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ABSTRACT 
 
We present a novel approach, clustering on local image 
profiles, for statistically characterizing image intensity in 
object boundary regions.  In deformable model 
segmentation, a driving consideration is the geometry to 
image match, the degree to which the target image 
conforms to some template within the object boundary 
regions.  The template should account for variation over a 
training set and yet be specific enough to drive an 
optimization to a desirable result.  Using clustering, a 
template can be built that is optimal over the training data 
in the metric used, such as normalized correlation.  We 
present a method that first determines local cross-
boundary image profile types in the space of training data 
and then builds a template of optimal types.   
     Also presented are the results of a study using this 
approach on the human kidney in the context of medial 
representation deformable model segmentation.  The 
results show an improvement in the automatic 
segmentations using the cluster template, over a 
previously built template. 

 

1. INTRODUCTION 
 
Deformable model segmentation has been successfully 
applied in numerous medical image applications.  Such 
segmentations proceed based on the optimization of an 
objective function that includes a term measuring 
geometry-to-image match (image match, for short) giving 
the likelihood of the model with respect to the image 
information.    The likelihood function is often trained on 
a set of ground truth segmentations in order to drive the 
optimization to expert-like results. 

Previous work on building the likelihood function 
have included intensity profiles associated with individual 
image points [1], full images referenced with a coordinate 
system defined by a collection of these points [2], and 
intensity profiles associated with a tiled boundary [3].  
The methods typically make assumptions of a unimodal 

distribution of corresponding intensity profiles and two of 
them train each point separately. In our analysis the 
distribution is often widely variable and multimodal, 
leading to concerns in the ability to model each point by 
the family of training images at that point alone.  

In this paper, we present a novel approach for 
training the image match, using clustering of image 
information in the boundary regions.  The method 
depends upon object-based associations of positions in 
image space provided by a geometric model. Intensity 
profiles are generated along normal directions to the 
densely sampled model boundary from a training set of 
images to populate a high-dimensional space.  As 
exemplified in our study of kidney CT images (Fig. 3), the 
profiles fall into a few types depending on the relative 
position of the anatomic regions surrounding the target 
object.  Clustering determines profile types (cluster 
centers) prevalent in the data.  At each boundary position 
on the model, a cluster center is then chosen that is the 
most representative of the profiles in the training set at 
that position.  The likelihood function for new 
segmentations is then based on normalized correlation of 
the target image with a template consisting of these 
position dependent profile types. 

The geometric model used in this method is the 
medial representation, or m-rep [4].  M-reps fitted to 
expert segmentations provide the spatial coordinates from 
which the corresponding intensity profiles are sampled.   

Section 2 reviews the m-rep model, the context of 
profiles, and the image match computation.  Section 3 
describes the construction of the new image match 
template based on cluster centers in the profile space.  An 
experimental study on human kidney segmentation and 
summary of results is presented in section 4, followed by 
conclusions and future directions.   
 

2. M-REPS AND IMAGE MATCH 
 
We begin with a brief description of the m-rep model and 
automatic segmentation using it, followed by details of 
the image match computation during optimization.  
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2.1. The M-Rep Model 
 
The m-rep model for a single 3D figure such as a kidney 
or hippocampus has been previously described in [4].  It 
is an object representation made up of a manifold of 
medial atoms, each atom made from a hub and two equal-
length spokes. The boundary implied by this 
representation passes orthogonally through the spoke ends 
(Fig. 1).  A discrete grid samples the medial atoms, and 
properties of the manifold, like spoke length, are 
interpolated between grid vertices.  A coordinate system 
on the manifold defines an explicit correspondence 
between surface points on deformations of the same m-
rep model, as well as normal directions.  This dense 
correspondence allows us to characterize image 
information locally and globally. 

M-reps have proven to provide a powerful means of 
segmentation using deformable model techniques. In this 
approach a log posterior of the geometric parameters 
given the image data is optimized. Such optimization is 
equivalent to optimizing the sum of the log prior, which 
measures the geometric typicality, and the log likelihood, 
which measures image match.  While geometric typicality 
is discussed in other papers [4], the image match is the 
topic of this paper. 
 
2.2. Image Match 
 
The match of a deformed model to an image is an 
approximation to log p(I | m), where I is the collection of 
profiles for the model defined by parameters m.  
Assuming that p(I | m) is Gaussian, the log probability 
can be seen to be proportional to -(I - µ)T Σ-1 (I - µ), 
where Σ is the covariance matrix of the image data, and µ 
is the template image. 

 Consider the image and template, profile by profile 
and make the simplifying assumption that the profiles are 
uncorrelated. Then the log probability can be rewritten as 
the sum over all the profiles of the value of     -(I - µ)T Σ-1 
(I - µ) for that profile.  If each profile is furthermore 
normalized and assumed to have uncorrelated entries, 
then Σ becomes the identity matrix and (where I is again 
the collection of profiles) log p(I | m) becomes  

-(I - µ)T (I - µ) = -I•I + 2*I•µ - µ•µ  =  2*I•µ -2        (1) 
 
Thus, except for the addition and multiplication of a 
constant, optimizing the image match simplifies to 
maximizing a normalized correlation computation.   
 

3. BUILDING THE TEMPLATE 
 
This section details the construction of the template µ 
from a set of training images, each equipped with a fitted 
boundary model, from which cross-boundary profiles can 

be extracted.  Our idea is that a template that is stable 
against image variability and effective in measuring image 
match can be made from profiles that are representative 
of the profiles observed in training images. We choose 
these representatives by clustering approaches on the 
collection of all training profiles. We then build the 
template according to which cluster center profile is most 
prevalent at the corresponding location. We first focus on 
building the cluster centers. 
 
3.1. Formation of clusters and cluster centers 
 
The following is done in the context of boundary models 
with corresponding profiles and correlation-based image 
match.  In the image match, µ is the “mean” image, where 
the match computes the target I’s deviation from µ.  The 
target is highly variable, both over different images and 
during the optimization itself, when a slight change of the 
parameters defining the surface model affects I.  Thus a 
robust estimate of the template is in order. 

We begin by considering the space of observed 
profiles, over the entire surface and over all training 
cases.  Each profile is normalized independently.  When 
the data is clustered, the centers of the clusters represent 
prevalent profile types.  Normalized correlation (which 
measures the cosine of the angle between two profiles) is 
used as the distance metric.  The clustering algorithm 
begins with an initial seeding of a number of profile types.  
For example, for characterizing typical image boundaries, 
one might choose the positive and negative Gaussian 
derivatives.  All observed profiles are binned according to 
their response to each type.  This is not a fuzzy 
assignment—each profile is assigned to only one bin.  
The profile types are then recomputed as the mean of 
each bin.  All profiles are compared against the new 
types, and the procedure iterates until convergence, when 
few profiles change bins between iterations.  The results 
of the process are shown in Fig. 3.   

 

 
Figure 1 (left to right): A translucent surface rendering of the 
kidney m-rep model, with underlying grid structure.  The middle 
image shows profiles traversing the collar region normal to the 
boundary, in the context of a 2D m-rep.  Finally, profiles sampled 
from an abdominal CT scan, forming the target image. 
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The resultant profile types, the bin means computed 
in the above algorithm’s final iteration, are most 
representative in the least squares and correlational sense: 
µ = min over ℜm of Σ||ν - µ||2 = Σν ∈ β  (ν - µ)•(ν - µ)    (2) 
 
for a bin β of profiles.  By the same simplification shown 
in (1) for normalized vectors, µ gives the highest 
cumulative correlation with β: the minimizer of (2) is the 
maximizer of Σν•µ.  Thus, a segmentation that maximizes 
the target’s correlation with µ will drive to a result that is 
optimal over all the training data. 
 
3.2. Template Formation from cluster centers 
 
In determining the local profile types, all of the profiles 
are tossed into a single space.  However, the template 
used for segmentations consists of a profile at every 
surface position.  The last step in building the template 
then is to use the explicit correspondence between 
training models to assign a profile type to each surface 
point.  Each position is considered separately.  The 
cumulative response of the observed profiles with each of 
the profile types—again, all normalized— is computed at 
that point over all cases.  This results in three scores, the 
highest of which corresponds to that position’s most 
representative profile type.  The profile type for each 
position is computed in the same way.  The result is that 
the template is the bundle of these maximally correlated 
profile types.  This template will optimally drive future 
segmentations on images of the type represented in the 
training data. 
 

4. EXAMPLES AND RESULTS 
 
In order to test the efficacy of this template building 
approach on segmentation, we performed a study on the 
human kidney in CT images using m-rep deformable 
model segmentation.  These results were compared to a 
previous study using a constant profile type per point, that 
of the Gaussian derivative.  The right and left kidneys 
were segmented using different templates since the 
anatomical context is not the same on the two sides.  
Training of the templates was based on 52 images, with 
testing on 12 different CT scans.  In this section we 
present details of this study. 

Expert manual segmentations were performed on the 
training images, resulting in a set of binary image files, 
bright for kidney and dark for non-kidney voxels.  An m-
rep model of the kidney was then automatically deformed 
into each binary, leaving a set of fitted m-rep models.  
The template used for the image match in these binaries 
consisted at each point of a positive Gaussian derivative 
profile, with the inflection at the boundary.  This is an 
effective edge detector for high-contrast images.  By then 

placing the fitted m-reps into the associated grayscales, 
the profiles were sampled at the same model boundary 
coordinates for each case. 

The anatomical context of the kidney organ of the 
abdomen is somewhat consistent across cases.  For 
example, the right kidney usually has the liver abutting or 
near the superior ventral lateral corner, and a rib supports 
the dorsal side.  The context provides a wide variation in 
terms of image intensity regions across the surface of the 
kidney.  In CT scans, bone and liver and spleen (the latter  
superior to the left kidney) all tend to have brightness 
similar to the kidney, which is in turn brighter than other 
surrounding tissue.  As well, in that these organs do not 
always abut, there can be darker regions between bright 
tissues.  Thus intuitively, one might expect there to be 
three profile types.  From inside to outside the kidney, a 
light to dark (for most areas), a dark to light (for abutting 
liver and other bright tissue), or a light to dark and light 
again—notch (Fig. 2).  As well, the three types can be 
found at similar position in the kidney, supporting our 
approach to find the best profile type to use over all cases, 
not for any particular case.    

The three intuitive profile types were analytically 
modeled with positive and negative Gaussian derivatives 

 
Figure 2:  The right kidney is axially viewed in three separate CT 
scans at reasonably corresponding position.  From left to right, 
the light-dark, dark-light, and notch type profiles are apparent in 
the marked region of interest. 

 
Figure 3: (top row) The three initial profile types converging 
over iterations of the clustering algorithm.  (bottom row) The 
final binning, where the center lines are those rightmost in the top 
row.  The outer lines show plus and minus two standard 
deviations in the data. 
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and a negative Gaussian.  These seeds quickly converged 
to prominent observed profile types (Fig. 3).  The profile 
type per position on the surface was then chosen based on 
correlation of the training data with these cluster centers 
(see section 3.2).  Figure 4 shows the choice as a shade on 
the surface of the left and right kidney models.  The types 
chosen have intuitive appeal, considering general 
anatomy.  For example, on the right kidney, the profile 
type chosen to represent the boundary intensity region 
where the liver often abuts is the dark to light type.  
Where bright tissue is generally nearby (within the 
domain of the profiles), there is the notch type. 

The left and right templates were then used in m-rep 
automatic segmentations of the test images.  The test 
images had two expert manual segmentations of the left 
and right kidneys each.  To compare the continuous m-rep 
model to a binary ground truth image, one can either 
rasterize the m-rep model in order to compare binaries, or 
tessellate the boundary in the binaries and compare 
surface to surface.  We chose the latter, using Marching 
Cubes [5] to find the boundary isosurface in each binary 
image.  Volume overlap and average closest point 
distance between two surfaces were the metrics used for 
comparison. 

Segmentation using the cluster template approach 
showed an improvement in 65% of the cases when 
considering average surface distance to the experts.  The 
average increase in the volume overlap of automatic and 
expert was 1.3%.  While these numbers are not striking, 
the major improvement in using the cluster template came 
qualitatively, in the degree of automation.  In segmenting 
with a template of the Gaussian derivative profile type at 
every position, many cases required modified parameter 
settings in order to achieve the best results.  Such 
parameters include the relative weights of geometric 
typicality and image match (see section 2.1).  In contrast, 
all parameters were constant across the segmentations 
when the cluster template was used.  The result is that 
slightly improved results were obtained with significantly 
less human input.   
 

5. CONCLUSIONS AND DISCUSSION 
 
We have presented a profile clustering approach for 
training an optimal template for image match in 
deformable model segmentation.  Simplifying 
assumptions were made that assert directions for 
continuing research.  To begin, intensity profiles at 
neighboring positions on the model surface are almost 
certainly not independent as was posited (section 2.2).  
One way to address this without hindering the simplicity 
of the image match computation as it stands could be 
using multiple scales.  This would involve blurring along 
the surface (research that is ongoing).  We are also 
looking to improve the correspondence between 
nominally associated boundary positions on the m-rep 
model.  Specifically, the MDL [6] framework may be 
extended to include intensity statistics. 

An additional simplification in the image match 
model was the choice of a single cluster center per 
position.  The scores of the observed profiles at a point 
with respect to all the clusters can be turned into priors 
for a mixture model.  While this will not be optimal in the 
correlation value overall, such an approach may improve 
the generality of the template, leading to better results in 
some cases. 

More basically, we are working on characterizing the 
intensity inside an object or within nearby objects versus 
space interstitial to objects, all in an object relative 
coordinate frame. 
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Figure 4: The left and right kidney (from left to right) with 
representative cluster center as shading on the surface, viewed 
from both sides.  From darker to lighter shading the types are 
light-dark, notch, and dark-light along the profile.   
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