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ABSTRACT

The Sloan Digital Sky Survey (SDSS) surveyed 14,555 deg2, and delivered over a trillion pixels of imaging data.
We present a study of galaxy clustering using 900,000 luminous galaxies with photometric redshifts, spanning
between z = 0.45 and z = 0.65, constructed from the SDSS using methods described in Ross et al. This data set
spans 11,000 deg2 and probes a volume of 3 h−3 Gpc3, making it the largest volume ever used for galaxy clustering
measurements. We describe in detail the construction of the survey window function and various systematics
affecting our measurement. With such a large volume, high-precision cosmological constraints can be obtained
given careful control and understanding of the observational systematics. We present a novel treatment of the
observational systematics and its applications to the clustering signals from the data set. In this paper, we measure
the angular clustering using an optimal quadratic estimator at four redshift slices with an accuracy of ∼15%,
with a bin size of δl = 10 on scales of the baryon acoustic oscillations (BAOs; at ℓ ∼ 40–400). We also apply
corrections to the power spectra due to systematics and derive cosmological constraints using the full shape of the
power spectra. For a flat ΛCDM model, when combined with cosmic microwave background Wilkinson Microwave
Anisotropy Probe 7 (WMAP7) and H0 constraints from using 600 Cepheids observed by Wide Field Camera 3
(WFC3; HST), we find ΩΛ = 0.73 ± 0.019 and H0 to be 70.5 ± 1.6 s−1 Mpc−1 km. For an open ΛCDM model,
when combined with WMAP7 + HST, we find ΩK = 0.0035 ± 0.0054, improved over WMAP7+HST alone by
40%. For a wCDM model, when combined with WMAP7+HST+SN, we find w = −1.071 ± 0.078, and H0 to
be 71.3 ± 1.7 s−1 Mpc−1 km, which is competitive with the latest large-scale structure constraints from large
spectroscopic surveys such as the SDSS Data Release 7 (DR7) and WiggleZ. We also find that systematic-corrected
power spectra give consistent constraints on cosmological models when compared with pre-systematic correction
power spectra in the angular scales of interest. The SDSS-III Data Release 8 (SDSS-III DR8) Angular Clustering
Data allow a wide range of investigations into the cosmological model, cosmic expansion (via BAO), Gaussianity
of initial conditions, and neutrino masses. Here, we refer to our companion papers for further investigations using
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the clustering data. Our calculation of the survey selection function, systematics maps, and likelihood function for
the COSMOMC package will be released at http://portal.nersc.gov/project/boss/galaxy/photoz/.

Key words: cosmological parameters – dark energy – dark matter – distance scale

1. INTRODUCTION

The distribution of light in the universe has long been used as
a probe into the structure of the universe. Einstein wrote of the
distribution of stars as possibly being uniform on average over
large enough distances in 1917 when he discussed the structure
of the universe. Hubble tested the uniformity of distribution
of faint nebulae in 1926. As the structure of the universe
unfolds, the distribution of light from objects such as galaxies
has remained a powerful cosmological probe (Peebles 1973;
Groth 1973; Wang et al. 1999; Hu 1999; Eisenstein et al. 1999).

Smoothed over large scales, we expect galaxy density to
have a simple relationship to the underlying matter density; this
implies that the clustering of galaxies at large scales is directly
related to the clustering of the underlying matter and is thus
a sensitive probe of both the initial conditions of the universe
and its subsequent evolution. It is therefore not surprising that
a large fraction of the effort in observational cosmology has
been devoted to measuring the spatial distribution of galaxies,
as in the CfA Redshift Survey (Huchra et al. 1983), the APM
Galaxy Survey (Maddox et al. 1990), the DEEP survey30 (Koo
1998), VIMOS-VLT Deep Survey (Le Fèvre et al. 2005), Two-
Degree Field Galaxy Redshift Survey (2dFGRS; Cole et al.
2005), the Two Micron All sky Survey (Skrutskie et al. 2006),
COSMOS (Scoville et al. 2007), the Canada–France–Hawaii
Telescope Legacy Survey31 (Ilbert et al. 2006), the Galaxy And
Mass Assembly survey (Driver et al. 2009), the WiggleZ Survey
(Blake et al. 2010), and the Sloan Digital Sky Survey (SDSS;
York et al. 2000). By 2008, the SDSS32 had probed ∼1.5 Gpc3

with galaxies, while the current SDSS-III (Eisenstein et al. 2011)
will finish surveying ∼15 Gpc3 in 2014. The planned Large
Synoptic Survey Telescope (LSST)33 will observe ∼1000 Gpc3

of the universe.
Hidden in the ever-increasing volume of the surveyed uni-

verse is a wealth of cosmological information that has not been
fully exploited. In particular, the large-scale clustering of any
mass tracer, usually characterized by its power spectrum, in the
universe contains three features that are of significant interest
to contemporary cosmologists. The first distinguishing feature
is oscillations in the power spectrum caused by acoustic waves
in the baryon-photon plasma before hydrogen recombination at
z ∼ 1000, called baryon acoustic oscillations (BAOs; Peebles
& Yu 1970; Sunyaev & Zeldovich 1970; Bond & Efstathiou
1984; Holtzman 1989; Hu & White 1996; Eisenstein & Hu
1998). The BAO technique has emerged as the new precision
cosmology probe, especially in discerning the properties of this
unknown dark component of the universe, “dark energy.” The
BAO was first observed in early 2005 in the SDSS luminous red
galaxy (LRG) sample (Eisenstein et al. 2005), the 2dFGRS data
(Cole et al. 2005), and in 2006 by using photometric LRGs in
3500 deg2 of SDSS (Padmanabhan et al. 2007).

Second, the largest scales of the power spectrum can be used
to constrain the primordial potential of the universe, thus testing

29 Hubble Fellow.
30 http://deep.berkeley.edu/
31 http://www.cfht.hawaii.edu/Science/
32 www.sdss.org
33 http://www.lsst.org

inflation. In particular, Dalal et al. (2008) have pointed out the
relationship between the non-Gaussianity of the potential in the
early universe (due to various possible inflationary scenarios)
and the large-scale power of mass tracer in the universe. Finally,
at k ∼ 0.01 h Mpc−1, the power spectrum turns over from a k1

slope (for a scale invariant spectrum of initial fluctuations) to a
k−3 spectrum, caused by modes that entered the horizon during
a radiation-dominated era and were therefore suppressed. The
precise position of this turnover is thus determined by the size
of the horizon at matter-radiation equality. It corresponds to a
physical scale determined by the total matter (ΩMh2) densities
and radiation densities (Ωγ h2). In particular, with a large
survey such as SDSS, various groups have used the large-scale
power spectrum to put stringent constraints on cosmological
parameters, most notably Zehavi et al. (2002), Tegmark et al.
(2004), Eisenstein et al. (2005), Padmanabhan et al. (2007),
Percival et al. (2010), and Reid et al. (2010).

The SDSS has now surveyed 14,555 deg2, and with appro-
priate photometric selection, we can construct a large uniform
sample of the photometric LRGs (Ross et al. 2011) and their pho-
tometric redshifts, which can be easily calibrated using the ac-
quired spectroscopic redshifts of a uniform sub-sample (∼10%)
of the photometric galaxies. This approach allows for the pos-
sibility of using both standard rulers (from the turnover scale
of power spectrum and also the BAOs) to acquire cosmological
constraints.

We make use of this opportunity to derive one of the most
accurate measurements of the galaxy angular power spectra
achieved to date. We start with the five-band imaging of the
SDSS-III DR8 (Aihara et al. 2011; Eisenstein et al. 2011) and
photometrically select a sample of LRGs, following the CMASS
galaxy selection detailed in White et al. (2011); the details of
the construction of the sample and the redshift distribution are
described in Ross et al. (2011). We then measure the angular
clustering power spectra as a function of redshift with an optimal
quadratic estimator, which has been proved to provide the best
statistical error bar when the field is Gaussian. The galaxy
density field is not Gaussian on small scales, due to nonlinear
evolution; however, at relatively large scales, which are the
scales we are concerned with here, the field is close to Gaussian.
We will discuss this issue in detail in the paper. With such a
large volume of data, we realize that the effects of large-scale
systematics are not negligible. To gauge and correct for the
effects of large-scale systematics, we develop a novel method
in correcting the large-scale systematics given that we know
the list of possible systematics. We construct maps of various
systematics and calculate their cross-correlation with the galaxy
density, the systematic auto-correlations, and cross-correlations.
We can then correct for these systematics by applying this new
method.

The paper is organized as follows: Section 2 describes
the construction of the sample; Section 3 presents the the-
ory and measurement of the angular power spectra; Section 4
discusses the various potential systematics and the novel
method applied in correcting for the observational systematics.
Section 6.1 describes the validation of the cosmological param-
eter fitting method, and Section 7 summarizes the cosmological
constraints themselves. We conclude in Section 8.
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Wherever not explicitly mentioned, we assume best-fit
WMAP7 (Larson et al. 2011) parameters (from model
lcdm+sz+lens as specified on LAMBDA Web site34), which
are a flat ΛCDM cosmology with ΩM = 0.266, Ωb = 0.0449,
h = 0.71, and σ8 = 0.801.

2. THE DATA

2.1. Observations

The SDSS (York et al. 2000; Eisenstein et al. 2011) mapped
over a quarter of the sky using the dedicated Sloan Foundation
2.5 m telescope located at Apache Point Observatory in New
Mexico (Gunn et al. 2006). A drift-scanning mosaic CCD
camera (Gunn et al. 1998, 2006) imaged the sky in five
photometric bandpasses (Fukugita et al. 1996; Smith et al. 2002)
to a limiting magnitude of r ≃ 22.5. The imaging data were
processed through a series of pipelines that perform astrometric
calibration (Pier et al. 2003), photometric reduction (Lupton
et al. 2001), and photometric calibration (Padmanabhan et al.
2008). In particular, Baryon Oscillations Spectroscopic Survey
(hereafter BOSS), which is a part of SDSS III (Eisenstein et al.
2011; Aihara et al. 2011), has completed an additional 3000 deg2

of imaging and is now obtaining spectra of a selected subset of
1.5 million galaxies. The targets are assigned to spectroscopic
plates (tiles) using an adaptive tiling algorithm based on Blanton
et al. (2003), and observed with a pair of fiber-fed spectrographs.

The availability of a large uniform photometric data set
prompted the start of this project, and thus a series of papers,
starting with the generation of the photometric redshift catalog
by Ross et al. (2011), which uses 112,778 of the BOSS spectra as
a training sample for the photometric catalog. The photometric
redshift catalog contains over 1.6 million objects, and 900,000
of these objects lie within our imaging mask and the selected
redshift range (0.45 < z < 0.65). The redshift range is selected
so that it is nearly completely independent from the DR7
analysis of LRG clustering using spectroscopy which stops at
z ∼ 0.4 (Reid et al. 2010; Percival et al. 2010); this allows for the
possibility of trivial combination of likelihoods. These galaxies
are among the most luminous galaxies in the universe and
trace a large cosmological volume while having a high enough
number density to ensure that shot noise is not a dominant
contributor to the clustering variance. The majority of the
galaxies have spectral energy distributions (∼85%, see Masters
et al. 2011 and C. Maraston 2011, private communication with
the BOSS galaxy-evolution group) that are distinctive of old
stellar populations.

2.2. Defining Luminous Red Galaxies

We make use of the CMASS sample from BOSS, which is
defined in White et al. (2011) and Ross et al. (2011), and we
write down the criteria here again for convenience:

17.5 < icmod < 19.9

rmod − imod < 2

d⊥ > 0.55

ifiber2 < 21.7

icmod < 19.86 + 1.6 × (d⊥ − 0.8)

c‖ > 1.6, (1)

34 http://lambda.gsfc.nasa.gov/product/map/dr4/parameters.cfm

where

d⊥ ≡ (r − i) − (g − r)/8 ≈ r − i

c‖ ≡ 0.7 ∗ (g − r) + 1.2 ∗ (r − i − 0.18). (2)

The magnitudes denoted by “cmod” are “cmodel magnitudes”
(see White et al. 2011 for more discussions), and the colors are
defined with model magnitudes, except for ifiber2, which is the
magnitude in the 2′′ spectroscopic fiber (Stoughton et al. 2002;
Abazajian et al. 2004). Note that we applied ifiber2 < 21.7,
although the current BOSS target selection has moved the limit
from 21.7 to 21.5. All magnitudes are extinction corrected using
the maps of Schlegel et al. (1998).

In addition to constructing galaxy density maps, we created
several additional maps that we use to reject regions heavily
affected by sample systematics such as poor sky or stellar
density, and to make sure our final power spectra are free of
systematics. These include (1) a map of the FWHM of the
point-spread function in the r band; (2) a map of stellar density
(18.0 < r < 18.5 stars); (3) a map of sky brightness in the
i-band in nanomaggies35/arcsec2; (4) three maps of the color
offsets in u−g, g−r, and r−i from Schlafly et al. (2010); and (5)
a map of Galactic extinction simply rescaled from the extinction
maps from Schlegel et al. (1998).

2.3. Angular and Redshift Distributions

To interpret the clustering of any sample, one must character-
ize the expected distribution of the sample as if it is completely
random. This involves understanding both the angular and ra-
dial selection function in addition to the expected galaxy density,
which is characterized by its mean density.

To characterize the angular window function, we generate the
complete angular mask of the survey following the procedures
described below. The observed sky is defined as a union of all
fields. Determining the window function requires identifying the
fields that cover each position on the sky and deciding which
of those fields should be considered as primary at that position.
There is a unique set of disjoint polygons on the sky defined
by all of the field boundaries, which are calculated using the
MANGLE package36 (Hamilton 1993; Hamilton & Tegmark
2004; Swanson et al. 2008), and each field can be divided into
multiple polygons. We now must decide which fields are primary
for each polygon in the sky; the process is described in Aihara
et al. (2011) in detail. Once we determine which fields are
primary for all the polygons in the sky, we make a cut on the
field observing conditions (SCORE >= 0.6; for more details
on SCORE, see Aihara et al. 2011 or the SDSS-III Web site37).
We now have a unified MANGLE polygon file that includes
all of the fields that are imaged in the entire SDSS footprint,
with the correctly assigned primary fields with good observing
conditions. We call this the “full imaging mask,” as plotted in
Figure 1. The color in Figure 1 represents the date at which the
imaging data were taken. The striped pattern perpendicular to
the scanning direction is easily visible, and we can also see that
the north and south Galactic caps are observed at significantly
different epochs of the survey. This provides a hint as to what
potential observational systematic effects would look like. To
create a more restrictive mask that caters toward photometric red
galaxies, we proceed to exclude regions where E(B−V ) > 0.08

35 http://data.sdss3.org/datamodel/glossary.html#nanomaggies
36 http://space.mit.edu/∼molly/mangle
37 sdss3.org
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Figure 1. Full imaging angular mask in equatorial coordinate system after
generating a unique set of all polygons that contains primary fields with good
observing conditions. The colors represent the Modified Julian Date of the
observation of each field.

Figure 2. Preliminary imaging mask after applying primary selection cuts such
as cuts on seeing and the bright star mask on the full imaging angular mask.

(Scranton et al. 2002; Ross et al. 2006; Padmanabhan et al. 2007;
Ho et al. 2008), which is almost identical to Ar > 0.2, when
seeing in the i band exceeds 2.′′0 in FWHM, and masking regions
around stars in the Tycho astrometric catalog (Høg et al. 2000).
We vary the size of the bright star mask in the Tycho catalog.
For brighter stars, we have a bigger mask. We include Tycho
catalog stars brighter than B = 13, and vary the radius of the
mask between B = 6 and B = 11.5. The final angular selection
function covers a solid angle of ∼11,000 deg2 and is shown in
Figure 2.

Applying the selection criteria in Section 2.2 to the
14,555 deg2 of photometric SDSS imaging considered in this
paper yields a catalog of approximately 1,500,000 galaxies. Ap-
plying the angular selection function as shown in Figure 2 to the
Ross et al. (2011) photometric redshift catalog yields a sample of
872,921 objects, 96% of which are believed to be galaxies (3%
are stars, and 1% are quasars, according to statistics gathered in
the spectroscopic sub-sample; Ross et al. 2011). For every ob-
ject, photometric redshifts and the probability of being a galaxy
were determined using the ANNz Neural Network (Collister &
Lahav 2004; Firth et al. 2003). The calibration and accuracy of
these data are discussed in detail in Ross et al. (2011). In the
range considered in this paper, the redshifts have calibrated er-
rors ∼0.04 at z ∼ 0.45 and ∼0.06 at z ∼ 0.65. We pixelize these
galaxies as a weighted (with the probabilities of being a galaxy)
number overdensity, δg = δn/n̄, onto a HEALPix pixelization
(Gorski et al. 1999) of the sphere, with 12,582,912 pixels over
the whole sphere (HEALPix resolution 10, nside = 1024), where
each pixel covers a solid angle of 11.8 arcmin2. These pixelized
maps are used directly to compute the angular power spectra

Figure 3. Redshift distribution of the photometric CMASS sample when we
match the objects with an unbiased sub-sample from SDSS-III BOSS.

Table 1
Descriptions of the Six ∆z = 0.05 Redshift Slices;

zmid is the Midpoint of the Redshift Interval

Label zmid Ngal bg

CMASS 0 0.425 23517

CMASS 1 0.475 154531 1.92 ± 0.06

CMASS 2 0.525 198132 1.98 ± 0.05

CMASS 3 0.575 190603 2.19 ± 0.05

CMASS 4 0.625 121181 2.19 ± 0.05

CMASS 5 0.675 54744

Notes. Bias parameters are deduced from marginalizing over all the other

cosmological parameters (and a free shot-noise term) from combining WMAP

7 + HST + DR8 angular power spectra likelihood using only 30 < ℓ < 150

multipoles. The first and last bins are dropped from here on due to the small

number of galaxies in those bins.

using the optimal quadratic estimator. The optimal quadratic
estimator does not downsample input pixelized maps, rather, it
computes the covariance matrix directly from these pixelized
maps, and this will be discussed further in Section 3.4.

The sample is divided into six photometric redshift slices
of thickness ∆z = 0.05 starting at z = 0.4 for the CMASS
sample (CMASS 0 through CMASS 5; see Table 1 for details),
and the underlying redshift distributions for each slice are
calculated using the BOSS spectroscopic redshift of the same
sample. The redshift distribution of the sample is plotted in
Figure 3. We can see that although the majority of the objects
in one photometric redshift bin is in their corresponding true
redshift bin, a significant fraction of them fall into neighboring
bins. The comparisons of these photometric redshifts to the
spectroscopic redshifts (obtained via SDSS III spectra) are
plotted in Figure 4, while properties of the different slices are
summarized in Table 1. We see that the numbers of galaxies
in both the first and the last bins are significantly smaller than
the others, and therefore we decide to drop these two bins from
our analysis. This decision is also facilitated by the fact that we
wish to have a nearly independent sample from the Reid et al.
(2010) and Percival et al. (2010) LRG clustering analysis, thus
allowing for a simple combination of their likelihoods in the
cosmological parameter analysis.
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Figure 4. Photometric vs. spectroscopic redshift distribution of 112,778 of
SDSS-III BOSS CMASS galaxies.

2.4. Sample Systematics

There are a number of potential systematic effects in pho-
tometric samples that contaminate clustering: stellar contami-
nation and obscuration, seeing variations, sky brightness varia-
tions, extinction, and color offsets (such as those described in
Schlafly et al. 2010). Ross et al. (2011) had extensive discussions
concerning these potential systematics; we will concentrate on
the particular effects from various systematics on the angular
power spectra in the range of scales that affects our science
analysis.

The above cuts remove only the parts of the sky that are
significantly affected by extinction and seeing variations. With
such a large sky coverage, an accurate determination of the
angular power spectra of the large-scale tracer is only possible
through a thorough understanding of the systematics. However,
if we only retain parts of the sky that have the minimum
systematic effects, then we must remove most of the coverage,
as we have demonstrated in Ross et al. (2011). Therefore,
we developed a novel way of dealing with residual sample
systematics which we will discuss in detail in Section 5.

3. THE ANGULAR POWER SPECTRUM

As was noted in the Introduction, the angular power spectrum
contains information about both the growth and the expansion
of the universe, and thus the shape of the power spectrum,
through two standard rulers of the universe: the BAOs and the
matter-radiation equality turnover scale. In this section, we will
describe both the theory and the computation of the angular
power spectrum.

3.1. From Galaxy Distributions to Angular Power Spectrum

The intrinsic angular galaxy fluctuations are given by

g(θ̂ ) =

∫
dz b(z)N (z)δ(χ (z)θ̂, z), (3)

where b(z) is an assumed scale-independent bias factor relating
the galaxy overdensity to the mass overdensity, i.e., δg = b δ,
N (χ (z)) is the normalized selection function, and χ (z) is the
comoving distance to redshift z. We focus on the auto-power
spectrum of the galaxies:

Cgg(ℓ) =
2

π

∫
k2dkP (k)[g]ℓ(k)[g]ℓ(k), (4)

where P (k) = P (k, z = 0) is the matter power spectrum today
as a function of the wave number k, and the function [g]ℓ is

[g]ℓ (k) =

∫
dz bi(z)N (z)D(z)jℓ(kχ (z)). (5)

The Limber approximation, which is quite accurate when ℓ is
not too small (ℓ ∼

> 10), can be obtained from Equation (4) by
setting P (k) = P (k = (ℓ+ 1/2)/χ (z)) and using the asymptotic
formula (2/π )

∫
k2dkjℓ(kχ )jℓ(kχ ′) = (1/χ2)δ(χ − χ ′) (when

ℓ ≫ 1). We find that the substitution k = (ℓ + 1/2)/χ (z) is a
better approximation to the exact expressions than k = ℓ/χ (z).
Note that jl(x) is the lth-order spherical Bessel function. On
large scales where the mass fluctuation δ ≪ 1, the perturbations
grow according to linear theory δ(k, z) = δ(k, 0)D(z)/D(0).

For auto-correlation, applying the Limber approximation will
change Equation (4) to the following:

C
gg

ℓ =

∫
dz

dχ

dz

1

χ2(z)
b2(z)N2(χ )P (k, z). (6)

For cross-correlation between two different large-scale struc-
ture samples (be it different selection functions, redshift distri-
butions, different biases), we can write the cross-correlation as
follows:

C
gg′

ℓ =

∫
dz

dχ

dz

1

χ2(z)
b(z)b′(z)N (χ )N

′

(χ )P (k, z), (7)

where g′ can have different biases, redshift dependence, etc.
We have not yet distinguished between the galaxy and the

matter angular power spectrum. Throughout this paper, we
simply assume

Cg(ℓ) = b2
gC(ℓ) + Nshot + a, (8)

where Cg(ℓ) and C(ℓ) are the galaxy and matter angular power
spectra, bg is the linear galaxy bias, Nshot is a constant shot-noise
term which is estimated by the optimal quadratic estimator, and
a is a constant term that is fitted as a freely floating parameter.
This is a good approximation on large scales, but breaks down
on smaller scales; we defer a discussion of its regime of validity,
as well as the nonlinear evolution of the power spectrum, to a
later section of this paper (Section 3.3).

Throughout the paper, we adopt this linear redshift indepen-
dent (within our redshift slice) bias model with a constant shot-
noise term. The bias and the shot-noise term of the galaxy sam-
ple for the various redshift slices are fit as extra parameters in
Cosmological Monte Carlo (COSMOMC; Lewis & Bridle 2002)
chains to ensure that we do not bias our cosmological models
via fixing of any particular pre-computed bias.

3.2. Redshift-space Distortions

The position of observed galaxies can be inferred from
their redshift, and hence the peculiar velocity along the line
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of sight can, in principle, affect our angular power spectrum.
So far, we have neglected the effect of the peculiar velocity,
i.e., the redshift-space distortion (RSD) effect on the angular
power spectrum. In the three-dimensional (3D) redshift-space
power spectrum measured with spectroscopic surveys, the
modeling of RSD is still challenging due to the fact that the
mapping process from real to redshift space is nonlinear in
terms of peculiar velocity. For recent efforts, see, for example,
Scoccimarro (2004), Taruya et al. (2010), Reid & White (2011),
and Seljak & McDonald (2011). It is comparatively easy to
model the RSD effect on the angular power spectrum because
the RSD information along the line of sight is projected out
in the angular clustering. Padmanabhan et al. (2007) formulated
the RSD for the angular power spectrum at the linear level,
and showed that the linear RSD effect can be seen only at
large scales (ℓ < 20). However, we could imagine that if we
select thin redshift slices, the nonlinear RSD effect may not be
projected out and may become non-negligible at small scales.
S. Saito et al. (2012, in preparation) show that such nonlinearities
become important only in the case when σz < 0.01 at ℓ > 500,
but this is not the case here.

Here, we include the linear RSD effect following
Padmanabhan et al. (2007). To be complete, let us review some
of the important details from Padmanabhan et al. (2007):

1 + g(θ̂) =

∫
dχ N (s) [1 + δ(χ θ̂ , χ )] , (9)

where we have now written the normalized selection function
as a function of redshift-space distance, s = χ + v · θ̂ with
the peculiar velocity component, v. Assuming the peculiar
velocities are small compared with the thickness of the redshift
slice, we Taylor expand the selection function to linear order,

N (s) ≈ N (χ ) +
dN

dχ
(v · θ̂ ) . (10)

Substituting this expression into Equation (9), we express sep-
arately the two-dimensional (2D) galaxy density field in two
terms, g = g0 + gr , where g0 is the term discussed in the pre-
vious section, while gr is the linear RSD correction. With the
help of the linear continuity equation, we have the Legendre
coefficient as

δr
g(ℓ) = iℓ

∫
d3k

(2π )3
W r

ℓ (k) . (11)

The component is given by

W r
ℓ (k) =

β

k

∫
dχ

dN

dχ
j ′
ℓ(kχ ) , (12)

where β is the growth parameter defined by β ≡
d ln D/d ln a/bg , and j ′

ℓ is the derivative of the spherical Bessel
function with respect to its argument. We can then apply the
fact that Cℓ ≡ 〈gℓg

∗
ℓ 〉, and calculate the redshift-space distorted

angular power spectra.

3.3. Nonlinearities

Nonlinearities in the power spectrum are caused by the
nonlinear evolution of components of the universe, especially
the late time evolution of matter and baryons. To capture
the full extent of the nonlinearities, with a lack of a full-
fledged nonlinear evolution theory, one will need to simulate
the evolution of most if not all of the components of the

universe. Extensive research and discussion have been carried
out on multiple fronts (Sánchez et al. 2008, 2009), whether
it is by perturbation theory (Carlson et al. 2009), dark matter
simulations (Hamaus et al. 2010; Heitmann et al. 2009), or
fitting functions suggested by dark matter simulations (Smith
et al. 2003). Historically, there are a few ways to deal with
nonlinearities in utilizing the power spectrum to constrain
cosmology, such as comparing the nonlinear power spectrum to
the linear power spectrum (usually for a specific cosmological
model) and keeping only scales that are believed to be linear
(Tegmark et al. 2004; Padmanabhan et al. 2007); utilizing the
halo occupation model to convert a galaxy power spectrum into
a halo power spectrum, which can be easily compared to a halo
power spectra from dark matter simulations (Reid et al. 2010);
or using a variety of fitting functions developed by Carlson
et al. (2009) to fit its observed galaxy power spectra (Blake
et al. 2010). Our project both benefits and suffers from the
fact that it is a photometric survey. On the one hand, its BAO
signal is smeared, as we do not have accurate redshifts; on
the other hand, the integration along lines of sight ameliorates
the nonlinearities that would have been considerably stronger.
Therefore, traditionally, angular power spectra analysis usually
only applies a simple cut on the angular scale that roughly
corresponds to k = 0.1k Mpc−1 (Padmanabhan et al. 2007).
In this paper, we take a small step forward in terms of the
nonlinearity treatment of the overall shape of the angular power
spectrum, and also adopt a similar treatment as in Eisenstein
et al. (2007) and Blake et al. (2010) for the nonlinear treatment
on the BAO scales.

3.3.1. Nonlinear Effects on the Overall Shape of the Power Spectrum

There is an extensive body of literature discussing how one
can model the linearities of a 3D power spectrum over a large
range of scales (Sánchez et al. 2008; Carlson et al. 2009; Hamaus
et al. 2010). This paper does not intend to address the issue of
fully modeling the nonlinearities in a 3D power spectrum; we
do, however, take a simple model that happens to perform quite
satisfactorily for the 2D angular power spectrum. We adopt
the simple linear redshift-independent biasing model (with shot
noise subtracted for every single angular power spectra). There-
fore, in addition to the cosmological parameters that are of
interest for each model, we include three extra parameters for
each redshift slice (b, Nshot, and a) as shown in Equation (8).

We test the sufficiency of this model in multiple ways. We
test this model by fitting only 2 < ℓ < 150 and 2 < ℓ < 200
using simulated CMASS mocks (as is discussed in Section 3.5).
We compute optimally quadratic estimated power spectra of
simulated data (a total of 160 realizations from 20 independent
simulation boxes, with 8 lines of sight each), and then we
compute 8 averaged (over 20 independent simulations) power
spectra, and combine it with a pseudo-WMAP7 likelihood
(which has the covariances of WMAP7 likelihood, but with
cosmological parameters centered on the input parameters of the
CMASS mocks). We find that when using the above-mentioned
model for the averaged power spectra, in combination with
pseudo-WMAP7, we recover all input cosmological parameters
of the CMASS mocks for all eight averaged power spectra to
within 1.5σ . We conclude that a spread over 1.5σ is reasonable.
The bias parameters recovered are also similar to the input bias
of the CMASS mocks as described in White et al. (2011). We
therefore conclude that this model is accurate in recovering
cosmological parameters when used in the range of angular
scales as specified above.
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Figure 5. To justify our choice of scale for fitting our cosmological parameters,
and the model we adopted, we show how well a simple model such as
b2Phalofit(k) + 1/n + a can fit fairly well up to k = 0.2 h Mpc−1. Top panel
shows the nonlinear power spectrum of halos in cosmological simulations (dots
with error bars), the model being considered here is b2Phalofit(k) + 1/n+ a (solid
line), and the dashed line shows what happens if we only use b2PNL(k) instead.
Bottom panel shows a/Phh(k) where a = Phalofit(k) + 1/n, we can see that the
ratio is fairly consistent with 0.0 for a large range of mass, and it starts to deviate
from 0.0 starting at k = 0.1 Mpc h−1. Therefore, we find it prudent to include
an extra parameter in our formalism, as we do with some modes where k is
larger than k = 0.1 Mpc h−1. The different color lines correspond to different
halo mass ranges. The largest halos are those with highest bias, which also gives
the largest deviations from the model. Note that each mass bin has a number
density of n = 3.7 × 10−5 (H/Mpc)3.

We further test this model by comparing this model with
Hamaus et al. (2010); we found that our simple method
fits the nonlinear power spectrum derived from cosmological
simulations quite well even up to k = 0.2 h Mpc−1. In
Figure 5, we plot the nonlinear power spectrum from numerical
simulations of halos (points with error bars), and while the
solid lines are the power spectrum of various halo mass bins
calculated using our simple model b2Pnon−lin(k)+1/n̄, the model
fits the nonlinear power spectrum quite well over a significant
range in k even when we have not yet added the additional
constant term a. The dashed lines show the results without
the shot-noise term for various halo mass bins. Our model of
the nonlinear power spectrum is based on HALOFIT (Smith
et al. 2003), so in order to not confuse the reader, we will
call Pnon−lin(k) by Phalofit(k). The lower panel shows the ratios
between a ≡ Phh(k) − (b2Phalofit(k) + 1/n) and Phh(k) plotted as
lines. The nonlinear bias is fairly well fit by our simple model
even if we do not include the extra constant bias term. We
decided to include the extra constant term to help remove the
residual difference between Phh(k) and b2Phalofit(k) + 1/n.

3.3.2. Nonlinear Effects on the BAO

We test the effect on our results of nonlinear evolution on
the smearing of the BAO feature by assuming that the nonlinear
matter power spectrum follows the expression in Eisenstein et al.
(2007):

P (k) = exp
(
−k2

Σ
2
nl/2

)
Pwiggle(k)

+
(
1 − exp

(
−k2

Σ
2
nl/2

))
Pno−wiggle(k), (13)

where Σnl = G(z)/G(0) × 7.527 h−1 Mpc, Pwiggle(k) is the
linear theory power spectrum (which includes the BAO), and
Pno−wiggle(k) is a smooth power spectrum, with the same shape

Figure 6. We applied two different methods in calculating the power spectrum
(including the BAO) with nonlinear effects taken into account, and find that it
makes very little difference in the cosmological parameter constraints.

as Pwiggle(k) but without any baryonic oscillations, which is
computed using the approximation described in Eisenstein &
Hu (1998). Both the wiggle and the no-wiggle part have been
computed in linear theory; we then added the corresponding
nonlinear ratios as a function of the scale to both of them.
The nonlinear ratios as a function of the scale follow Blake
et al. (2010). In short, we calculate the nonlinear enhancement
of power using the input no-wiggles reference spectrum rather
than the full linear model including the baryon oscillations.
For more details, please see Blake et al. (2010). This approach
significantly enhances the power on small scales. We find that the
results are not very sensitive to the exact value of Σnl, provided
that it is in the range of 5.527–9.527 h−1 Mpc (Eisenstein
et al. 2007). In principle, Σnl is cosmology dependent, and
thus can change our cosmological constraint if it is kept as
a free parameter. We have therefore examined our constraints
on cosmological parameters using different Σnl. We test this
issue by fitting the full set of cosmological parameters using
the MCMC fitting method with COSMOMC, with Σnl set to
2 h Mpc−1 higher and lower than its currently chosen value
(7.527), and find that when we fit for a ΛCDM model in
combination with WMAP7, there is less than a 5% change in
the error for any of the parameters.

The addition of the nonlinear ratios is quite important, not
only because the power on small scales in the angular power
spectrum at high multipoles is not expected to account for the
shot noise due to a finite number of galaxies, but also because
the small shift in the BAO wiggles can slightly modify the
best-fit shape of the power spectrum, and hence return a
different value of Γ ≡ Ωmh. We applied two different methods
in calculating the power spectrum (including the BAO) with
nonlinear effects taken into account. The first method follows
Blake et al. (2010) and the second method is a naive application
of HALOFIT (Smith et al. 2003) on the power spectrum
computed following Eisenstein et al. (2007). We find that it
makes essentially no difference (see Figure 6).

3.4. Optimal Estimation of Angular Power Spectrum

The theory behind optimal power spectrum estimation is now
well established, so we limit ourselves to details specific to this
discussion and refer the reader to the numerous references on
the subject (Hamilton 1997; Seljak 1998 and references therein).
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We also refer the reader to the Appendix for more specific details
that relate to our paper directly.

We start by parameterizing the power spectrum with 20 step

functions in l, C̃i
l ,

Cℓ =
∑

i

piC̃
i
ℓ , (14)

where the pi are the parameters that determine the power
spectrum. We form quadratic combinations of the data,

qi =
1

2
xT CiC

−1Cix , (15)

where x is a vector of pixelized galaxy overdensities, C is the
covariance matrix of the data, and Ci is the derivative of the
covariance matrix with respect to pi. The covariance matrix
requires a prior power spectrum to account for cosmic variance;
we estimate the prior by computing an estimate of the power
spectrum with a flat prior and then iterating once. We also
construct the Fisher matrix,

Fij =
1

2
tr[CiC

−1Cj C−1] . (16)

The power spectrum can then be estimated, p̂ = F−1q, with
covariance matrix F−1.

We also refer the reader to the Appendix for details more
specific to our project.

3.5. Tests with Simulations

To test whether the errors estimated by the quadratic estimator
employed here are accurate or not and to test the results of our
pipeline, we must compute the errors obtained via a series of
simulations.

One way to do this is to generate a Gaussian random field
using the prior power spectra for each redshift slice to simulate
over the entire sphere. We can Poisson distribute galaxies with
a probability of (1 + δ)/2 over the survey region, trimmed with
the angular selection function. Padmanabhan et al. (2007) have
tested this pipeline with the Gaussian random fields simulations;
thus, what we need to test here is whether the errors estimated
by the quadratic estimator are appropriate, considering that
the power spectrum measurement is only a minimum variance
measurement when the field is Gaussian, which is not the
case here. Given the non-Gaussianity of the field, we need to
determine how close we are to minimum variance measurement.

As we would like to simulate our galaxy sample as closely as
possible, we employed CMASS mock catalogs from White et al.
(2011) to test the accuracy of the optimal quadratic estimator.
White et al. (2011) have produced a series of mock catalogs that
use the best-fit Halo Occupation Distribution (HOD) models
from White et al. (2011) and populate a series of N-body
simulations (White et al. 2011). The majority of the galaxies
are central galaxies living in halos of mass 1013 h−1 M⊙. We
generate eight lines of sight from each corner of each of the
20 independent CMASS simulations from White et al. (2011).
These mock catalogs are then processed in the same manner as
the real data through the quadratic estimator code, and analyzed
in the same manner as the real data set. The mock angular power
spectra are thus optimally estimated angular power spectra.

We plotted the distribution of the power spectrum from
each simulation that is estimated by the quadratic estimator
code, and compare these results to the averaged error bar of
the simulation (see Figure 7). When comparing the expected

error to the distribution of the estimated power spectrum from
each simulation and the averaged measured error from each
simulation, we conclude that the averaged measured error is
a good measure of the expected error. We have plotted the
estimated error (red crosses of the middle panel of Figure 7)
by examining the variance of the estimated power spectrum
from each simulation at each ℓ-mode. We have also plotted the
averaged measured error (green points), and it is a bit higher
than the estimated error from the variance of the simulations
(bottom panel). This is probably due to the fact that there are
only 20 simulation boxes, with 8 lines of sights overlapping
slightly within each box. Therefore, the variance of simulated
Cl is probably slightly smaller than it should be at all scales,
due to the correlations between lines of sight. Regardless, we
show that the quadratic estimator code can estimate the errors of
the power spectrum in the scale of interest here with reasonably
high accuracy. It is important to note that at all scales of interest
(to the current paper), the estimated error from the quadratic
estimator code is not underestimated.

3.6. The Optimally Estimated Angular Power Spectrum

The angular power spectra estimated using the methodology
described in Section 3.4 are displayed in Figure 8. In particular,
we plot separately the north (Galactic), south, and full angular
power spectra of these four redshift bins (CMASS 1–4, from
z = 0.45–0.65). We plotted the north and south separately
to investigate possible systematic differences due to the long
separation of observation time between north and south galactic
caps. For the scales of interest (30 < ℓ < 150), the north
and south are not different enough to prompt separate analyses.
Nevertheless, this does not preclude the possibility of systematic
differences at the largest scales (at low multipole) in the angular
power spectrum. This is only possible because the estimated
power in each ℓ-bin is not correlated, therefore a systematic
difference in one ℓ-bin does not affect another.

To test the similarity of north and south region on scales of
interest (30 < ℓ < 150), we find that all best-fit cosmology
parameters (with combined with WMAP7 via MCMC chain us-
ing COSMOMC) found by north and south alone, respectively,
are consistent with each other. It is interesting to note that the
south has a smaller area than the north, and consequently there
is less information per ℓ-bin, thus the error bars in the south
are significantly larger than the north. It will also be discussed
later in Section 4 as the systematic treatment presented in this
paper will, in principle, correct systematic variations even when
the full survey is analyzed in one piece. We can also see the
evolution of the angular power spectra over different redshift
slices, as it is expected.

By looking at the cross-correlations between two different
photometric redshift bins, which has overlap in spectroscopic
redshifts would provide additional information on cosmological
parameters; while examining cross-correlations between two
photometric redshift bins which has no overlap in their actual
objects would give us hints on the additional spurious power
that are caused by systematics which would be common across
different redshift bins even though there were no overlap
in volume. As shown in Figure 3, we need to investigate
the potential effects of overlapping redshift distributions. We
calculate the cross-power of various redshift combinations, and
they are shown in Figure 9.

When we examine cross-power across various redshift bins,
any difference between the measured power and the expected
power (from galaxy auto-correlations in the same redshift range)
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Figure 7. Top: the estimated (from optimal quadratic estimator) power spectrum from 160 simulated realizations (red crosses) out of 20 independent dark matter
only simulations (White et al. 2011). The green points show the averaged recovered power spectrum from each of the simulations, while the blue points show the
averaged measured error as estimated from the optimal quadratic estimator. We conclude that the averaged measured error from the optimal quadratic estimator is a
good measure of the expected error. Middle: the estimated error (red crosses) is based upon the variance of the estimated power spectrum from each simulation at
each ell-mode. We have also plotted the averaged measured error (green points), and it is a bit higher than the estimated error from the variance of the simulations
(bottom panel). Nevertheless, we show that the quadratic estimator code can estimate the errors of the power spectrum in the scale of interest here with reasonably
high accuracy.

can be used as a measure of the effects of systematics. In the
top panel, there is significant extra power at the large scale,
and also negative correlations (which cannot come from galaxy
auto-correlations); therefore, we know that there are significant
systematics within CMASS 1. The bottom panel shows that the
high-redshift slice CMASS 4 also has substantial effects from
systematics.

Finally, to estimate whether it is worth including the cross-
power of various redshift slices in the cosmological analysis,
we performed a simple Fisher analysis. We calculated Fisher
matrices using angular spectra from the four redshift bins
(CMASS 1–4), with the redshift distributions given in Figure 3.
A standard ΛCDM cosmology is employed to calculate the
fiducial spectra. We used the Limber approximation (where
the input power spectrum was given by CAMB38 linear power
spectrum and HALOFIT) and ignored RSDs. We employ the
standard Gaussian expression for the covariance matrix of the
spectra. The shot-noise term was calculated assuming Nl =
1/n̄ (with n̄ being the number of galaxies per steradian of the
individual bin). Finally, to construct the Fisher matrix, we used
the range l = 30–300. The parameter space is given by Ωb, Ωc,
Ων , ΩΛ, σ8, ns, b1, b2, b3, and b4 (bN refers to biases of galaxy

38 http://camb.info/

sample at redshift slice N). The Fisher matrix is then added to
the WMAP7 Fisher matrix and inverted to find the covariance
matrix for the parameters. We then consider two cases: (1) using
only the auto-spectra as observables and (2) using both auto-
and cross-spectra as observables. The errors on all parameters
improve by less than 5% in going from (1) to (2). We also
found that ignoring covariances between different auto-spectra
(we do include the covariance between auto-power spectra in
the analysis) makes less than 5% difference. This suggests that
when we include these covariances in the MCMC, the errors
will not change significantly. We therefore adopt a conservative
approach where we do not include the cross-power as an extra
signal, but we include the bin-to-bin covariance which can, in
principle, be double counted due to the overlap of redshift slices.

4. POTENTIAL SAMPLE SYSTEMATICS

Without accurately addressing known potential systematics
on the observed number density of objects in our sample, we
cannot claim to understand its expected angular power spectra,
nor can we extract cosmological information from it. The
treatment of systematics is especially crucial for the overall
shape of the power spectrum, since the shape does not deviate
much from power laws and has no specific features such as

9
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Figure 8. Measured angular power spectrum for the four redshift bins using the methodology described in Section 3.4. We have plotted the full angular power spectra,
which takes in the whole sky in the top panel, the north (Galactic) angular power spectra, and the south (Galactic) angular power spectra. Within the range of interest,
the north and south angular power spectra are consistent, suggesting that the systematics are at a relatively low level in the scales of interest if they affect the north and
south differently.

those in BAO. The oscillatory nature of the BAO signal helps
it from being contaminated by any systematic signal that does
not have oscillatory features. Moreover, most BAO detection
methods attempt to minimize any influence from the shape
directly (Eisenstein et al. 2007), thus further shielding the BAO
technique from any systematic effects. We will propose a novel
method of systematic corrections in Section 5 which helps
mitigate the effects caused by any systematics in the power
spectrum.

4.1. Description of Systematics

Here, we consider not only sample systematics, but, in
particular, the systematics that may contribute to extra (or
deficit) power in the angular scale under consideration. It is
especially important to consider the potential systematics in
photometric surveys, since we do not have the radial modes
and spectral identifications that are available to spectroscopic
surveys.

4.1.1. Stellar Contamination and Obscuration

Stars can, in principle, mimic galaxies given the right colors,
or give rise to obscuration due to possible foreground subtraction
issues due to the presence of a star. As it was pointed out in
Ross et al. (2011) that the magnitude range of stars does not
change its effect on the galaxy number density, we pick stars
of magnitude 18 < r < 18.5 and investigate its influence on

the galaxy auto-power spectrum. The auto-power spectrum of
the stellar density map is plotted in Figure 10 while the stellar
density map is plotted in Fiugre 11. We use the same mask
as the CMASS samples, since the stars can only affect the
galaxy power spectrum where the two overlap. We calculate the
cross-power spectra between the stars and the various CMASS
redshift slices and find that there is a significant correlation at
several angular scales (see Figure 12), mostly at large scales.
In particular, there are strong angular correlations (ℓ < 10
for CMASS 1, ℓ < 20 for CMASS 2) between stars and the
galaxies at large scales, while we observe that the number
density of galaxies is lower when it is closer to a star (as
also discussed in Ross et al. 2011). In this paper, we do not
include scales that are smaller than ℓ < 8 since it is much larger
than the scales we are interested in. However, we will discuss
the larger scales further in a future publication on primordial
non-Gaussianities, as the largest angular scales contain more
information concerning primordial non-Gaussianities.

There is an extensive discussion on the stellar contamination
in the CMASS catalog in Ross et al. (2011). The fundamental
conclusions are that there are two separate effects: (1) stars
can be confused as galaxies, thereby contaminating the sample
and inducing a positive correlation between the densities of
stars and our sample and (2) the presence of a star artificially
reduces the chances of detecting a galaxy, thereby imparting a
negative correlation. In Ross et al. (2011), since the band powers
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Figure 9. Measured angular cross-correlations for the first three redshift bins with other slices. We do not show repeats of the cross-correlated pairs. When we examine
cross-power across various redshift bins, any difference between the measured power and the expected power (from galaxy cross-correlations) can also be used as
a measure of the effects of systematics. In the top panel, there is significant extra power at the large scale, and also negative correlations (which cannot come from
galaxy auto-correlations), therefore, there are significant systematics within CMASS 1. In the bottom panel, we observe that the high-redshift slice CMASS 4 also has
some substantial effects from systematics at large scales. The CMASS 2 and CMASS 3 samples are fairly clean from systematics in the scales of interest. The fitted
line is the best-fit model from our best-fit flat ΛCDM model.
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Figure 10. Angular power spectra of various systematics that we investigated
in relation to the possible contamination to the galaxy power spectra.

are highly correlated across bins separating distances, the two
effects together impart a slightly negative correlation between
the number density of stars and our sample. In our analysis
detailed in this paper, the estimated angular power spectra are

Figure 11. Stellar density map constructed from stars of 18 < r < 18.5.

designed to have minimal correlation across bins; therefore,
we can see both positive and negative correlations over different
scales (ℓ-bin), as seen in Figure 12. Given that we know stars are
likely to contribute to the observed number densities, we can take
into account the amount of contamination by using the above
discussed technique. Our results are consistent with Ross et al.
(2011) even though we do not detect smaller scale correlations
between the stars and the galaxies, since the estimator employed
in this paper produces estimates of angular band powers that are
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Figure 12. Cross-correlations between the various galaxy overdensity slices and stellar overdensities of 18 < r < 18.5.

Figure 13. Sky brightness characterized by the i-band sky brightness in
nanomaggies arcsec−2.

minimally correlated with other bins of band powers, while
estimates are highly correlated across bins in the analysis of
Ross et al. (2011). Therefore, although the correlations between
stars and galaxies are concentrated in the largest scales, they
appear in smaller angular scales such as those seen in Ross et al.
(2011).

4.1.2. Sky Brightness

The sky brightness from SDSS is presented in Figure 13.
There are at least two scales on which the sky brightness would
affect the expected number of galaxies. The first is the width of
the scan of the SDSS camera, the second comes from the fact
that the southern cap has a brighter sky, since we observe the
south at higher zenith angle, and thus more re-emission from
the optically thin lines that were pumped by the sun originally.

We use the auto-power spectrum of the sky brightness (shown
in Figure 10), and its cross-correlations with galaxy densities at
various redshifts (shown in Figure 14), to estimate the amount
of contamination that can come from the sky. We discuss the
corrections applied arising from sky brightness in Section 5.

4.1.3. Seeing Variation

Since SDSS uses a ground-based telescope at the Apache
Point Observatory, it is expected that the image quality, primarily
due to atmosphere seeing, will affect the number of galaxies
detected in any part of the sky. To quantify this, we plotted
the seeing variations in the sky in Figure 15. There is a striped

pattern as different parts of the sky are observed in different
nights, which have different atmosphere seeing. We use the auto-
power spectrum of the seeing variations and its cross-correlation
(as shown in Figure 16) with the galaxy density to determine
the effects of seeing on the galaxy overdensity clustering power.
Since we can see that there are statistically significant but mild
cross-correlations between the galaxies and seeing in several of
the angular band powers, we correct for the seeing variations as
discussed in Section 5.

4.1.4. Extinction

We check for any residual effects on the observed galaxy
overdensities due to Galactic extinction by computing the cross-
correlations between the galaxy overdensities and the extinction
map (Schlegel et al. 1998; see Figure 17). Since SDSS avoids
most heavily extincted areas, we only have a small overlapping
area where there is significant extinction and galaxy data. We
do not see a statistically significant cross-correlation between
the galaxy (except for scale of ℓ < 20 of CMASS 1) as shown
in Figure 18 and the extinction field, therefore, we conclude
that we will drop galactic extinction from the list of possible
contributing systematic effects as long as the range of interest
in this analysis remains smaller than ℓ > 20.

4.1.5. Color Offsets

Schlafly et al. (2010) reported various color offsets for the
SDSS footprint, in particular a north/south offset. As discussed
in Schlafly et al. (2010), the photometric offsets can be estimated
via two different ways: (1) using the color of stars in the
imaging data; and (2) using the stellar spectra to determine
spectral classes, and then calculate differences between the
observed and expected colors of stars. We adopted the latter
method, since it will not be sensitive to the intrinsic variations of
stellar properties. However, this approach requires spectroscopy
of stars, which is lacking in significant parts of the SDSS
southern sky. We still pursue it though, and find that there are
no significant detections between the galaxy density map that
overlaps with the offset map (which is lacking in southern sky
coverage as shown in Figure 19) in Figure 20. We therefore
conclude that this is not an important systematic in our sample.
However, this is only a statement that at the sky which is
overlapped between the galaxy density map and the offset map,
there are not significant correlations. We will need more data in
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Figure 14. Cross-correlations between sky brightness (i-band) and galaxy overdensities at various redshifts.

terms of the southern sky offsets before we can conclude on the
effects of color offsets and galaxy densities.

4.1.6. Magnitude Errors

As mentioned in Ross et al. (2011), the model magnitude
errors in the southern cap are larger than the northern cap by
∼10%, which may introduce a possible power excess (or deficit)
at the lowest multipole. This issue, however, should not affect
any of the other multipoles which are the focus of our paper.

5. NOVEL TREATMENT OF SYSTEMATICS

Assuming that residual systematics will exist in the best
catalog we can construct without a serious loss of sky, how
should we handle the remaining systematics? Without any
evidence of the possible nonlinear effects of systematics on
the observed density fields, we adopt the simplest approach: a
linear relationship between the systematics and the observed
galaxy density fields.

We start from the following. We transform fields from real
space into spherical harmonic space (or ℓ-space in particular),
so that 〈δgδg〉 = Cl :

δo
g = δt

g +

Nsys∑

i=1

ǫiδi, (17)

where δt
g is the true galaxy density (in the ℓ-space), and each

δi is the fluctuation of the map of the ith systematic, while ǫi

characterizes how much the ith systematic contributes. With the
lack of a better model, we assume a linear relationship between
the systematics and the observed galaxy number overdensity,
but in principle this model can be modified to include higher
order contamination due to the systematics.

For a simple demonstration, we assume that we have only
two systematics contributing to the observed galaxy density, so
that i = 2. Assuming that the true galaxy density is unrelated to
any of our systematics, we have the following:

〈
δo
gδ

o
g

〉
=

〈
δt
gδ

t
g

〉
+ ǫ2

1 〈δ1δ1〉 + ǫ2
2 〈δ2δ2〉 + 2ǫ1ǫ2 〈δ1δ2〉 . (18)

Furthermore, we have all the cross-correlations between the
systematic and the observed galaxy density map:

〈
δo
gδ1

〉
= ǫ1 〈δ1δ1〉 + ǫ2 〈δ1δ2〉 (19)

Figure 15. Seeing (image quality) map plotted in i-band FWHM. The stripes
are probably caused by the changing atmosphere seeing over the observation
time, as different parts of the sky are observed on different nights.

and 〈
δo
gδ2

〉
= ǫ2 〈δ2δ2〉 + ǫ1 〈δ1δ2〉 . (20)

Since we calculate all the auto- and cross-correlations of all
the systematics (on top of the cross-correlations between the
systematics and the observed galaxy density), we can solve for
ǫ1 and ǫ2 (and they will be functions of ℓ).

In Figure 21, we show the cross-correlations of all the
systematics (which contaminate the observed galaxy field), we
find that the correlations across different systematics are far
from zero, and we must include the cross-correlations among
systematics in our model.

For simplicity of demonstration, we show the result of
applying the correction from only one systematic (stars) in
Figure 22. Since we only include of one systematic, the
correction depends only on the auto-power of the stars and
the cross-correlation between the stars and the observed density
field. Although the star is one of our dominant systematics,
its effects on scales of interest (ℓ > 30) are quite minimal.
This implies that with the appropriate estimator (which does not
correlate powers in various scales), the effects from systematics
can be corrected relatively easily. This result further encourages
us in terms of the cosmological constraining power that can be
harnessed from future imaging surveys that will go deeper and
wider.

Finally, we calculate the final systematic-corrected power by
including all three systematics that are found to have significant
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Figure 16. Cross-correlations between image quality (seeing) and galaxy overdensities at various redshifts.

correlations with the observed galaxy density field. We include
the auto-power (of both systematics and galaxy density fields)
and all cross-powers (among systematics and galaxy fields)
at each angular scale. The final corrected power is shown in
Figure 23.

Nevertheless, the optimal quadratic estimator produces op-
timal errors and unbiased measurement only when the field is
Gaussian. In the case of highly non-Gaussian fields, the estimate
is still unbiased, but the error is not optimal and may not be ac-
curate. We can only test the validity of the estimated error by the
quadratic estimator if we simulate a large number of systematic
mocks, and carry out variance tests such as the ones carried out
for the galaxy density fields.

While we understand the construction of mock galaxy
catalogs, we do not fully understand how to construct mock
systematic fields. We lack the “theory” of systematics fields
(except probably the stellar density map). Therefore, it is
unlikely that we can achieve optimal error on the systematic
corrections within the scope of this analysis. The estimated val-
ues are unbiased, but the error can be overestimated or maybe
incorrect (Hamilton 1997). Nonetheless, when the systematic
corrections are small, the uncertainty related to the correction
cannot be larger than the correction itself. Therefore, we con-
clude that the most conservative way would be to include only
power from multipoles that have relatively small corrections.
Lacking a better model for the systematics, we adopt the fol-
lowing simplistic model of estimating the covariance of the
systematic-corrected power spectra for multipole bins which
require small corrections. We assume Gaussianity for the fields
involved, and thus use the following relationship:

σ 2
(
C

i,j

l

)
=

2

fsky(2ℓ + 1)

(
Ci

l +
∆Ω

Ni

)(
C

j

l +
∆Ω

Nj

)
. (21)

We modify the above equation by adding the “correctional
power” due to systematics:

σ 2
(
C

i,j

l

)
=

2

fsky(2ℓ + 1)
Πk=i,j

((
C2

i (l) + (∆Ci(l))
2
)1/2

+ N shot
i

)
.

(22)
This is for each δℓ = 1, so we take into account the fact that
the δℓ is not 1 in all of our bins. The quantity ∆Cj (ℓ) is the
correctional power contributed by systematics. This method
assumes the Gaussianity of the fields, which is not a satisfactory

Figure 17. Galactic extinction map from Schlegel et al. (1998). By comparing
with the full mask of the sky, we can see that for regions of maximum extinction,
the Galactic plane is completely avoided.

assumption; the optimal quadratic estimator can in principle
project out powers that are understood, such as those time-
dependent systematics that can be projected out in the cosmic
microwave background (CMB) map making. Nonetheless, fully
modeling the systematics and then projecting them out using
the optimal quadratic estimator is a much larger undertaking,
which will be left to future work.

We also show for completeness purposes the power spectra
of various redshift slices before and after the corrections in
Figure 24. The reduced chi-square of the fit shown in Figure 24
is 1.14. The fit is computed from the best-fit model using
CMB+HST+DR8.

We also compute the correlation function of our systematic-
corrected power spectra. One of the systematic correlation
correction methods employed in Ross et al. (2011) follows our
paper,39 and thus it is not surprising that we have achieved the
same systematically corrected correlation function, even though
the computation of the correlation function is independent.
Figure 25 shows how our computed correlation function from
our systematically corrected optimally estimated angular power
spectra is completely consistent (to within 1.5σ ) with the
measurement of Ross et al. (2011). We would also note that our
correlation function, shown in black lines in Figure 25 (our w(θ )

39 Even though this analysis is submitted at a later date, the Ross et al. (2011)
paper is part of the DR8 clustering project in SDSS III, and thus Ross et al.
(2011) have applied our method described here.
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Figure 18. Cross-correlations between galaxies of various redshift slices with the Galactic extinction map. Since there are not significant correlations between the
galaxies overdensities and the Galactic extinction map, we can drop the extinction from the list of potential systematic effects for CMASS 1, CMASS 3, and CMASS 4.
The CMASS 2 sample has a significant contribution at 1 multipole, but for reasons that we will discuss in later sections we will not include multipoles at ℓ < 30, so
this one multipole at CMASS 2 would not affect our cosmological analysis.

Figure 19. Color offsets in r−i calculated from sources provided by Schlafly
et al. (2010). These are derived from the spectra of the stars, and thus do not
include an intrinsic variation due to the metallicity gradient of stars within our
Galaxy.

calculated using the angular power spectra), has no significant
large-scale power, which suggests no exotic inflation scenario,
or residual systematics.

6. COSMOLOGICAL PARAMETER FITTING
METHOD AND VALIDATION

6.1. Method

As described in Section 3.3, we adopt the simple linear
redshift-independent biasing model (with shot noise subtracted
for every single angular power spectra). Therefore, in addition to
the cosmological parameters that are of interest for each model,
we include three extra parameters for each redshift slice (b,
Nshot, and a) as shown in Equation (8).

We have estimated that the nonlinear RSD effects are minimal
in our case (S. Saito et al. 2012, in preparation), therefore we
include the full linear RSD following Padmanabhan et al. (2007)
as discussed in Section 3.2. However, calculating the full linear
RSDs requires significant time, and it is different from the
Limber approximation at l < 30; therefore, we made a decision
to employ the Limber approximation for multipole ranges at
l � 30, and employ the full linear RSD calculation only at
l < 30.

The measured band powers from the quadratic estimator
have contributions from a range of wave numbers, even though
they are highly concentrated in their own ℓ-bin. The quadratic
estimator is designed to compute nearly anti-correlated power
spectra (Padmanabhan et al. 2003) across different multipole
bins, but it still has a very small (<∼5%) contribution from other
multipole bins. We take this effect into account by convolving
the theory power spectra with the window function before
calculating the likelihood by (d − t)T C−1(d − t), where d
represents the measured power spectra, t represents the theory
power spectra convolved with the window function, and C is the
covariance across different bands and redshifts as output from
the quadratic estimator.

The fitting of all of the cosmological parameters is done
through MCMC with COSMOMC (Lewis & Bridle 2002).
As was discussed earlier, we do not know the accuracy of
the error estimated using a highly non-Gaussian field with
a quadratic estimator. We know that it would not be biased,
but the error bar can be significantly misestimated. When the
systematic corrections are small, we can assume that the error
involved with the correction cannot be significant. However, at
the largest angular scales, some of the systematic corrections are
large enough that only proper error propagation that involves
a significant undertaking in the full modeling of systematics
would provide sufficient accuracy on the error of the correction.
There are also concerns about the validity of the assumption
of linear effects of systematics on the galaxy density field,
especially when the corrections are large. We do not have reason
to believe that the effects of systematics on the galaxy density
field are linear or nonlinear. Therefore, we decided to avoid
the scales that involve large systematic corrections, which are
concentrated at the large scales, thus setting the start of the
multipole range from l = 30.

Since our data set is a photometric sample, the nonlinear
effects are mitigated by the fact that when we examine the
data set, it is already integrated along all of the lines of
sight, thus decreasing its nonlinearities. We therefore apply the
HALOFIT routine for computing the nonlinear power spectrum,
and limit ourselves to multipoles that are at relatively large
scales, while nonlinearities remain a small effect. We choose the
multipole range by simply testing a variety of ranges using our
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Figure 20. Cross-correlations between the galaxy overdensities and the color offsets in g−r (top two panels) and r−i (bottom two panels). We can see that there is no
significant correlation between the galaxies and the color offsets, removing these offsets from our list of potential systematics.

Table 2
Descriptions of the Four ∆z = 0.05 Redshift Slices

Label zmid kmax = lmax/r(zmid) kmax = lmax/r(zmid)

ℓmax = 200 ℓmax = 150

(h−1 Mpc) (h−1 Mpc)

LRG 1 0.475 0.160 0.119

LRG 2 0.525 0.145 0.110

LRG 3 0.575 0.134 0.100

LRG 4 0.625 0.125 0.094

Notes. We also show the kmax corresponding to the ℓmax considered for each

redshift slices. zmid is the midpoint of the redshift interval.

simulations described in Section 3.5. In order for the MCMC
chain of the simulation to converge quickly, we average the
simulations across different simulation boxes (so that they are
not correlated). We tested a large range of multipole ranges:
1 < l < 600, 20 < l < 150, 20 < l < 300, and 20 < l < 200,
for example, and found 20 < l < 200 and 20 < l < 150
to return results within 1σ of the input parameters. It is also
of interest to show the corresponding k-limit for the various ℓ
ranges, since the range in k may provide an easier reference for
the nonlinearities of interest. We list the corresponding k range
for the ℓ range we use for the redshift bins considered in our
analysis in Table 2.

Combining both the low and the high l limit, we conclude that
30 < l < 150 and 30 < l < 200 are both conservative choices
for the fitting of cosmological parameters.

6.2. Cosmological Parameter Fitting Method Validation

In this section, we present some of the tests used to check the
Cl-likelihood routine for COSMOMC. To perform such a test,
we need an angular power spectrum whose input cosmology
(i.e., the cosmological model with which it was generated,
modulo cosmic variance) is completely known. Therefore, the
mock angular power spectrum described in Section 3.4, being
derived from a cosmological simulation with initial conditions
given by a known set of values for the cosmological parameters,
provides an excellent testbed for our fitting routine.

The most straightforward test is to fit each individual angular
power spectrum from the mocks and check that every one of
them (out of the 160 available) returns the input cosmology.
However, running 160 MCMC chains with only one mock power
spectra each is computationally intensive, especially since each
angular power spectrum has the power of ∼0.5–1 actual redshift
slice from the data, thus it will take significant time for the chains
to converge if they converge at all.

We therefore need to combine these mock Cl with an addi-
tional data set, and the most obvious choice is the CMB data
from WMAP7 (Larson et al. 2011). The WMAP7 best-fit param-
eters, however, are not exactly the same as the simulation input
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Figure 21. Cross-power among systematics which are found to contaminate the observed galaxy field. In particular, we show the cross-correlations between stellar
contaminations (STARS), sky brightness (SKY), and image quality (SEEING).

Figure 22. We show the corrections made by the inclusion of only one systematic (stellar contamination). We can see that there are significant corrections in large
scales, but the systematic does not affect the smaller scales.

parameters, and thus we replace the standard CMB likelihood
by a much simpler one, in which we compute the value of χ2

from the actual covariance matrix from WMAP7, but not using
the actual parameters themselves. To fully validate the fitting
method, we need to use mocks that show a signal-to-noise ratio
similar to those observed in the data. We combine individual

mocks by using different simulations (and not different lines of
sight in the same simulation).

6.2.1. Building Covariance of Mocks

We compare the Gaussian covariance matrix of the power
spectrum from OQE (i.e., “OQE covariance matrix”) with
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Figure 23. We show the systematic-corrected power spectra of various redshift slices when we include all three dominant systematics (stars, sky, and seeing).

Figure 24. For the first plot, we show the systematic-corrected power spectra and their corresponding best-fit model (from flat ΛCDM model) when we include all
three dominant systematics (stars, sky, and seeing). For the last plot, we included the measured ǫ (as described in Equation (18)) for all the dominant systematics.

the dispersions among 160 mocks (i.e., “N-body covariance
matrix”). Note that the 160 mocks are not strictly independent
from each other, as different lines of sight share a small but
nonzero amount of volume. To exclude the artificial covariance
between different lines of sight, we derive the covariance matrix
of the 20 independent mocks per each line of sight: we then
average the 8 covariance matrices for 8 lines of sight. As a
comparison, a straightforward dispersion among 160 mocks
gives an almost identical result, implying that the different lines
of sight share very little volume.

In the upper panel of Figure 26, the red points are the square
roots of the diagonal elements of the OQE covariance matrix
and the black squares are from the N-body covariance matrix.
The diagonal elements of the OQE covariance matrix can be
analytically calculated based on the smooth fit to the measured
power spectrum and the number of independent modes for
each wave number band assuming Gaussianity, if the matrix
is diagonal. However, the OQE covariance matrix includes the
effect of the window function due to the survey geometry,
and the covariance matrix therefore is not strictly diagonal
and has a small anti-correlation between neighboring bins.
Indeed, we find that there is a small deviation between the OQE
covariance matrix and a naive Gaussian error calculation without
accounting for the window function. The difference is expected
since the naive Gaussian error calculation does not include the

effects of the actual survey geometry. The black dashed lines in
the figure are the theoretical, expected errors derived based on
Gaussianity: we have rescaled it with an empirical boost factor
of 1.1 to better match the observed dispersion. The dispersions
between mocks are systematically lower than the OQE on large
scales but appear to lie between the OQE expectation and the
boosted Gaussian approximation.

The lower panel shows the off-diagonal elements of the
N-body covariance matrix in comparison to the OQE covariance,
for a slice at l = 185. We observe fluctuations up to 20% in
the measured off-diagonal terms but find no obvious indication
that it disagrees with the OQE covariance matrix. Therefore, we
conclude that the OQE covariance matrix based on the Gaussian
assumption does not underestimate the true error of the 2D
projection of the nonlinear galaxy field.

For the real data, we use the covariance matrix from the OQE
for the auto-power for each redshift bin. The upper panel of
Figure 27 shows the square roots of the diagonal elements of
the OQE covariance matrix of the real data (open circles) in
comparison to the prediction based on the Gaussian prediction
(after boosted by 1.1: solid squares) for all four redshift bins.
The agreement is even better than the mock case, and it is
probably due to the larger survey area of the real data that
decreases the cross-correlation between different ℓ bins that
our simple Gaussian approximation cannot access. The lower
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Figure 25. Correlation function computed from systematically corrected angular
power spectra (black lines) is compared to the measured and systematically
corrected correlation function (red squares with error bars) in Ross et al. (2011).
The correlation function in Ross et al. (2011) also is systematically corrected
following our method detailed in this paper. Following the black lines, we can
see hints of the BAO at nearly all redshift bins, and that there is no significant
large-scale power seen by other previous analyses such as Thomas et al. (2011)
prior to our DR8 analysis.

panel shows the cross-correlation between different ℓ bins
for four different slices of the OQE covariance matrix. We
overplot covariance matrices for CMASS1 (black), CMASS2
(red), CMASS3 (blue), and CMASS4 (magenta). Note that
the covariance structure is identical for the four redshift bins,
which is reasonable as the four redshift bins are subject to the
same mask. The same structure should apply to the covariance
between different redshift bins as well. We therefore build the
cross-covariance between different redshift bins by combining
the diagonal elements from the Gaussian assumption and the
covariance structure in the right panel of Figure 27. The diagonal
elements are constructed using smooth fits to the measured auto

and the cross-power spectra of and between redshift bins, and
boosted by 1.1 based on the results of the auto-power spectra:

CovG
ii,jj (ℓ, ℓ) = afac

2

fskyNmode

Cij (ℓ)Cij (ℓ), (23)

where i and j indicate a redshift slice, fsky is the fraction of
the sky, Nmode is the number of wave modes within the band,
and Cij (ℓ) is a smooth fit to the auto- or cross-power spectrum.
We include the shot-noise contribution to Cij (ℓ) in the case of

the auto-power spectra (i.e., i = j ). CovG
ii,jj is the covariance

between the auto-power spectrum Ci,i and Cj,j . The factor afac

is the empirical factor of 1.1 that we introduce to match the
OQE covariance matrix and Equation (23). We use this equation
to build the covariance between different redshift slices, while
using the OQE covariance matrix for the covariance within the
redshift slice.

6.2.2. Mock Test Results

With the combined average of 20 spectra each in combination
with the pseudo-WMAP7, we find that the above model recovers
all input cosmological parameters of the CMASS mocks for all
eight averaged power spectra to within 1.5σ . The recovered bias
parameters are also very similar to the input bias of the CMASS
mocks as described in White et al. (2011). We therefore conclude
that this model accurately recovers cosmological parameters
when used in the range of angular scale specified above.

7. RESULTS

7.1. Constraints on Cosmological Models

The angular clustering measurement can be used to constrain
the cosmological model in several different ways: through
standard rulers such as the matter-radiation turnover scale,
the BAOs, or through large-scale power that would constrain
primordial non-Gaussianities (Dalal et al. 2008; Slosar et al.
2008). In a companion paper (Seo et al. 2012), we examine only
BAOs, and remove any contribution from the overall shape of the
power spectrum: In this paper, we include the overall shape of
the power spectrum and parts of the BAOs to derive constraints
on cosmological models. There is a companion publication on
the neutrino mass constraints using the same angular power
spectrum (de Putter et al. 2012).

Figure 26. Comparisons between the OQE covariance matrix (red circles and solid line) and the dispersions among 160 mocks (black squares). The black dashed lines
are a theoretical, expected error derived based on Gaussianity after being rescaled with an empirical boost factor of 1.1 to better match the observed dispersion. The
lower panel shows the off-diagonal elements of the N-body covariance matrix in comparison to the OQE covariance for a slice at l = 185.
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Figure 27. Covariance matrix structure for the real data. The top panel compares the OQE prediction (open symbols) and the boosted Wick’s theorem (solid symbols)
for the four redshift bins. The two agree very well. The bottom panel shows the uniformity of the off-diagonal structure of the four redshift bins for four slices of
the covariance matrix. The uniformity arises from the common mask. We therefore use a Gaussian assumption and such a uniform off-diagonal structure to build a
cross-covariance between different redshift bins.

Figure 28. 2D contour of σ8 and w when combining WMAP7 + HST + DR8.
The results are consistent with w = −1.

Here, we choose to consider a variety of cosmological models,
although we do not intend to exhaust all possibilities. We include
several other data sets to help break cosmological degeneracies,
such as WMAP7 (Larson et al. 2011); the “Union 2” supernova
data set (hereafter SN), which includes 557 supernovae from
Hamuy et al. (1996), Riess et al. (1999, 2007), Astier et al.
(2006), Jha et al. (2006), Wood-Vasey et al. (2007), Holtzman
et al. (2008), Hicken et al. (2009), and Kessler et al. (2009);
and H0 constraints from using 600 Cepheids observed by Wide
Feild Camera 3 (WFC3) published by Riess et al. (2012; HST).
The prior on H0 is 74.2 ± 3.6 km s−1 Mpc−1.

7.1.1. Flat CDM Model with a Constant Equation of State

We investigate the flat Cold Dark Matter (CDM) model with
a constant equation-of-state parameter (w) to characterize Dark
Energy with the combination of our angular power spectra from
SDSS-III Data Release 8 (DR8) and other data sets. When
we combine our DR8 observed angular power spectra with
the WMAP7 +HST + SN data set, we find w = −1.07 ±
0.0775, Ωm = 0.2699 ± 0.0166, and σ8 = 0.85 ± 0.044 (see
Figure 28). We also combine our systematic-corrected DR8
angular power spectra with the WMAP7 +HST +SN data set,

and we find w = −1.064 ± 0.0757, Ωm = 0.267 ± 0.0163. The
systematically corrected angular power spectra give consistent
results compared with the observed angular power spectra.

We compare our results with other large-scale structure data
sets, such as the latest large-scale structure constraints from
galaxy clustering in Blake et al. (2010), which has detected a
BAO at z ∼ 0.6 using the spectroscopic survey WiggleZ which
includes 200,000 galaxy spectra over 800 deg2. They found
a similar constraint on the equation of state of dark energy:
w = −1.03 ± 0.08 when combined with WMAP7 + SN. This
implies that our data set, even though it is purely imaging data,
gives a similar constraining power when compared to the latest
spectroscopic surveys such as WiggleZ.

We also compare our results with the BAO constraints from
SDSS-DR7. When combined with WMAP7 + HST (Reid et al.
2010; Percival et al. 2010), they found w = −1.10 ± 0.14,
while Montesano et al. (2012) used the full shape of P (k) from
SDSS-DR7. When they combined it with CMB + HST, they
found w = −1.07±0.11. When we combine with the same data
set (CMB+HST), we find w = −1.165 ± 0.12, which implies
that our data set gives a similar constraining power as with the
full 3D DR7 spectroscopic sample (at z < 0.45), while our
purely imaging data set is at a higher redshift range (0.45–0.65).

7.1.2. Open ΛCDM Model

For an open CDM model, when combined with WMAP7+
HST, we find ΩK = 0.00348 ± 0.00539, improving the
accuracy over the WMAP7 +HST constraints on ΩK by 40%
(σ (ΩK ) = 0.0076 from WMAP7+HST); see Figure 29.

When we compare our measurement to other large-
scale structure measurements, such as DR7-BAO constraints,
we find very similar constraints; for example, on ΩK

WMAP7+HST+DR7 gives ΩK = −0.0023 ± 0.0055.

7.1.3. Flat ΛCDM Model

For a flat ΛCDM model, when combined with WMAP +
HST, we find ΩΛ = 0.73 ± 0.019, σ8 to be 0.817 ± 0.023,
and H0 to be 70.5 ± 1.6 s−1 Mpc−1 km, which are consis-
tent with WMAP+HST only, while improving the accuracy
over just WMAP+HST by ∼5% for all parameters. We show
the improvement on cosmological constraining power over the
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Figure 29. Comparison of the constraints on the flatness of the universe
using our angular power spectrum from SDSS-DR8 (+WMAP7 + HST) versus
WMAP7+HST alone for an open ΛCDM model.

combination of WMAP7 and HST in Figure 30. When com-
pared with “WMAP+HST+SN,” we improve the accuracy by a
relatively small amount, and the result is shown in Table 3. We
also show the best-fit values of the galaxy bias and the nuisance
parameter a for this model in Table 4.

7.2. Companion Results

In this paper, we utilize the full power spectrum over 30 <
l < 150, including both the broadband shape and the BAO. As
a comparison, our companion Paper II (Seo et al. 2012) derives
the angular diameter distance scale using the BAO feature over
30 < l < 300 as a standard ruler, while excluding nearly
all the non-BAO information. To summarize their method and
result, they use the angular power spectra and the covariance
matrix shown in this paper, build a reasonable template power
spectra based on the estimate, use true galaxy distribution as
a function of redshift and the concordance cosmology, and
fit for the distance scale, while marginalizing over many free
parameters that account for the shape of the broad band. They
derive DA(z)/rs = 9.212+0.416

−0.404 at z = 0.54 and the result is
shown to be robust against assumptions they make during the

Table 3
Comparison of the Cosmological Parameter Constraints from a Combination

of Cosmic Microwave Background, Type Ia Supernovae, and Hubble Constant
Measurements (Left) and the Same Data Sets Combined with the Angular
Clustering Analysis in this Work (Right), Assuming a ΛCDM Cosmology

Data Setsa CMB+HST+SN CMB+HST+SN+DR8

Ωbh
2 0.0223 ± 0.0005 0.0223 ± 0.0005

Ωch
2 0.109 ± 0.004 0.111 ± 0.004

Ωm 0.259 ± 0.017 0.269 ± 0.017

ΩΛ 0.741 ± 0.017 0.731 ± 0.016

h 0.714 ± 0.015 0.706 ± 0.013

σ8 0.806 ± 0.023 0.818 ± 0.022

ns 0.971 ± 0.011 0.971 ± 0.011

Note. a CMB = WMAP7, SN = SN Cosmology Project Union 2 compilation,

HST = Riess et al.’s (2012) measurement of H0.

Table 4
Best-fit Values and Uncertainties of the Galaxy Bias and the Nuisance

Parameter a in the Four Photometric Redshift Ranges Considered in this Work,
as Given by the MCMC Analysis of the CMB+HST+SN+DR8 Data Sets in

aΛCDM Cosmology

0.45 < z < 0.50 0.50 < z < 0.55 0.55 < z < 0.60 0.60 < z < 0.65

Bias 1.89 ± 0.07 1.87 ± 0.07 2.13 ± 0.08 2.18 ± 0.13

106a 3.5 ± 2.6 6.4 ± 2.3 1.6 ± 2.3 3.2 ± 2.9

fitting process. Figure 31 summarizes the BAO fits they derived
before and after the systematics correction.

In a second companion paper, de Putter et al. (2012), the
angular spectra discussed in the present paper are used to derive
a strong new upper bound on the sum of the neutrino masses.
As neutrinos suppress growth of structure on scales above
the neutrino free streaming length, they leave a characteristic
signature in the power spectra. To exploit this signal, de Putter
et al. (2012) model the galaxy spectra and their neutrino mass
dependence, test the model using mocks, and show that it can
be safely applied to the multipole range ℓ = 30–200, while also
considering the conservative range ℓ = 30–150. The angular
clustering galaxy data are then combined with priors from
WMAP7, the HST Hubble parameter measurement, supernova
distances, and the (low redshift) SDSS BAO measurement,
and the resulting upper bounds are discussed. We quote here
the conservative bound, from DR8+CMB+HST+BAO+SN, of

Figure 30. 1D marginalized constraints of ΩΛ and H0 when compared to using only WMAP7 + HST.
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Figure 31. BAO-only fits derived in Paper II: a stacked Cl/Cl,sm data of the four redshift bins before (left) and after systematics correction(right). αwg means the best
fit DA(z)/rs/8.584 Mpc each case. The solid red line is the best fit for LRG2 as a comparison after the wavenumber is rescaled to z = 0.54. For more details, see
Paper II.

Σmν < 0.35eV at 95% CL, and refer the reader to the article for
more details.

8. CONCLUSION AND DISCUSSION

We have measured the 2D clustering power spectrum of LRGs
using the SDSS-DR8 photometric survey. The principal results
of this analysis are summarized and discussed below.

Using photometric redshifts, we constructed a large uniform
sample of galaxies between redshifts z = 0.45–0.65. This
probes a cosmological volume of ∼3 h−3 Gpc3, making this the
largest cosmological volume ever used for a galaxy clustering
measurement. The large volume allows us to obtain a measure-
ment of power going from the smallest scales to the largest. In
particular, we probe all the way from the smaller scales such as
the BAOs scale out to the scale of matter-radiation equality with
one of the most accurate measurements of angular clustering at
achieved to date z = 0.45–0.65.

We applied a novel approach of treating systematics by
incorporating both the cross/auto-power of systematics with
themselves and cross-power with galaxies. This allows us to not
only understand the impact of various systematics on observed
galaxy number densities, but also allows the application of
small corrections at scales where the corrections are small,
and thus the uncertainty related to the corrections is negligible.
Since we choose only scales that are minimally affected by
systematics, we expect that the final cosmological constraints
from both pre-/and post-systematic corrections are consistent
with each other, which is indeed the case. This method can
be improved drastically by two extra components, which will
be left to future work. First, we should be able to project out
the appropriate modes that are contributed by the systematics
in a similar way as is done in CMB map making (Stompor
et al. 2002), which can be done when one is estimating the
optimally estimated power spectra. Second, we should be able to
model the distribution of the systematics (for example, whether
it is Gaussian or not) by investigating multi-epoch data that
are available in SDSS-DR8. In particular, this is available in
the Stripe 82 area, which even though small (in comparison
to DR8 full footprint), it contains ∼250 deg2 which were
multiply scanned (∼15–20 repeats for each field). This will
allow us to estimate the uncertainty of our systematic corrections
properly. These two components will not only significantly
improve our understanding of the systematics, they will allow

us to push our analysis to include larger angular scales (which
are affected by the systematics more significantly). However,
both of them require significant undertakings in data collection,
code development, and simulations. The improvements will
not dramatically change our cosmological interpretation in this
paper, therefore, we leave these two components for future
projects.

For a flat ΛCDM model, combining our data with WMAP7 +
HST, we find Ωλ = 0.7301 ± 0.019 and H0 to be 70.5 ±
1.6s−1 Mpc−1 km. For an open ΛCDM model, when combined
with WMAP7 + HST, we find ΩK = 0.003476 ± 0.00538,
improved over WMAP7+HST alone by 40%. For a wCDM
model, when combined with WMAP7+HST+SN, we find w =
−1.071 ± 0.0775, and H0 to be 71.31 ± 1.65 s−1 Mpc−1 km,
which is competitive with the latest large-scale structure con-
straints from spectroscopic surveys, such as those by WiggleZ
(Blake et al. 2010) and SDSS DR7 spectroscopic surveys, es-
pecially in the analysis led by Reid et al. (2010), Percival et al.
(2010), and Montesano et al. (2012). This result implies that
our data set, even though it is purely imaging data, possesses
a similar constraining power as the spectroscopic surveys such
as WiggleZ or SDSS-DR7. What we lack in redshift precision,
we compensate for by shear volume. This suggests that future
and upcoming imaging surveys such as PanStarrs,40 DES,41 and
LSST42 can achieve significant cosmological constraints via
large-scale structure clustering even when compared to other
spectroscopic surveys.

This is Paper I of the project, which mostly describes the
construction of the data set, treatment of systematics, estimation
of the angular power spectra, and, finally, using the overall shape
of the angular power spectra over a large range of angular scales
to derive constraints on our cosmological models. We refer
readers to Paper II (Seo et al. 2012) of the project, which uses
only the BAO feature to fit for various cosmological parameters.
We also refer to Paper III (de Putter et al. 2012) of the project,
which uses the overall shape of the power spectra to fit for
various neutrino models.

We thank Nico Hamaus for testing our treatment for non-
linearities using N-body simulations, Pat McDonald for fruitful

40 http://pan-starrs.ifa.hawaii.edu/public/
41 http://www.darkenergysurvey.org/science/index.shtml
42 http://www.lsst.org
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APPENDIX

QUADRATIC ESTIMATOR

Consider a Gaussian random field xi with 〈xi〉 = 0 and
covariance

〈xixj 〉 = C
(0)
ij +

N∑

α=1

pαC
(α)
ij . (A1)

We wish to form an estimator, p̂α , of pα which is quadratic in
the data

p̂α =
∑

ij

Q
(α)
ij xixj − bα, (A2)

where Q is symmetric. Requiring the estimator to be unbiased

〈p̂α〉 = pα ⇒ tr[Q(α)C(β)] = δαβ, bα = tr[Q(α)C(0)].
(A3)

For Gaussian xi the covariance of p̂α is

Cov[p̂α, p̂β] =
∑

ijkl

Q
(α)
ij Q

(β)
kl [CikCj l + CilCjk]

= 2tr[CQ(α)CQ(β)]. (A4)

This problem is easiest if we consider a single parameter at a
time, with all other parameters held fixed (and absorbed into
C(0)). Thus, we wish to minimize

tr[CQ(α)CQ(α) − 2λC(α)Q(α)]. (A5)

Taking derivatives with respect to the components of Q(α) gives

CQ(α)C = λC(α) (A6)

or

Q = (2F )−1C−1C(α)C−1

= (tr[C−1C(α)C−1C(α)])−1C−1C(α)C−1. (A7)

If the dependence of C on pα is not linear, then we can use
a Newton-Raphson iteration, where C(α) is the derivative of C
evaluated at the current best value of p. Iterating by replacing
p → p + δp until the best-fit δp = 0 results in a maximum
likelihood solution. In practice, it only takes a few iterations to
achieve the maximum likelihood solution.

This approach also results in another fact that is underappre-
ciated in the literature. The above choice of Q (which can have a
slightly different form; see Table 4 of Padmanabhan et al. 2003
for more details) produces error bars that are anti-correlated
across different band powers. In this paper, we include the win-
dow function (which is mostly affected by the mask) before we
compare the observed power and the theoretical power.
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