2ρp

9ρ

)2 (
a
η

)4

= St2. (6)

(see [32,35]). For small Stokes number, the clustering instability has been investigated
in [35]. The characteristic scale of the most unstable clusters of small particles is of the
order of Kolmogorov micro-scale of turbulence, η. The characteristic growth rate of
the clustering instability is of the order of the turnover frequency of η-eddies, 1/τ(η)

(see [35]). In the present study we extend the theory of particle clustering instability to
the case St > 1, i.e., when the particle Stokes time is larger than the Kolmogorov time
scale, but is much smaller than the correlation time at the integral scale of turbulence.
We may expect that for St > 1 the compressibility parameter σv of particle velocity
field is given by:

σv ∼ St2

1 + α St2 , (7)

where α ∼ 1.

3 The particle velocity field for St � 1

The equation of motion of a particle reads:

dvp(t, r)
dt

= 1
τp

[u(t, r) − vp(t, r)], (8)

where the total time derivative (d/dt) takes into account the time dependence of the
particle coordinate r:

d
dt

=
[

∂

∂t
+ vp(t, r) · ∇

]
. (9)

Now Eq. 8 takes the form:
{
τp

[
∂

∂t
+ vp(t, r) · ∇

]
+ 1

}
vp(t, r) = u(t, r). (10)
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In the following we analyze this equation for particles with the time τp which is larger
than the turnover time of the smallest eddies in the Kolmogorov micro-scale τ(η),
but is smaller than the turnover time of the largest eddies τ(L). Denote by 	∗ the
characteristic scale of eddies for which

τp = τ(	∗) . (11)

This scale as well as the particle cluster scale was introduced in [30]. Note that 	∗/η =
St3/2. The eddies with 	 � 	∗ almost fully involve particles in their motions, while the
eddies with 	 
 	∗ do not affect the particle motions in the zero order approximation
with respect to the ratio [τ(	)/τp] 
 1. Therefore it is conceivable to suggest that the
main contribution to the particle velocity is due to the eddies with the scale of 	 [which
we denote as v	(t, r)] that is of the order of 	∗ and much larger then the Kolmogo-
rov micro-scale. Velocity v	(t, r) cannot be found on the basis of simple dimensional
reasoning because the problem at hand involves a number of dimensionless parame-
ters like 	/	∗, 	∗/η, etc. The main difficultly in determining this velocity is that in this
case one has to take into account for a modification of the particle response time τp
by the turbulent fluctuations. The physical reason for that is quite obvious: the time
τp is determined by molecular viscosity of the carrier fluid while the main dissipative
effect for motions with 	 > η is due to the effective “turbulent” viscosity. In order to
determine the velocity v	(t, r) we can use the perturbation approach to Eq. 10 (see,
e.g., [48,49]). The details of this derivations are given in Appendix A. This analysis
yields the scalings of the particle velocity for St � 1:

v2
	 ≈ u2

	

(
	

	∗

)10/9

≈ u2
	

[
τ(	)

τp

]5/3

. (12)

4 The clustering instability of the second moment of particle number density

In this section we will perform a quantitative analysis for the clustering instability
of the second moment of particle number density. To determine the growth rate of
the clustering instability let us consider the equation for the two-point correlation
function �(t, R) of particle number density:

∂�

∂t
= [B(R) + 2U(R) · ∇ + D̂αβ(R)∇α∇β ]�(t, R) , (13)

(see [35]). The meaning of the coefficients B(R), U(R) and D̂αβ(R) is as follows (for
details see Appendix B). The function B(R) is determined by the compressibility of
the particle velocity field and it causes the generation of fluctuations of the num-
ber density of particles. The vector U(R) determines a scale-dependent drift velocity
which describes a transport of fluctuations of particle number density from smaller
scales to larger scales, i.e., in the regions with larger turbulent diffusion. The latter
can decrease the growth rate of the clustering instability. Note that U(R = 0) = 0
whereas B(R = 0) �= 0. For incompressible velocity field U(R) = 0 and B(R) = 0.
The scale-dependent tensor of turbulent diffusion D̂αβ(R) is also affected by the com-
pressibility. In very small scales this tensor is equal to the tensor of the molecular
(Brownian) diffusion, while in the vicinity of the maximum scale of turbulent motions
this tensor coincides with the regular tensor of turbulent diffusion.
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Thus, the clustering instability is determined by the competition between these
three processes. The form of the coefficients B(R), U(R) and D̂αβ(R) depends on the
model of turbulent velocity field. For instance, for the random velocity with Gaussian
statistics of the particle trajectories these coefficients are given in Appendix B.

Let us study the clustering instability. We consider particles with the size η/
√

Sc 

a 
 η, where Sc = ν/D is the Schmidt number. For small inertial particles advected
by air flow Sc � 1. There are three characteristic ranges of scales, where the form of
the solution of Eq. 13 for the two-point correlation function �(t, R) of the particle
number density is different. These ranges of scales are the following: (i) the dissipative
range a ≤ 	 ≤ η, where the molecular diffusion term ∝ 1/Sc is negligible; (ii) the first
part of the inertial range η ≤ 	 ≤ 	∗ and (iii) the second part of the inertial range
	∗ 
 	 
 L, where the functions B(R) and U(R) are negligibly small.

Consider a solution of Eq. 13 in the vicinity of the thresholds of the excitation of
the clustering instability. The asymptotic solution of the equation for the two-point
correlation function �(t, R) of the particle number density is obtained in Appendix B.
In the range of scales a ≤ 	 ≤ η, the correlation function �(t, R) in a non-dimensional
form reads

�(R) = A1R−λd sin(µd| ln R| + ϕd) , (14)

and in the range of scales η ≤ 	 ≤ 	∗ it is given by

�(R) = A2R−λ sin(µ ln R + ϕ) , (15)

where the parameters λd and µd are given by Eq. B.8 and the parameters λ and µ are
given by Eq. B.13 in Appendix B. Here R is measured in the units of η and time t is
measured in the units of τη ≡ τ(	 = η). We have taken into account that the corre-
lation function �(R) has a global maximum at R = a, i.e. the normalized correlation
function of the particle number density �(t, R = a) = 1. We have also taken into
account that in the range of scales η ≤ 	 
 	∗, the relationship between v2

	 and u2
	 is

given by:

v2
	 = u2

	

[
τ(	)

τp

]s

. (16)

For instance, for St � 1 the exponent s = 5/3 (see Eq. 12). The value s = 7/4 cor-
responds to the turbulent diffusion tensor with the scaling ∝ R2 [see Eqs. B.5–B.7 in
Appendix B]. We consider the parameter s as a phenomenological parameter. In the
range of scales 	∗ 
 	 
 L, the correlation function �(t, R) is given by

�(R) = A3R−λ3 , (17)

where λ3 is given by Eq. B.17 in Appendix B. The condition,
∫ ∞

0 R2�(R) dR = 0,
implies that the total number of particles in a closed volume is conserved.

The growth rate of the second moment of particle number density, the coefficients
Ak and the parameters ϕd, ϕ are determined by matching the correlation function
�(R) and its first derivative �′(R) at the boundary of the above three ranges of scales,
i.e., at the points 	 = η and 	 = 	∗. For example, the growth rate γ of the clustering
instability of the second-order correlation function is given by
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Fig. 1 The range of
parameters (σv, σT ) for which
the clustering instability may
occur. The various curves
indicate results for s = 7/4
(dashed), s = 5/3 (solid), for
s = 1 (dashed-dotted) and for
s = 2/3 (dotted). The thin
dashed line σv = σT
corresponds to the δ-correlated
in time random compressible
velocity field
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, (18)

where σT is the degree of compressibility of the scale-dependent tensor of turbulent
diffusion D̂αβ(R) (for details, see Appendix B). Note that for the δ-correlated in time
random Gaussian compressible velocity field, the coefficients B(R) and U(R) are
related to the turbulent diffusion tensor D̂αβ(R), i.e.,

B(R) = ∇α∇βD̂αβ(R) , Uα(R) = ∇βD̂αβ(R) , (19)

(for details, see [32,33,35]). In this case the second moment �(t, R) can only decay, in
spite of the compressibility of the velocity field. For the δ-correlated in time random
Gaussian compressible velocity field σv = σT . For the finite correlation time of the
turbulent velocity field σT �= σv and the relationships (19) are not valid. The clustering
instability depends on the ratio σT /σv.

The range of parameters (σv, σT ) for which the clustering instability of the second
moment of particle number density may occur is shown in Fig. 1. The line σv = σT

corresponds to the δ-correlated in time random compressible velocity field for which
the clustering instability cannot be excited. The various curves indicate results for
different value of the parameter s. The curves for s = 7/4 (dashed) and s = 5/3 (solid)
practically coincide. The parameter s is considered as a phenomenological parameter,
and the change of this parameter from s = 7/4 to s = 0 can describe a transition
from one asymptotic behaviour (in the range of scales η ≤ 	 ≤ 	∗) to the other
(	∗ 
 	 ≤ L). The growth rate (18) of the clustering instability versus σv for s = 5/3
and different values of σT is shown in Fig. 2.

We have not discussed in the present study the growth of the high-order moments
of particle number density (see [30,35,45,50]). The growth of the negative moments
of particles number density (possibly associated with formation of voids and cellular
structures) was discussed in [45,51,52].
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Fig. 2 The growth rate of the
clustering instability versus σv
for s = 5/3. The various curves
indicate results for different
values of σT = σv + δ: δ = 3
(solid), δ = 1 (dashed), δ = 0.5
(dashed-dotted) and δ = 0.3
(dotted)
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5 Discussion

Formation and evolution of particle clusters are of fundamental significance in many
areas of environmental sciences, physics of the atmosphere and meteorology [smog
and fog formation, rain formation (see e.g., [16,19,20,53–55]), planetary physics (see
e.g., [56,57]), transport and mixing in industrial turbulent flows, like spray drying and
cyclone dust separation, dynamics of fuel droplets (see e.g., [58–60]). The analysis
of the experimental data showed that the spatial distributions of droplets in clouds
are strongly inhomogeneous (see [18]). The small-scale inhomogeneities in particle
distribution were observed also in laboratory turbulent flows (see [13,17,21]).

In the present study we have shown that the particle spatial distribution in the
turbulent flow field is unstable against formation of clusters with particle number
density that is much higher than the average particle number density. Obviously this
exponential growth at the linear stage of instability should be saturated by nonlinear
effects. A momentum coupling of particles and turbulent fluid is essential when the
kinetic energy of fluid ρ〈u2〉 is of the order of the particles kinetic energy mpncl〈v2〉,
where |u| ∼ |v|, i.e., when mpncl ∼ ρ. This condition implies that the number density
of particles in the cluster ncl ∼ a−3(ρ/3ρp). In the atmospheric turbulence the charac-
teristic parameters are as follows: in the viscous scale, η ∼ 1 mm, the correlation time
of the turbulent velocity field is τη ∼ (0.01–0.1) s, and for water droplets ρp/ρ ∼ 103.
Thus, for a ∼ 30 µm we obtain ncl ∼ 104 cm−3 (see [35]). Particle collisions can play
also essential role when during the life-time of a cluster the total number of collisions
is of the order of number of particles in the cluster. The collisions in clusters may
be essential for ncl ∼ a−3(	∗/a)(ρ/3ρp). In this case a mean separation of particles
in the cluster is of the order of 	s ∼ a4/3(3ρp/	∗ρ)1/3. When, e.g., a ∼ 30 µm we get
	s ∼ 5 a ≈ 150 µm and ncl ∼ 3 × (104 − 105) cm−3. The mean number density of drop-
lets in clouds N is about 103 cm−3. Therefore, the clustering instability of droplets in
clouds can increase their concentrations in the clusters by the order of magnitude (see
also [35]). Note that for large Stokes numbers the terminal fall velocity of particles
can be much larger than the turbulent velocity. This implies that the sedimentation of
heavy particles can suppress the clustering instability for large Stokes numbers.

There is an additional restriction on the value of ncl = √〈n2〉 which follows from
the condition 〈n(t, r) n(t, r+R)〉 ≡ N2 +〈�2〉�(t, R) ≥ 0, where �(t, R) is the normal-
ized correlation function of the particle number density �(t, R = a) = 1. Since the
correlation function �(t, R) can be negative at some scale R, this condition implies
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Fig. 3 Dependence of√
〈n2〉/N versus parameter σv

for s = 5/3 which corresponds
to the solution of Eq. 13 for the
two-point correlation function
�(t, R) of the particle number
density obtained in Sect. 4.
Various curves indicate results
for different values of the
parameter δ: δ = 3 (solid),
δ = 1 (dashed) and δ = 0.5
(dashed-dotted), where
σT = σv + δ
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Fig. 4 Dependence of√
〈n2〉/N versus parameter σv

which corresponds to the
solution for the two-point
correlation function �(t, R) of
the particle number density for
the case St < 1 studied in [35].
Various curves indicate results
for different values of the
parameter δ: δ = 3 (solid),
δ = 1 (dashed) and δ = 0.3
(dashed-dotted), where
σT = σv + δ. The thick lines
correspond to Sc = 105 and
thin lines correspond to
Sc = 104
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that the maximum possible value of 〈�2〉 which can be achieved during the clustering
instability is 〈�2〉max = N2/|�|min. Therefore, the number density of particles in the
cluster ncl cannot be larger than ncl ≤ N(1+|�|−1

min)1/2. Using this criterion we plotted
in Fig. 3 the dependencies

√〈n2〉max/N versus parameter σv for different values of the
parameter δ, where σT = σv + δ. We estimate |�|min using the solution of Eq. 13 for
the two-point correlation function �(t, R) of the particle number density obtained in
Sect. 4. Note however, that this solution determines the linear stage of the clustering
instability. In Fig. 3 we also take into account the conditions for the clustering insta-
bility. This condition implies that for a given parameter σT the clustering instability
is excited when σv > σmin

v (see Fig. 1). For comparison we also plotted in Fig. 4 the
similar dependencies

√〈n2〉max/N versus parameter σv using the solution for the two-
point correlation function �(t, R) of the particle number density for the case St < 1
studied in [35].

In the present study we have considered the particle clustering due to the clus-
tering instability. Generally, particle clustering can also occur due to the source of
fluctuations of droplets number density I = B(R)N2 in Eq. 13 for the second-order
correlation function of particle number density. This source term arises due to the
term ∝ −N div v in Eq. 2. Such fluctuations were studied in [27,28,45].

Note that there is an alternative approach which determines the particle clustering
(see [61–63]). The particle number density fluctuations are generated by a multiplica-
tive random process: volume elements in the particle flow are randomly compressed or
expanded, and the ratio of the final density to the initial density after many multiples
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of the correlation time τ can be modelled as a product of a large number of random
factors. According to this picture, the particle number density fluctuations will be a
record of the history of the flow, and may bear no relation to the instantaneous dispo-
sition of vortices when the particle number density is measured [61–63]. The particle
number density is expected to have a log-normal probability distribution. When the
random-flow model [61–63] with short correlation time is applied to fully developed
turbulence it predicts that the clustering is strongest when St ∼ 1, in agreement with
numerical studies [19,20].

6 Conclusions

In this study we considered formation of small-scale clusters of inertial particles in
a turbulent flow. The mechanism for particle clustering is associated with a small-
scale instability of particle spatial distribution. The clustering instability is caused by
a combined effect of the particle inertia and a finite correlation time of the turbulent
velocity field. The theory of particle clustering developed in our previous studies was
extended to the case when the particle Stokes time is larger than the Kolmogorov time
scale, but is much smaller than the correlation time at the integral scale of turbulence.
We found the criterion for the clustering instability for this case.
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Appendix A: Velocity of inertial particles for τp � τη

In order to determine the velocity v	(t, r) we can use the Wyld’s perturbation diagram-
matic approach to Eq. 10 in the Belinicher-L’vov representation (see, e.g., [48,49]).
This approach yields automatically a sensible result allowing us to avoid an overesti-
mation of the sweeping effect in an order-by-order perturbation analysis. However,
keeping in mind that this approach is technically quite involved, in this study we
reformulated the derivation procedure and obtained the required results using a
more simple procedure based on the equation of motion Eq. 10.

To determine v	(t, r) we consider Eq. 10 in the frame moving with 	-eddies, in
which the surrounding fluid velocity u equals to the relative velocity of the 	-eddy at
r, i.e., u(t, r) = u	(t, r). Here one has to take into account that the 	-eddy is swept out
by all eddies with scales 	′ > 	. At the same time the particles participate in motions
of 	′-eddies with 	′ > 	∗ > 	. Therefore, the relative velocity v	 of the 	-eddy and
the particle is determined by 	′-eddies with the intermediate scales, 	∗ ≤ 	′ ≤ 	. This
velocity is determined by the contribution of 	∗-eddies, and can be considered as a
time and space independent constant u∗ during the life time of the 	 eddy and inside
it. Velocity u∗ in our approach is random and has the same statistics as the statistics
of the turbulent velocities of 	∗-eddies. Then Eq. 10 becomes
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(
τp

∂

∂t
+ 1

)
v	(t, r) = u	(t, r + u∗t)

−τp [v	(t, r) · ∇] v	(t, r). (A.1)

In Eq. A.1 the velocity u	 is calculated at point r and the velocity v	 is at r − u∗ t.
For the sake of convenience we redefine here r − u∗ t = r′ as r and, respectively,
r = r′ +u∗ t as r +u∗ t. Note that Eq. A.1 is a simplified version of Eq. 10 that we used
in our derivations.

1 First non-vanishing contribution to v	

Since v	(t, r) 
 u	 for 	 
 	∗, we can find the first non-vanishing contribution to
v	(t, r) in the limit [τ(	) 
 τp] by considering the linear version of Eq. A.1:

(
τp

∂

∂t
+ 1

)
v	(t, r) = u	(t, r + u∗t). (A.2)

In the ω, k representation this equation takes the form:(
iω τp + 1

)
v	(ω, k) = u	(ω − k · u∗, k), (A.3)

that allows one to find the relationship between the second order correlation functions
Fαβ

v,	(ω, k) and Fαβ
u,	(ω, k) of the velocity fields v	 and u	:

Fαβ
v,	(ω, k) = 1

ω2τ 2
p + 1

Fαβ
u,	(ω − k · u∗, k). (A.4)

Functions Fαβ
u,	(ω, k) and Fαβ

v,	(ω, k) are defined as usual, e.g.,

(2π)4δ(ω + ω′) δ(k + k′)Fαβ
u,	(ω, k) ≡

〈
vα
	 (ω, k) vβ

	 (ω′, k′)
〉

. (A.5)

The simultaneous correlation functions are related to their ω-dependent counter-
parts via the integral

∫
dω/2π , e.g.,

Fαβ
v,	(k) =

∫
dω

2π
Fαβ

v,	(ω, k). (A.6)

The tensorial structure of Fαβ
u,	(k) follows from the incompressibility condition and the

assumption of isotropy:
Fαβ

u,	(k) = Pαβ(k)Fu,	(k), (A.7)

where Pαβ(k) is the transversal projector:

Pαβ(k) = δαβ − kαkβ/k2. (A.8)

In the inertial range of scales the function Fαβ
u,	(ω, k) may be written in the following

form:
Fαβ

u,	(ω, k) = Pαβ(k) Fu,	(k) τ (	) f [ω τ(	)]. (A.9)

Here the dimensionless function f (x) is normalized as follows:∫ ∞

−∞
f (x) dx = 2π . (A.10)
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Now we can average Eq. A.4 over the statistics of 	∗-eddies. Denoting the mean
value of some function g(x) as g(x) we have:

f [(ω − k · u∗) τ (	)] ≈ δ[(ω − k · u∗) τ (	)]
≈ 	

τ(	) u∗
f∗

(u∗ ω

	

)
. (A.11)

Here the dimensionless function f∗(x) has one maximum at x = 0, and it is normal-
ized according to Eq. A.10. The particular form of f∗(x) depends on the statistics of
	∗-eddies and our qualitative analysis is not sensitive to this form. Thus, we may
choose, for instance:

f∗(x) = 2/[x2 + 1]. (A.12)

In Eqs. A.11 we took into account that the characteristic Doppler frequency of
	-eddies (in the random velocity field u∗ of 	∗-eddies) may be evaluated as:

γD(	) ≡
√

(k · u∗)2 � u∗/	. (A.13)

This frequency is much larger than the characteristic frequency width of the func-
tion f [ωτ(	)] (equal to 1/τ(	)), and therefore the function f (x) in Eq. A.11 may be
approximated by the delta function δ(x).

After averaging, Eq. A.4 may be written as

Fαβ
v,	(ω, k) = Pαβ(k)f∗(0)

ω2τ 2
p + 1

	

u∗
Fu,	(k). (A.14)

Here we took into account that τp � 	/u∗ that allows us to neglect the frequency
dependence of f∗(u∗ ω/	) and to calculate this function at ω = 0. Together with
Eq. A.14 this yields

Fαβ
v,	(k) = Pαβ(k) Fu,	(k)

	

τp u∗
, (A.15)

where we used the estimate f∗(0) ≈ 2, that follows from Eq. A.12.
The Eq. A.15 provides the relationship between the mean square relative velocity

of 	-separated particles, v	, and the velocity of 	-eddies, u	:

v	 � u	

√
	

τp u∗
� u	

√
	

	∗
. (A.16)

2 Effective nonlinear equation

For a qualitative analysis of the role of the nonlinearity of the particle behavior in
the 	-cluster we evaluate ∇ in the nonlinear term, Eq. A.1, as 1/	, neglecting the spa-
tial dependence and the vector structure. The resulting equation in ω-representation
reads:
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(iω + γp)V	(ω) = γdrU	(ω) + Nω, γp = 1/τp,

Nω = − 1
2π	

∫
dω1dω2δ(ω + ω1 + ω2)V	(ω1)V	(ω2),

V	(ω) =
∫

v	(t) exp[−iωt]dt,

v	(t) = 1
2π

∫
V	(ω) exp[iωt]dω. (A.17)

In the zeroth order (linear) approximation (Nω → 0)

V(0)
	 (ω) = γpU	(ω)

iω + γp
, (A.18)

which is the simplified version of Eq. A.3. This allows us to find in the linear approxi-
mation

〈v2
	(t)〉 =

∫
dω

2π
F	(ω) =

∫
dω

2π

γ 2
p Fu,	(ω)

ω2 + γ 2
p

, (A.19)

where Fu,	(ω) is the correlation functions of U	(ω):

2πδ(ω + ω′)Fu,	(ω) = 〈U	(ω)U	(ω
′)〉, (A.20)

similarly to Eq. A.5.
In the limit τp � 	/u∗ one can neglect in Eq. A.19 the ω-dependence of Fu,	(ω),

which has the characteristic width 	/u∗ and conclude:

v2
	,0 ≡ 〈v2

	(t)〉 ≈ γp

2
Fu,	(0) ≈ u2

	

	 γp

u∗
≈ u2

	

	

	∗
,

u2
	 ≡ 〈u2

	(t)〉 , (A.21)

in agreement with Eq. A.16.

3 First nonlinear correction

To evaluate the first nonlinear correction to Eq. A.21 one has to substitute V	(ω) from
Eq. A.18 into Eq. A.17 for Nω:

V	,1(ω) = − γ 2
p

2π	

∫
dω1dω2δ(ω + ω1 + ω2)

U	(ω1)

iω1 + γp

× U	(ω2)

iω2 + γp
. (A.22)

Using Eq. A.22 instead of Eq. A.18 we obtain instead of Eq. A.19

v2
	,1 ≡ 〈[v	,1(t)]2〉 =

∫
dω

2π
Fu,	,1(ω), (A.23)

Fu,	,1(ω) = 2γ 4
p

(ω2 + γ 2
p )	2

∫
dω1dω2

2π

δ(ω + ω1 + ω2)

(ω2
1 + γ 2

p )(ω2
2 + γ 2

p )

×Fu,	(ω1) Fu,	(ω2).

In this derivation we assumed for simplicity the Gaussian statistics of the velocity field.
This corresponds to a standard closure procedure in theory of turbulence (see, e.g.,
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[1,4]). Taking into account of deviations from the Gaussian statistics of the turbulent
velocity field in the framework of the perturbation theory of turbulence does not yield
qualitatively new results due to the general structure of the series in the theory of
perturbations after Dyson–Wyld line-resummation (see, e.g., [48,49]).

Now let us estimate

v2
	,1 ≈

[
Fu,	(0)

]2

	2 ≈ u4
	

u2∗
≈ u2

	

(
	

	∗

)2/3

, (A.24)

that is much larger than the result (A.21) for v2
	,0 obtained in the linear approxima-

tion. This means that the simple iteration procedure we used is inconsistent, since it
involves expansion in large parameter [(	∗/	)1/3].

4 Renormalized perturbative expansion

A similar situation with a perturbative expansion occurs in the theory of hydrody-
namic turbulence, where a simple iteration of the nonlinear term with respect to the
linear (viscous) term, yields the power series expansion in Re2 � 1. A way out, used in
the theory of hydrodynamic turbulence is the Dyson–Wyld re-summation of one-eddy
irreducible diagrams (for details see, e.g., [48,49,64]). This procedure corresponds to
accounting for the nonlinear (so-called “turbulent” viscosity) instead of the molec-
ular kinematic viscosity. A similar approach in our problem implies that we have to
account for the self-consistent, nonlinear renormalization of the particle frequency
γp ⇒ �p(	) in Eq. A.17 and to subtract the corresponding terms from Ñω. With these
corrections, Eq. A.17 reads:

[ iω + �p(	) ]V	(ω) = γpU	(ω) + Ñω. (A.25)

Here Ñω is the nonlinear term Nω after substraction of the nonlinear contribution to
the difference

�p ≡ �p(	) − γp ≈ v2
	/	

2

�p(	)
. (A.26)

The latter relation actually follows from a more detailed perturbation diagrammatic
approach. In our context it is sufficient to realize that in the limit �p(	) � γp one may
evaluate �p(	) by a simple dimensional reasoning:

�p(	) ≈ v	/	, (A.27)

which is consistent with Eq. A.26. In addition, Eq. A.26 has a natural limiting case
�p(	) → γp when v	/	 
 γp. Now using Eq. A.25 instead of Eq. A.18 we arrive at:

V(0)
	 (ω) = γpU	(ω)

iω + �p(	)
. (A.28)

Accordingly, instead of the estimates (A.21) one has:

v2
	,0 ≈ u2

	

γ 2
p 	

�p(	) u∗
≈ u2

	

γp

�p(	)

(
	

	∗

)
. (A.29)
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The latter equation together with Eq. A.27 allows to evaluate �p(	) as follows:

�p(	) ≈
(

γ 2
p u2

	

	 u∗

)1/3

≈ γp

(
	∗
	

)1/9

. (A.30)

Hence the estimate (A.29) becomes

v2
	,0 ≈ u2

	

(
	

	∗

)10/9

≈ u2
	

[
τ(	)

τp

]5/3

. (A.31)

Repeating the evaluation of the nonlinear correction v2
	,2 with the renormalized

Eq. A.25 we find that
v2
	,1 ≈ v2

	,0. (A.32)

This means that now the expansion parameter is of the order of 1, in accordance with
the renormalized perturbation approach. This procedure yields Eq. 12.

Appendix B: The clustering instability of the inertial particles

The clustering instability is determined by the equation for the two-point correlation
function �(t, R) of particle number density (see Eq. 13). The tensor D̂αβ(R) may be
written as

D̂αβ(R) = 2Dδαβ + D
T

αβ(R),

D
T

αβ(R) = D̃
T

αβ(0) − D̃
T

αβ(R). (B.1)

The form of the coefficients B(R), U(R) and D̂αβ(R) in Eq. 13 depends on the model of
turbulent velocity field. For instance, for the random velocity with Gaussian statistics
of the Wiener trajectories ξ(t, r|τ) these coefficients are given by

B(R) ≈ 2
∫ ∞

0
〈b[0, ξ(t, r1|0)]b[τ , ξ(t, r2|τ)]〉 dτ , (B.2)

U(R) ≈ −2
∫ ∞

0
〈v[0, ξ(t, r1|0)]b[τ , ξ(t, r2|τ)]〉 dτ ,

D̃
T

αβ(R) ≈ 2
∫ ∞

0
〈vα[0, ξ(t, r1|0)]vβ [τ , ξ(t, r2|τ)]〉 dτ ,

where b = div v (for more details, see [35]). Note that in this study we use Euleri-
an description. In particular, in Eq. B.2 the functions vα[τ , ξ(t, r|τ)] and b[τ , ξ(t, r|τ)]
describe the Eulerian velocity and its divergence calculated at the Wiener trajectory
(see [35,65,66]). The Wiener trajectory ξ(t, r|s) (which usually is called the Wiener
path) and the Wiener displacement ρw(t, r|s) are defined as follows:

ξ(t, r|s) = r − ρw(t, r|s),
ρw(t, r|s) =

∫ t

s
v[τ , ξ(t, r|τ)] dτ + √

2D w(t − s),

where w(t) is the Wiener random process which describes the Brownian motion
(molecular diffusion). The Wiener random process w(t) is defined by the following
properties: 〈w(t)〉w = 0 , 〈wi(t+τ)wj(t)〉w = τδij, and 〈. . . 〉w denotes the mathematical
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expectation over the statistics of the Wiener process. Since vα[τ , ξ(t, r|τ)] describes
the Eulerian velocity calculated at the Wiener trajectory, the Wiener displacement
ρw(t, r|s) can be considered as an Eulerian field. We calculate the divergence of the
Eulerian field of the Wiener displacements ρw(t, r|s).

Now we introduce the parameter σT which is defined by analogy with Eq. 3:

σT ≡ ∇ · DT · ∇
∇ × DT × ∇ = ∇α∇βD

T

αβ(R)

∇α∇βD
T

α′β ′(R)εαα′γ εββ ′γ
, (B.3)

where εαβγ is the fully antisymmetric unit tensor. Equations 3 and B.3 imply that
σT = σv in the case of δ-correlated in time compressible velocity field.

For a random incompressible velocity field with a finite correlation time the tensor
of turbulent diffusion D̃

T

αβ(R) = τ−1〈ξα(t, r1|0)ξβ(t, r2|τ)〉 (see [35]) and the degree of
compressibility of this tensor is

σT = 〈(∇ · ξ)2〉
〈(∇×ξ)2〉 . (B.4)

Let us study the clustering instability. We consider particles of the size η/
√

Sc 

a 
 η, where Sc = ν/D is the Schmidt number. For small inertial particles advected
by air flow Sc � 1. A general form of the turbulent diffusion tensor in a dissipative
range is given by

D
T

αβ(R) = Cd
1 R2δαβ + Cd

2 RαRβ , (B.5)

Cd
1 = 2(2 + σT )

3 (1 + σT )
, Cd

2 = 2(2σT − 1)

3 (1 + σT )
.

In the range of scales a ≤ 	 ≤ η, Eq. 13 in a non-dimensional form reads:

∂�

∂t
= R2�′′(Cd

1 + Cd
2) + 2 R�′(Ud + Cd

1) + Bd�, (B.6)

where R is measured in the units of η, time t is measured in the units of τη ≡ τ(	 = η),
and the molecular diffusion term ∝ 1/Sc is negligible. Consider a solution of Eq. B.6
in the vicinity of the thresholds of the excitation of the clustering instability. Thus, the
solution of (B.6) in this region is

�(r) = A1R−λ1 , (B.7)

where λ1 = λd ± iµd and

λd = Cd
1 − Cd

2 + 2Ud

2(Cd
1 + Cd

2)
, µd = Cd

3

2(Cd
1 + Cd

2)
, (B.8)

(Cd
3)2 = 4(Bd − γ ) (Cd

1 + Cd
2) − (Cd

1 − Cd
2 + 2Ud)2,

and

Bd = 20
σv

σv + 1
, Ud = (1/3) Bd.

Since the correlation function �(R) has a global maximum at R = a, the coefficient
Cd

1 > Cd
2 − 2Ud if µd is a real number (see below).
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Consider the range of scales η ≤ 	 
 	∗. The relationship between v2
	 and u2

	 is
determined by Eq. 16, where according to Eq. 12 the exponent s = 5/3. In this case
the expression for the turbulent diffusion tensor in non-dimensional form reads

D
T

αβ(R) = R(4s−7)/3(C1R2δαβ + C2RαRβ), (B.9)

C1 = 5 + 4s + 6σT

9 (1 + σT )
, C2 = (4s − 1)(2σT − 1)

9 (1 + σT )
.

To determine the functions B(R) and U(R) in the range of scales η ≤ 	 
 	∗ we
use the general form of the two-point correlation function of the particle velocity field
in this range of scales:

〈vα(t, r)vβ(t + τ , r + R)〉 = 1
3
[δαβ − (Cv

1R2δαβ

+ Cv
2RαRβ) R2(s−2)/3]f (τ ),

Cv
1 = (4 + s + 3σv)

3 (1 + σv)
, Cv

2 = (1 + s)(2σv − 1)

3 (1 + σv)
.

Substitution this equation into Eq. B.2 yields

U(R) = U0 R(4s−7)/3 , B(R) = B0 R(4s−7)/3, (B.10)

where

U0 = β1
σv

σv + 1
, B0 = β2 U0

and the coefficients β1 and β2 depend on the properties of turbulent velocity field.
The dimensionless functions B0 and U0 in Eq. B.10 are measured in the units of τ−1

η .
For the δ-correlated in time random Gaussian compressible velocity field σT = σv

(for details, see [32,33,35]). In this case the second moment �(t, R) can only decay, in
spite of the compressibility of the velocity field. For the finite correlation time of the
turbulent velocity field σT �= σv and Eqs. 19 are not valid. The clustering instability
depends on the ratio σT /σv. In order to provide the correct asymptotic behaviour of
Eq. B.10 in the limiting case of the δ-correlated in time random Gaussian compressible
velocity field, we have to choose the coefficients β1 and β2 in the form:

β1 = 8(4s2 + 7s − 2)/27, β2 = (4s + 2)/3.

Note that when s < 1/4, the parameters β1 < 0 and B(R) < 0. In this case there is no
clustering instability of the second moment of particle number density. Thus, Eq. 13
in a non-dimensional form reads:

∂�

∂t
= R(4s−7)/3[R2�′′(C1 + C2) + 2 R�′(U0 + C1)

+B0�]. (B.11)

Consider a solution of Eq. B.11 in the vicinity of the thresholds of the excitation of the
clustering instability, where (∂�/∂t)R(7−4s)/3 is very small. Thus, the solution of (B.11)
in this region is

�(R) = A2R−λ2 , (B.12)
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where λ2 = λ ± iµ,

λ = C1 − C2 + 2U0

2(C1 + C2)
, µ = C3

2(C1 + C2)
, (B.13)

C2
3 = 4B0(C1 + C2) − (C1 − C2 + 2U0)

2.

Since the correlation function �(R) has a global maximum at R = a, the coefficient
C1 > C2 − 2U0 if µ is a real number (see below).

Now consider the range of scales 	∗ 
 	 
 L. In this case the non-dimensional
form of the turbulent diffusion tensor is given by

D
T

αβ(R) = R−2/3(C̃1R2δαβ + C̃2RαRβ), (B.14)

C̃1 = 2(5 + 3σT )

9 (1 + σT )
, C̃2 = 4(2σT − 1)

9 (1 + σT )
,

and Eq. 13 reads:

∂�

∂t
= R−2/3[R2�′′(C̃1 + C̃2) + 2 R�′C̃1]. (B.15)

Here we took into account that in this range of scales the functions B(R) and U(R) are
negligibly small. Consider a solution of Eq. B.15 in the vicinity of the thresholds of the
excitation of the clustering instability, when (∂�/∂t)R2/3 is very small. The solution
of (B.15) is given by

�(R) = A3R−λ3 , (B.16)

where

λ3 = |C̃1 − C̃2|
C̃1 + C̃2

= |7 − σT |
3 + 7σT

. (B.17)

The growth rate of the second moment of particle number density can be obtained
by matching the correlation function �(R) and its first derivative �′(R) at the bound-
ary of the above three ranges of scales, i.e., at the points 	 = η and 	 = 	∗. Such
matching is possible only when λ2 is a complex number, i.e., when C2

3 > 0 (i.e., µ

is a real number). The latter determines the necessary condition for the clustering
instability of particle spatial distribution. It follows from Fig. 1 that in the range of
parameters where µ is a real number, the parameter µd is also a real number. The
asymptotic solution of the equation for the two-point correlation function �(t, R) of
the particle number density in the range of scales a ≤ 	 ≤ η is given by Eqs. 14–15.
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