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Genetic screens for phenotypic similarity have made key contributions to associating genes with

biological processes.With RNA interference (RNAi), highly parallel phenotyping of loss-of-function

effects in cells has become feasible. One of the current challenges however is the computational

categorization of visual phenotypes and the prediction of biological function and processes. In this

study, we describe a combined computational and experimental approach to discover novel

gene functions and explore functional relationships. We performed a genome-wide RNAi screen in

human cells and used quantitative descriptors derived from high-throughput imaging to

generate multiparametric phenotypic profiles. We show that profiles predicted functions of

genes by phenotypic similarity. Specifically, we examined several candidates including the largely

uncharacterized gene DONSON, which shared phenotype similarity with known factors of DNA

damage response (DDR) and genomic integrity. Experimental evidence supports that DONSON is a

novel centrosomal protein required for DDR signalling and genomic integrity. Multiparametric

phenotyping by automated imaging and computational annotation is a powerful method for

functional discovery and mapping the landscape of phenotypic responses to cellular perturbations.
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Introduction

Forwardgenetic screens for visual phenotypes inmodel organisms

have proven a powerful method for associating phenotypes with

genes and for the prediction of functional relationships (Jorgensen

and Mango, 2002; St Johnston, 2002). Aggregating genes by

similarity of their loss-of-function phenotype has provided key

insights into signalling pathways that have a conserved function

from Drosophila to human (Nusslein-Volhard and Wieschaus,

1980; Bier, 2005). Complex visual phenotypes, such as defects

in pattern formation during development, greatly facilitated the

classification of genes into pathways, and phenotypic similarities

in many cases predicted molecular relationships.

The possibility of depleting specific transcripts by RNA

interference (RNAi) in cells has resulted in new screening

techniques for associating genes with biological processes

(Dorsett and Tuschl, 2004; Echeverri et al, 2006; Moffat et al,

2006; Boutros andAhringer, 2008). Simple, univariate phenotypes,

such as measurements of cell viability or specific reporter gene

activity, have been applied to screen for modifiers on a genome-

wide scale; however, the information content in finding different

genes sharing the same univariate phenotype is limited (Boutros

et al, 2004; DasGupta et al, 2005; Whitehurst et al, 2007).

More complex multiparametric readouts frommicroscopy and

automated image analysis promise broad coverage of distinct

phenotypes. Such visual phenotypes could predict specific

functional relationships between genes,while not being biased

by the particular choice of phenotypic assay.

As the technology for carrying out large-scale screens by

imaging of cells has been established in recent years, a main

challenge is the automated analysis of images and subsequent

interpretation of cellular phenotypes. Extracting functional

relationships on a genome-wide scale is an unresolved

problem. Cells respond to many extrinsic and intrinsic stimuli
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and change their shape, cell-cycle status and proliferation rate.

Similar to patterning decisions in whole organisms, such

changes are broad reflectors of cellular functions and have the

potential to simultaneously provide a multitude of views on

biological processes. Annotation of phenotypes by visual

inspection has been effective (Kiger et al, 2003; Eggert et al,

2004; Sonnichsen et al, 2005), but creates a bottleneck for

larger experiments. Several studies used automated extraction

of multiparametric computational descriptors of cellular

morphology to analyse the effects of small molecules or

siRNAs on cultured cells (Perlman et al, 2004; Neumann et al,

2006; Bakal et al, 2007; Loo et al, 2007; Jones et al, 2009).

Owing to the complexity of the multivariate data analysis,

these studies focused on small sets of reagents. Genome-wide

studies have been performed for simple, univariate pheno-

types (Mukherji et al, 2006; Sims et al, 2009). Genome-wide

analysis of high-dimensional, multiparametric descriptors,

and hence the inference of more specific, multidimensional

phenotypes, has remained a challenge.

In this study, we describe an experimental and computa-

tional approach to predict gene function genome-wide based

on changes in the morphology of individual cells within cell

populations. We establish a computational method to separate

multivariate variation of interest from noise induced by the

environment or intrinsic stochastic behaviour of the cells, and

to generate multivariate phenotypic profiles that summarize

similarity and dissimilarity of phenotypes at the level of treated

cell populations. We applied this methodology to a genome-

wide RNAi screen and produced a phenotypic map of 1820

siRNA-mediated perturbations that led to significant pheno-

typic variation. We investigated the genes DONSON, SON,

CADM1 and CD3EAP that were found in phenotypic proximity

to known components of cell-cycle regulation and DNA

damage response (DDR). Further experiments characterized

their roles in the maintenance of genomic integrity.

Results

Automated analysis for high-throughput imaging

We established a method for generating phenotypic profiles

by automated microscopy, measuring the effects of RNAi-

mediated knockdowns on the morphology of HeLa cells

(Figure 1). For each perturbation, 1000 cells were reverse

transfected with siRNAs spotted in 384-well plates. Each plate

also contained negative controls and positive control siRNAs

with known phenotypes. Forty-eight hours after siRNA

transfection, cells were fixed, stained for DNA and the

cytoskeletal proteins actin and tubulin, and imaged using an

automated microscope (Figure 1A and B).

To identify distinct phenotypes, we used automated image

analysis to classify all individual cells based on nuclear and

cytoskeletal fluorescent markers. Nuclei and cytoplasm

boundaries of cells (Figure 1C) were determined by a

segmentation algorithm.We then computed 51 cell descriptors

that quantified intensities, shape characteristics and texture

(Figure 1F; Supplementary information). The descriptors were

rotationally invariant, robust to pixel noise and served as input

for classification of cells by a support vector machine (SVM)

(Boser et al, 1992). Cells were classified into 1 of 10 classes,

which included cells showing protrusion/elongation, cells in

metaphase, large cells, condensed cells, cells with lamellipodia

and cellular debris (Figure 1D and E; Supplementary Table II).

Feature selection and sensitivity analysis showed that the

classification performance was not driven by single descrip-

tors, but rather depended on the joint behaviour of multiple

descriptors (Supplementary Figure 2).

Under wild type and each perturbed condition, imaged cell

populations always consisted of multiple phenotypic classes.

We reasoned that phenotypic information could be inferred

from changes in frequencies of the different classes and from

descriptor summaries over the cell populations. For each

siRNA experiment, we computed a phenotypic profile, which

is a vector of 13 numbers representing cell count, median

cellular descriptors computed on the population and propor-

tions of each cell class (Supplementary Table VII).

To assess the performance of the approach, we first carried

out a small siRNA screen by targeting approximately 800

transcripts in HeLa cells, including most kinases and controls

with known phenotypes (Figure 2A). Quantitative descriptors

of cells after perturbations (Figure 2B) were evaluated to

assess reproducibility. The results showed that median values

of the cellular descriptors, computed over cell populations,

were highly reproducible across replicate experiments, with a

median correlation coefficient of 0.80 (Figure 2C and D). Cell

classification accuracy, based on cellular descriptors, was

estimated by cross-validation to be 96–100%, depending on

cell class (Table I). Median descriptors for the defined siRNA

controls UBC, CLSPN and TRAPPC3 were well separated from

those of the Renilla luciferase (Rluc) controls, showing

multiparametric Z0 factors of 0.79, 0.62 and 0.60 (Figure 2D

and E; Supplementary information).

The experiments also demonstrated that changes in individual

descriptors contained phenotypically relevant information. For

example, though Rluc siRNA-treated cells showed a median size

of 910mm2, targeting the mitotic inhibitor kinase WEE1 led to

significant smaller cells, with a median size of 453mm2

(Wilcoxon rank sum test, Po10�15). Another example is PPP4C,

whose depletion led to significantly elongated cells compared to

Rluc treatment (median cell eccentricity of 0.66 compared to

0.59, Wilcoxon rank sum test, Po10�15). These results indicate

high reproducibility of the experimental and computational

approach, and its ability to quantitatively discern biologically

relevant phenotypic variation.

Genome-wide RNAi screen to cluster genes based

on cellular descriptors

To cluster genes and predict function on a genome-wide

scale, we measured the effects of 22 839 siRNA-mediated

knockdowns on HeLa cells (see Materials and methods).

We acquired four images per perturbation, from which B6.5

million cells were automatically segmented, quantified and

classified (a comprehensive track of the analysis is provided at

http://www.cellmorph.org). Each siRNA effect was summa-

rized by a phenotypic profile as described above. On average,

324 cells were recorded in Rluc siRNA-negative control treat-

ments. siRNAs against PLK1, an essential cell-cycle regulator,

reduced the number of cells eight-fold. siRNA-mediated
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depletions resulted in a cell population comprising a variety of

cell classes. For example, negative control Rlucwells contained

on average 57.3% cells classified as normal, 15.0% condensed

cells and 2.0%metaphase cells, with the remainder distributed

among other classes.

To quantify the differences between perturbation effects,

we measured the similarity between phenotypic profiles. As

profiles are multiparametric descriptors whose components

have different dynamic ranges and signal-to-noise ratios,

because of cell intrinsic stochastic behaviour and experimental

factors, we transformed the profile values of each siRNA

perturbation into a set of scores ranging between 0 and 1,

using for this a parametric family of sigmoidal functions (see

Supplementary information). We termed the vector of scores a

phenoprint (Figure 3C) and defined the phenotypic distance

between a pair of perturbations as the distance between their

corresponding phenoprints. We reasoned that pairs of related

proteins should be enriched for smaller phenotypic distances,

when compared with random pairs, and used distance

metric learning (Xing et al, 2003) to determine the sigmoid

transformation parameters that led to maximal enrichment.

We used the STRING 7.1 dataset (von Mering et al, 2007) as a
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Figure 1 Automated phenotyping of an RNAi screen. (A) Schematic representation of screening and analysis protocol. (B) Example image of cells transfected
with siRNA targeting LILRA5 and stained after 48 h for DNA (blue) and the cytoskeletal proteins actin (red) and tubulin (green). (C) Cytoplasm (green) and nuclei
(blue) boundaries were determined by automatic segmentation. (D) Cells after classification, using the labelling scheme of panel E. (E) Examples of cells from eight cell
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DNA stains). Box colours correspond to quantiles of the cell descriptor distributions in the full dataset.
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set of related protein pairs, considering all interactions with a

confidence score higher than 0.4, including pairs predicted

with the STRING neighbourhood, gene fusion, co-occurence,

co-expression, experiments, databases and text mining meth-

ods. Out of the genome-wide RNAi screen, 1820 siRNA

perturbations produced non-zero phenoprints. To test whether

individual genes in STRING influenced the computation of the

phenoprints, we removed all information about the genes

RRM1, TMEM61, CLSPN, CADM1, CD3EAP, CEP164, NUF2,

DONSON and SON (as shown in Figure 3C), recomputed their

phenoprints and found that they were unaltered (Supplemen-

tary Figure 8). This indicates that the distance learningmethod

is based on agglomerative properties of the training data, not

on presence of individual gene pairs. We estimate that the
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false-positive rate of the computational analysis is low because

negative control siRNAs Rluc showed in 97.1% (132/136) of

all cases a zero phenoprint; 0.8% (1/136) of positive controls

(PLK1) scored as false negatives.

Visualization of phenotypic relationships and

independent confirmation

To visualize the distribution of the 13-dimensional pheno-

prints, we projected them into a 2-dimensional map that is

representative of the phenotypic similarity relationships

(Figure 3A). The map shows the phenotypic landscape

spanned by the genome-wide perturbations. Seventeen clus-

ters of similar phenoprints were defined and added to the map,

to highlight different phenotypic regions (see Supplementary

information). These clusters included phenotypes character-

ized by an over-representation of cells with prominent

lamellipodia (WNK3, ANXA4), cells with prominent actin

fibres (ODF2, SOD3), abundance of large cells (CA14), many

elongated cells (SH2B2, ELMO2), decrease in cell number

(TPX2, COPB1, COPA), increase in number of cells in

metaphase (BLR1, CIB2) and combinations of phenotypes

such as presence of large cells with protrusions and bright

nuclei (PTPRZ1, RRM1). Consistent with its phenoprint,

ELMO2 has been described as an upstream regulator of the

Rac1 GTPase (Gumienny et al, 2001), which controls the actin

cytoskeleton organization. Other examples include COPB1 and

COPA, which are essential for the maintenance of the Golgi

architecture and are required for cell viability (Pepperkok et al,

1993; Guo et al, 1994; Neumann et al, 2006).

To test for biological reproducibility with independent

siRNAs, we selected 604 out of 1820 siRNAs for retesting

and confirmed that the phenotypes were reproduced for 310

(51.3%) genes in HeLa cells (Supplementary Table X), which is

a rate similar to previously published reports (Tang et al,

2008). Furthermore, we assessed their phenotypes in a

different cell type, osteosarcoma U2OS cells, in which 280 of

the 310 siRNAs reproduced their phenotypes. Overall, 44%

(122 of 280) were functionally uncharacterized; 31% (86 of

280) were implicated in cytoskeletal organization, intracellu-

lar transport, cell-cycle regulation or DDR (Figure 3D).We also

monitored knockdown efficiency in a representative set of

genes by real-time quantitative PCR (qPCR) and found that

mRNA levels were reduced to at least 65% (Supplementary

Figure 10). These experiments demonstrated that the screen

identified functionally uncharacterized genes and reproduci-

bly associated them with phenotypic clusters based on their

cell population phenotypes.

Phenotypic proximity to predict gene function

Annotation of the 17 clusters, comprising 943 siRNA perturba-

tions, indicated that genes having similar phenoprints tended

to have similar biological functions (Supplementary Table

XIII). For example, the cluster containing phenoprints char-

acterized by bright nuclei includes several genes that are

implicated in cell-cycle regulation or DNA replication such as

CDCA8, CENPI, DTL and MCM10. Interestingly, the three

subunits RPA1, RPA2 and RPA3 of the replication factor A,

required for DNA replication and DDR, are also present in this

cluster. Furthermore, the subunits of the Golgi coatomer

complex COPB2, COPZ and COPA, and the essential cell-cycle

kinase WEE1, all required for cell viability, had similar

phenoprints. Comparisons of the phenotypic graph with

functional networks including MouseNet (Kim et al, 2008)

show significant enrichment of phenotypic similarities within

network gene pairs (see Supplementary information).

To associate uncharacterized genes with biological pro-

cesses, we selected candidate genes in proximity to known

pathway components, and focused on phenotypic clusters that

contained genes associated with DDR signalling and genomic

integrity. We first examined a phenotypic cluster in proximity

to CEP164 (Figure 3A and C). CEP164 is localized to the distal

appendages of mature centrioles (Graser et al, 2007) and has

been described as an important component in the DNA

damage-activated signalling cascade (Sivasubramaniam et al,

2008). The phenotypic cluster included other proteins

implicated in kinetochore-associated functions, such as

NUF2 (DeLuca et al, 2002) (Figure 3B) and SGOL1 (Pouwels

et al, 2007). In addition, we selected two largely uncharacter-

ized factors: SON, a DNA binding protein localized at the

mitotic spindles (Nousiainen et al, 2006), and DONSON

(Figure 3B), which has not been studied earlier. The two

genes are co-located in the human genome at 21q22. We

observed that, among other quantitative descriptors, cell

populations of this cluster were characterized by a relative

decrease in cell number and an increase in metaphase cells.

A second, phenotypically distinct cluster included RRM1

(Figure 3A–C), which is part of the ribonucleoside–diphosphate

Table I Confusion table for the cell classification step, computed by five-fold cross-validation on the training set

True classes

BC D M N P Z

Predicted classes
BC 110 0 0 0 0 0
D 1 253 0 2 0 1
M 0 0 240 0 0 0
N 1 3 0 640 4 4
P 0 0 0 0 252 0
Z 0 5 0 1 0 223
Acc. % 98.2 96.9 100 99.5 98.5 97.8

Cells were classified according to theirs descriptors, using an SVM with a training set of 1740 cells distributed in six classes: big cells (BC), debris (D), metaphase (M),
normal (N), cells with protrusion (P) and telophase (Z). Average cell classification accuracy (Acc. %) per class is reported in the last row.
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reductase complex required for replication and DNA repair (Xue

et al, 2003), and CLSPN (Figure 3B), a protein required for the

activation of the checkpoint kinase CHEK1, a keymediator of DDR

(Kumagai and Dunphy, 2000; Liu et al, 2006). This cluster also

contained other DDR genes such as PRIM2 (Weiner et al, 2007)

and SETD8 (Jorgensen et al, 2007). From this cluster, we selected

the poorly characterized genes CADM1 and CD3EAP and

hypothesized that theymight be components of theDDRpathway.

To confirm target specificity, we compared the effects of four

single siRNAs targeting a gene to that of the siRNA pool used in

the screen and assessed their knockdown efficiency by qPCR

(Supplementary Figure 11). These experiments showed that for

each candidate, at least two out of the four independent siRNAs

were effective in target knockdown and reproduced the pheno-

types observed in the screen (Supplementary Table XI).

DONSON is required for cell-cycle progression

and localizes to the centrosome

To further investigate the role of DONSON in cell-cycle

progression, we performed time-course experiments with
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Figure 3 Genome-wide two-dimensional map of the perturbation phenotypes. (A) Each of the 1820 nodes represents a perturbation and is characterized by a
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HeLa cells depleted for DONSON and measured the DNA

content. As shown in Figure 4A, we observed a slower S-phase

progression compared to controls, suggesting a DNA replica-

tion defect, followed by accumulation of cells in G2/M at 48 h.

We then assessed whether DONSON is required for DNA

replication during S-phase progression. U2OS cells were

arrested with hydroxyurea (HU) in G1/S, and incorporation

of bromodeoxyuridine (BrdU) was measured after release. As
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shown in Figure 4B, depletion of DONSON resulted in

significant decrease in BrdU incorporation, indicating that

DONSON is required for S-phase transition. We next asked

whether the level of DONSON protein is regulated during the

cell cycle. U2OS cells were arrested either in G1/S andG2/Mby

HU or nocodazole, respectively. After release from HU, we

assessed DONSON protein levels for up to 24 h by immunoblot

analysis. As shown in Figure 4C, DONSON levels peaked at 6 h

after release and preceded the cyclin A expression as a marker

for G2. Furthermore, when cells were released from G2/M-

phase arrest, peak DONSON levels were observed later than

phospho-H3 as a marker for M phase (Figure 4C). Taken

together, these experiments indicate that DONSON levels are

regulated during cell division, peaking during S phase and that

DONSON is required for cell-cycle progression.

To examine the subcellular localization of DONSON

protein during the cell cycle, we expressed a DONSON-HA

transgene, as we could not detect endogenous levels of

DONSON in immunofluorescence experiments. We observed

that DONSON localized in two perinuclear foci, which co-

localized with the centrosomal markers g-tubulin and centrin

(Figure 4E and F; Supplementary Figure 15). In DONSON-

depleted U2OS and HeLa cells, we observed a 10-fold increase

of multipolar spindles in metaphase cells compared to control

treatments (Figure 4D; Supplementary Figure 14). These

results showed that DONSON protein is localized at the

centrosome and is required for proper formation of bipolar

spindles during cell-cycle progression.

DONSON, SON, CADM1 and CD3EAP are required

for genomic integrity

The bi-orientation attachment of each chromosome to both

poles of the mitotic spindle is essential for genomic integrity

(Loncarek et al, 2007). To test the involvement of DONSON in

genomic integrity, we used quantitative immunofluorescence

to measure the formation of gH2AX foci as a marker of DDR

signalling (Figure 5A and B; Supplementary Figures 12 and

13). We observed that DONSON depletion led to the formation

of gH2AX foci similar to the depletion of the known DDR

effectors RRM1 and CHEK1. In addition, we checked other

candidate genes regarding their involvement in genomic

integrity. Similar to DONSON knockdown, we observed

increased gH2AX formation in cells depleted of SON, CADM1

and CD3EAP (Figure 5A and B). One possible explanation of

elevated gH2AX foci formation is the accumulation of cells in S

phase (Tanaka et al, 2006). To test this hypothesis, we

monitored cyclin levels in DONSON-depleted U2OS cells. As

shown in Figure 5C, knock down of DONSON in U2OS cells led

to increased cyclin D1 and decreased cyclin A and cyclin B1

levels, indicating that cells were arrested in G1 and that the

elevated gH2AX foci formation observed in DONSON-depleted

cells is not caused by an accumulation of cells in S phase. In

contrast to DONSON, SON-depleted cells showed an enrich-

ment of cyclin B1 protein, whereas cyclin A was decreased

compared to the control treatment; this indicated that cells

were arrested in G2/M (Figure 5C). In summary, these results

suggest a role of DONSON, SON, CADM1 and CD3EAP in the

maintenance of genomic integrity.

DONSON, SON, CADM1 and CD3EAP are

mediators of the DDR

The maintenance of genomic integrity is dependent on a

functional DDR, a process comprising multiple signal trans-

duction pathways that coordinate cell-cycle transitions, DNA

replication, DNA repair and apoptosis (Cimprich and Cortez,

2008). The phosphorylation of CHEK1 is an early event in the
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DDR. To analyse the function of DONSON in DDR, we used

immunoblot analysis to assess the phosphorylation of CHEK1

on g irradiation in U2OS cells 48 h after transfection with

DONSON. We observed that the phosphorylation of CHEK1

was strongly reduced in DONSON-depleted cells compared

to negative control (Figure 6A). Moreover, DONSON-depleted

cells showed an impaired phosphorylation of CHEK1 (Figure

6B and C) after UV exposure, similar to the effect of g irradi-

ation. Although ATM phosphorylation was not affected in

DONSON-depleted cells, we observed an attenuated phos-

phorylation of RPA2, H2AX and NBS1 (Figure 6C). These

results indicate that DONSON acts downstream of ATM and

upstream of CHEK1 in the DDR signalling cascade.

To test whether DONSON is required for the recruitment of

DDR-associated proteins onto chromatin, we extracted chro-

matin from UV-irradiated cells and analysed RPA2 levels by

immunoblot (Liu et al, 2007). As shown in Figure 6C, we

observed that the amount of RPA2 on the chromatin was

significantly decreased on DONSON knockdown. As DONSON

depletion leads to G1 arrest, we cannot fully exclude the

possibility that cell-cycle arrest may in part contribute to the

loss of RPA2, as shown previously for other factors (Szuts et al,

2003). However, these results suggest that DONSON is

required for the recruitment of RPA2 to DNA lesions and for

the activation of the DDR on g and UV irradiation.

In addition to DONSON, we also tested several other

phenotypically similar factors for a role in DDR signalling.

We observed that knock down of SON, CADM1 and CD3EAP

resulted in decreased phosphorylation of CHEK1 on g

irradiation (Figure 6A). Furthermore, depletion of SON

impaired phosphorylation of RPA2, H2AX and NBS1 on UV

irradiation.We also observed that RPA2 hyperphosphorylation

is strongly attenuated after SON depletion in the chromatin

fraction 2 h after UV exposure (Figure 6C).

In summary, our results suggest that SON, CADM1 and

CD3EAP are components required for functional DDR

response. Moreover, as ATM/ATR phosphorylation were not

affected by the knock down of DONSON or SON, we integrate

DONSON and SON in DDR signalling downstream the

activation of ATM/ATR but upstream of RPA2 and NBS1.

Discussion

We present an experimental and computational approach to

create a phenotypic map of a genome-wide set of RNAi-

mediated perturbations, using automated phenotyping of cell

populations by high-throughput imaging and multiparametric

computational analysis. For B10% of targeted transcripts, we

detected phenotypic changes on depletion of transcripts by

RNAi. Similarity or dissimilarity of phenotypes was quantified

from multiparametric descriptors by a computational method

termed distance metric learning, which is able to learn a

measure of (dis)similarity from a set of instances and to
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generalize this to unseen relationships. The derived measures

for phenotypic similarity for each RNAi perturbation were

visualized in a map and used to generate hypotheses about the

function of genes. As the approach is unbiased, unexpected

relationships can be uncovered. In this study, we investigated

four previously poorly characterized genes, and described

their roles in the DDR.

Cell morphology provides a broad reflection of many

cellular processes, including cytoskeleton rearrangement,

signalling, cell division and cell survival. Similar to forward

genetic screens, the approach gives us the power to detect

components in a wide range of processes. We believe that this

approach ensures a coverage of many phenotypes and allows

the analysis of multiple functions of the same gene, although it

might miss modulators that could be detected with focused

but more sensitive assays. However, it facilitates analysis of

multiple functions of the same gene, and discovery of

unanticipated functional relationships.

Quantifying similarity or dissimilarity between multipara-

metric phenotypic profiles is challenging, because of the

different weights that can be given to the different parameters.

For analysis on a genome-wide scale, an automated and

objective approach is needed. We used distance metric

learning to transform raw phenotypic profiles, which are a

combination of genetic, environmental and stochastic varia-

tion, into biologically relevant phenoprints that capture the

significant effects of the genetic perturbations. In this machine

learning approach, the parameters used for the transformation

are learned by presenting the algorithm with training sets of

phenotypic profile pairs that are considered similar, as well as

with pairs that are unrelated. The learned metric is then

applied to unseen data. An advantage of this approach is that it

does not rely on arbitrary cut-offs or ad hoc scoring functions.

We note that distance metric learning has already been useful

in other fields of biology. For instance, to compute the

alignment score matrices used in protein sequence compar-

isons, such as PAM matrices (Dayhoff et al, 1978), their

parameters are learned from a training set of naturally

diverged sequences and the matrices are then used for

inferring the degree of homology of protein sequences in

general.

To test whether the prediction of gene function is accurate,

we examined several candidates that were in phenotypic

proximity to known components of the DDR and genomic

integrity. We characterized the role of DONSON in DNA

replication, proper spindle formation and the DDR. In

agreement with our observation that knock down of DONSON

led to the formation ofmultipolar spindles and the induction of

G1 arrest, a loss of centrosomal integrity has been described

earlier to result in checkpoint activation and inhibition of G1/S

progression (Mikule et al, 2007). Moreover, several studies

linked the loss of DDR components such as CHEK1 (Kramer

et al, 2004) to impaired genomic integrity. We suggest that

DONSON is part of a centrosomal network that integrates cell-

cycle arrest and repairs in response to genotoxic stress (Tang

et al, 2006; Loffler et al, 2007). This model is supported by the

finding that the centrosomal protein CEP164mediates the DDR

by interacting with ATM and ATR, thus forming a link between

the DDR and the centrosome (Sivasubramaniam et al, 2008).

Furthermore, we showed that SON, CADM1 and CD3EAP are

required for the DDR. Recently, the loss of SON has also been

implicated in leukaemogenesis (Ahn et al, 2008). The reduced

pCHEK1 response caused by CD3EAP knockdown is consistent

with CD3EAP being a downstream target of ATR on induced

DNA damage (Matsuoka et al, 2007). Interestingly, CD3EAP is

encoded by a gene locus that overlaps with ERCC1, a DNA

excision repair gene that is often mutated in colorectal cancer

(Skjelbred et al, 2006). Loss of DDR components results in

increased basal DNA damage and ultimately in a loss of

genomic integrity. Consistently, knock down of the candidate

genes DONSON, SON, CADM1 and CD3EAP led to increased

gH2AX formation, supporting a function of these genes not

only in the DDR but also in the maintenance of genomic

integrity.

The results show that the calculated phenoprints generate

useful hypotheses. The complete data set and computational

methods are available at http://www.cellmorph.org and can

serve as a resource for further functional discovery. Cell

population-based phenotypic readouts are a sensitive method

for deriving functional relationships and predict molecular

functions.

Materials and methods

Cell culture

HeLa and U2OS cell lines were maintained in DMEM (Invitrogen)
with 10% foetal bovine serum (FBS) (Invitrogen) and supplemented
with penicillin (100U/ml)/streptomycin (100 mg/ml) (Invitrogen). Cell
lineswere cultured at 371C, 5%CO2 in a humidied incubator according
to standard procedures.

Plasmids

An HA-tagged version of human DONSON was generated by
modification of a DONSON cDNA clone (SC111799, OriGene). In brief,
Don-HA forward and reverse primers (Supplementary Table I), and
Phusion polymerase (Finnzymes) were used to amplify the DONSON
coding sequence, cloned in frame with a C-terminal HA tag. The
resulting PCR product was inserted into the pcDNA3.1(þ ) (Invitro-
gen) using NheI and EcoRI restriction sites. Cloning was confirmed by
sequencing.

Generation of DONSON antibody

A rabbit anti-DONSON antibody was raised against a PGFRKPPEVV
RLRRKRAR peptide (Charles River Laboratories). In western blots, the
antibody specifically recognized a band corresponding to a size of
67 kDa. Specificity of the antibody was confirmed by siRNA knock
down of DONSON.

Human siRNA library

The genome-wide siRNA library siGENOME (Dharmacon) was re-
annotated against the NCBI RefSeq database (release 27). siRNA
sequences were mapped to RefSeq transcripts and assigned to the
corresponding gene. Out of the 21061 siRNA pools, 17145 were
predicted to specifically target a single gene by perfect sequence
identity.

High-throughput RNAi screening

For cell-based screening, the siRNA library was arrayed in black 384-
well, clear bottom plates (Corning #3712 or BD Flacon #353962) using
a Biomek FX200 liquid handling system (Beckman Coulter). Each well
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contained 5 ml of a 500nM pool of four synthetic siRNA duplexes
(dissolved in 1� siRNA solution buffer, Dharmacon). Library siRNAs
were spotted in columns 5–24; the remaining columns were used for
controls. Positions A04 and B04 contained an siRNA pool targeting
Rluc as negative control. Positions I04 and J04 contained an siRNA
pool targeting PLK1. Reverse transfection of cells with siRNA pools
was performed by delivering 15 ml of RPMI (Invitrogen) containing
0.05ml of Dharmafect1 (Dharmacon). After 30min of incubation at
room temperature, 1000 HeLa cells in 30ml of DMEM medium
(Invitrogen) supplemented with 10% FBS (Invitrogen) were added
to the siRNA transfection mix. All dispensing steps were performed
with a Multidrop Combi dispensing system (Thermo). Plates were
incubated for 48 h at 371C/5% CO2.

For fluorescence microscopy, cells were fixed, permeabilized and
immunostained for DNA, tubulin and actin using a Beckman FX200
liquid handling robot. First, cells were fixed with 5% paraformal-
dehyde (PFA) in PBS for 20min at room temperature and then
permeabilizedwith 0.2%Triton X-100 in PBS. Subsequently, cells were
washed with 0.05% TX-100 in PBS and incubated with blocking buffer
(0.05%TX-100/3%BSA in PBS). Cells were incubated overnight at 41C
with primary antibody anti-a-tubulin (Sigma, DM1A/T9026) diluted in
PBS/0.05%TX-100/3%BSA. Then, cells werewashed three timeswith
PBS and incubated with Alexa 488 secondary antibody (1:500 in PBS,
Invitrogen) for 45min at room temperature. Actin was stained with
TRITC-phalloidin (Sigma) in the secondary antibody solution, and
DNA with Hoechst 33242 (Invitrogen). Cells were washed with PBS
and stored therein. Batches of 10 384-well plates were processed
per batch.

Automated imaging

Images were acquired on an automated BD Pathway 855 Bioimaging
System (Becton Dickinson) with a 20� objective (Olympus,
NA¼0.75) and a Hamamatsu monochrome digital black and white
camera (Orca-ER). For high-throughput screening, plates were loaded
onto the microscope with a Twister II Microplate robotic arm. Images
of four different positions in each well were acquired, each containing
channels for Hoechst (DNA), Alexa 488 (tubulin) and TRITC (actin).
Each image had a resolution of 670�510 pixels with each channel at
12-bit intensity resolution. The total number of cells measured in a
well was typically around 300. For the primary screen, a total of 22 839
wellswere imaged in four spots each, using three channels, resulting in
274 068 grey scale images. The combination of the three channels leads
to 91 356 three-colour images.

Automated phenotyping of cells

We used the EBImage package to perform the image processing
operations (Pau et al, 2010). Images consisted of three channels (actin,
tubulin and DNA). First, nuclei were segmented by adaptive thresh-
olding of the DNA channel, distance map computation and watershed
segmentation. Next, nuclei were regularized by morphological open-
ing, and internal holes were removed by inverse flood fill (see
Supplementary information). Cell boundaries were identified by
Voronoi segmentation (Jones et al, 2009). Each cell was characterized
by a set of 51 morphological descriptors, computed on different
channels, which were grouped into 4 categories: 9 geometric features,
26 Haralick textural features, 11 Zernikemoments and 5miscellaneous
features (see Supplementary information). All descriptors are transla-
tion and rotation invariant and are commonly used in cell imaging for
classification purposes (Loo et al, 2007). Cells were classified into 1 of
10 classes (Supplementary Table II), using the ‘one-against-one’ multi-
class strategy of the SVM algorithm, with a training set of 2545
manually annotated cells (Supplementary Tables III, IV, V and VI).
Each well subject to siRNA perturbation was summarized by a vector
of 13 numerical descriptors (Supplementary Table VII). Each value of a
phenotypic profile was transformed to a [0,1] score using a set of
parameterized monotonic functions, leading to a vector of 19 scores,
which we termed a phenoprint. A phenoprint was considered a hit if at
least one of its elements was larger than 0.5. The phenotypic distance
between two perturbations was defined as the distance between two

phenoprints, according to a modified L1 metric (see Supplementary
information).

Assessment of the siRNA target specificity

To confirm siRNA-mediated phenotypic changes observed in the
genome-wide screen, we used independent siRNA pools (Qiagen) for
604 gene transcripts (Supplementary Table X). The phenotype of the
siRNA perturbation was monitored by microscopy as described above
in HeLa and U2OS cells. Phenotypic changes were visually confirmed
for 51% of target genes. For 60 of the 604 target genes, we additionally
used individual siRNA duplexes (Dharmacon). In this study, 73% of
phenotypic changes were visually confirmed with at least two out of
four individual siRNAs (Supplementary Table XI). siRNA sequences
are listed in Supplementary Table XII and can also be accessed at
http://rnai.dkfz.de.

DNA content profiling using high-throughput

immunocytometry

After transfectionwith siRNAs, cells were fixed by adding ice-cold 80%
EtOH for 30min. Cells were rehydrated by washing two times with
PBS. After RNaseAdigest (100mg/ml) for 1 h at 371C, cells were stained
for 15min in PBS containing 10 mg/ml propidium iodide (Molecular
Probes). The stained cells were scanned with an Acumen Explorer eX3
microplate cytometer (TTP LabTech). The resulting DNA content
histograms were manually gated.

Assessment of cH2AX foci formation

For qualitative analysis of gH2AX foci formation, cells were reverse
transfected on glass coverslips. Cells were fixed, permeabilized and
incubated with the primary antibody to phospho-H2AX (Upstate
Biotechnology, 1:300) and subsequently with Alexa 488-conjugated
secondary antibody (Invitrogen, 1:500). DNA was counterstained
with Hoechst 33342 (Sigma, 1:1000 in PBS). Coverslips were mounted
onto glass slides with Fluoromount G (Southern Biotech) mounting
media. An Axioimager Z1Microscope (Zeiss) equipped with a � 63 oil
objective (Zeiss, NA¼1.4) and an apotome were used for image
acquisition.

Quantitative assessment of gH2AX foci formation was performed
by reverse transfection of cells with siRNAs in 384-well plates.
After incubation for 72 h, gH2AX foci formation was monitored by
immunofluorescence staining of phospho-H2AX as described above
and acquired using an Acumen Explorer microplate reader.

Western blot

Forty-eight hours after siRNA transfection, cells were either g

irradiated (10Gy) or UVC irradiated (20 J/m2) and collected 1 and
2 h later. Whole-cell lysates were prepared in urea buffer (8M urea,
0.1M NaH2PO4, 10mM TRIS–HCl, pH 7.5–8, protease inhibitors).
Samples were subjected to SDS–PAGE (NuPage, 4–12% Bis–Tris;
Invitrogen), transferred to PVDF membrane (Immobilon, Millipore)
and subsequently incubated with antibodies. The following primary
antibodies were used: CHEK1 (#2345), pCHEK1 (#2344), pNBS1
(#3001), NBS1 (#3000), cyclin A (#4656), pATM (#4526), ATM (#2873)
and MCM2 (#4007) from Cell Signaling Technology, cyclin D1
(SC-8396) from Santa Cruz, RPA2 (NA19L) and PARP (AM30) from
Calbiochem, phospho-H2AX (#07-164) and cyclin B1 (#05-373)
from Millipore, actin (ab6276) from Abcam and SON (HPA023535)
from Sigma. Secondary HRP-conjugated anti-mouse or rabbit anti-
bodies were obtained from Amersham.

For chromatin isolation, cells were washed with PBS, resuspended
in CSK buffer (10mM Pipes, pH 6.8, 100mM NaCl, 300mM sucrose,
3mM MgCl2, 1mM EGTA, 50mM NaF, 0.1mM Na-orthovanadate
(Sigma-Aldrich), 0.1% Triton X-100 (Sigma-Aldrich) and protease
inhibitors (Roche)), and incubated on ice for 10min. Cytoplasmic
proteins were separated from nucleic proteins by low-speed centri-
fugation at 1300 g for 5min. Isolated nuclei proteins were washed once
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in CSK buffer and lysed in solution B (3mM EDTA, 0.2mM EGTA,
1mM DTT, and protease inhibitors). After centrifugation (1700 g for
5min), pelletswere resuspended in urea buffer, 2� SDS loading buffer
was added and samples were boiled for 10min.

Subcellular localization of DONSON

Cells were transfected with hDonson-HA plasmid using Trans-IT LT
(Mirus) transfection reagent; 24 h after plasmid transfection, cells were
either fixed in �201C methanol/acetone (1:1) for 7min or PFA after
permeabilization with PBS supplemented with 0.05% Triton X-100.
Immunofluorescence microscopy was performed with rabbit anti-HA
polyclonal antibodies (Sigma #H6908) and mouse anti-a-tubulin
(Sigma #T6557) or rabbit anti-centrin (Sigma #C7736) and mouse
anti-HA antibodies (CST #2367). Alexa Fluor 488 goat anti-rabbit
(Invitrogen #A-11008), Alexa Fluor 488 goat anti-mouse (Invitrogen
#A-11001), Alexa Fluor 594 goat anti-mouse (Invitrogen #A-11005) and
Alexa Fluor 594 goat anti-rabbit (Invitrogen #A-11012) were used as
secondary antibodies. Images were acquired using an Axio CellOb-
server (Zeiss) equipped with a Colibri LED light source, standard
fluorescence filters and a 63� oil objective (Zeiss, NA¼1.4).

Quantitative real-time PCR

Forty-eight hours after siRNA transfection, RNAwas isolated with the
RNeasy Mini kit (Qiagen) and 1 mg RNA was used as a template for
cDNA synthesis using oligo-dT primer and the RevertAid H Minus
First Stand cDNA Synthesis kit (Fermentas #K1632). Expression levels
were normalized against GAPDH expression. The level of target gene
knockdown was quantified in three independent experiments.
Quantifications were performed using the Universal Probe Library
(Roche) on a Light Cycler 480 (Roche). Primers for real-time PCR were
designed using ProbeFinder (Roche) and are provided in Supple-
mentary Table I.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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