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Clustering spectrum of scale-free networks
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Department of Mathematics and Computer Science, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 13 June 2017; published 26 October 2017)

Real-world networks often have power-law degrees and scale-free properties, such as ultrasmall distances
and ultrafast information spreading. In this paper, we study a third universal property: three-point correlations
that suppress the creation of triangles and signal the presence of hierarchy. We quantify this property in terms
of c̄(k), the probability that two neighbors of a degree-k node are neighbors themselves. We investigate how
the clustering spectrum k �→ c̄(k) scales with k in the hidden-variable model and show that c̄(k) follows a
universal curve that consists of three k ranges where c̄(k) remains flat, starts declining, and eventually settles
on a power-law c̄(k) ∼ k−α with α depending on the power law of the degree distribution. We test these results
against ten contemporary real-world networks and explain analytically why the universal curve properties only
reveal themselves in large networks.

DOI: 10.1103/PhysRevE.96.042309

I. INTRODUCTION

Most real-world networks have power-law degrees so that
the proportion of nodes having k neighbors scales as k−τ

with exponent τ between 2 and 3 [1–4]. Power-law degrees
imply various intriguing scale-free network properties, such
as ultrashort distances [5,6] and the absence of percolation
thresholds when τ < 3 [7,8]. Empirical evidence has been
matched by random graph null models that are able to explain
mathematically why and how these properties arise. This paper
deals with another fundamental property observed in many
scale-free networks related to three-point correlations that
suppress the creation of triangles and signal the presence
of hierarchy. We quantify this property in terms of the
clustering spectrum, the function k �→ c̄(k) with c̄(k) as the
probability that two neighbors of a degree-k node are neighbors
themselves.

In uncorrelated networks the clustering spectrum c̄(k)
remains constant and independent of k. However, the majority
of real-world networks have spectra that decay in k as first
observed in technological networks including the Internet
[9,10]. Figure 1 shows the same phenomenon for a social
network: YouTube users as vertices and edges indicating
friendships between them [11].

Close inspection suggests the following properties not only
in Fig. 1, but also in the nine further networks in Fig. 10 in
Appendix E. The right end of the spectrum appears to be of
the power-law form k−α; approximate values of α give rise
to the dashed lines; (ii) the power law is only approximate
and kicks in for rather large values of k. In fact, the slope of
c̄(k) decreases with k; (iii) there exists a transition point: the
minimal degree as of which the slope starts to decline faster
and settles on its limiting (large k) value.

For scale-free networks a decaying c̄(k) is taken as an
indicator for the presence of modularity and hierarchy [10],
architectures that can be viewed as collections of subgraphs
with dense connections within themselves and sparser ones
between them. The existence of clusters of dense interaction
signals hierarchical or nearly decomposable structures. When
the function c̄(k) falls off with k, low-degree vertices have
relatively high clustering coefficients, hence, creating small
modules that are connected through triangles. In contrast,
high-degree vertices have very low clustering coefficients

and therefore act as bridges between the different local
modules. This also explains why c̄(k) is not just a local
property and, when viewed as a function of k, measures
crucial mesoscopic network properties, such as modularity,
clusters, and communities. The behavior of c̄(k) also turns out
to be a good predictor for the macroscopic behavior of the
network. Randomizing real-world networks while preserving
the shape of the c̄(k) curve produces networks with very similar
component sizes as well as similar hierarchical structures as the
original network [16]. Furthermore, the shape of c̄(k) strongly
influences the behavior of networks under percolation [17].
This places the c̄(k) curve among the most relevant indicators
for structural correlations in network infrastructures.

In this paper, we obtain a precise characterization of
clustering in the hidden-variable model, a tractable random
graph null model. We start from an explicit form of the c̄(k)
curve for the hidden-variable model [18–20]. We obtain a
detailed description of the c̄(k) curve in the large-network
limit that provides rigorous underpinning of the empirical
observations (i)–(iii). We find that the decay rate in the hidden-
variable model is significantly different from the exponent
c̄(k) ∼ k−1 that has been found in a hierarchical graph model
[10] as well as in the preferential attachment model [21] and a
preferential attachment model with enhanced clustering [22].
Furthermore, we show that before the power-law decay of
c̄(k) kicks in, c̄(k) first has a constant regime for small k

and a logarithmic decay phase. This characterizes the entire
clustering spectrum of the hidden-variable model.

This paper is structured as follows. Section II introduces
the random graph model and its local clustering coefficient.
Section III presents the main results for the clustering
spectrum. Section IV explains the shape of the clustering
spectrum in terms of an energy minimization argument, and
Sec. V quantifies how fast the limiting clustering spectrum
arises as a function of the network size. We conclude with a
discussion in Sec. VI and present all mathematical derivations
of the main results in the Appendices.

II. HIDDEN VARIABLES

As a null model we employ the hidden-variable model
[18,23–26]. Given N nodes, hidden-variable models are
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FIG. 1. c̄(k) for the YouTube social network.

defined as follows. Associate with each node a hidden-
variable h drawn from a given probability distribution
function,

ρ(h) = Ch−τ (1)

for some constant C. Next join each pair of vertices indepen-
dently according to a given probability p(h,h′) with h and h′

as the hidden variables associated with the two nodes. Many
networks can be embedded in this hidden-variable framework,
but particular attention goes to the case in which the hidden
variables have themselves as the structure of the degrees of
a real-world network. In that case the hidden-variable model
puts soft constraints on the degrees, which typically is easier
to analyze than hard constraints as in the configuration model
[4,27–29]. Chung and Lu [30] introduced the hidden-variable
model in the form

p(h,h′) ∼
hh′

N〈h〉
, (2)

so that the expected degree of a node equals its hidden variable.
We now discuss the structural and natural cutoff because

both will play a crucial role in the description of the clustering
spectrum. The structural cutoff is defined as the largest possible
upper bound on the degrees required to guarantee single
edges, whereas the natural cutoff characterizes the maximal
degree in a sample of N vertices. For scale-free networks
with exponent τ ∈ (2,3] the structural cutoff scales as

√
N ,

whereas the natural cutoff scales as N1/(τ−1), which gives rise
to structural negative correlations and possibly other finite-size
effects. If one wants to avoid such effects, then the maximal

h

c(h)

N
β(τ)

N
1

2 N
1

τ−1

I II III

FIG. 2. Clustering spectrum h �→ c(h) with three different ranges
for h: the flat range, logarithmic decay, and the power-law decay.

value of the product hh′ should never exceed N〈h〉, which
can be guaranteed by the assumption that the hidden degree
h is smaller than the structural cutoff hs =

√
N〈h〉. Although

this restricts p(h,h′) in (2) within the interval [0,1], banning
degrees larger than the structural cutoff strongly violates the
reality of scale-free networks where degrees all the way up
to the natural cutoff (N〈h〉)1/(τ−1) need to be considered. We
therefore work with (although many asymptotically equivalent
choices are possible; see Ref. [31] and Appendix A)

p(h,h′) = min

(

1,
hh′

N〈h〉

)

, (3)

putting no further restrictions on the range of the hidden
variables (and hence degrees).

In this paper, we will work with c(h), the local clustering
coefficient of a randomly chosen vertex with hidden-variable
h. However, when studying local clustering in real-world
data sets, we can only observe c̄(k), the local clustering
coefficient of a vertex of degree k. In Appendix C we show
that the approximation c̄(h) ≈ c(h) is highly accurate. We start
from the explicit expression for c(h) [18], which measures
the probability that two randomly chosen edges from h are
neighbors, i.e.,

c(h) =
∫

h′

∫

h′′
p(h′|h)p(h′,h′′)p(h′′|h)dh′′dh′, (4)

with p(h′|h) as the conditional probability that a randomly
chosen edge from an h-vertex is connected to an h′ vertex and
p(h,h′) as in (3). The goal is now to characterize the c(h) curve
[and hence the c̄(k) curve].

III. UNIVERSAL CLUSTERING SPECTRUM

The asymptotic evaluation of the double integral (4) in
the large-N regime reveals three different ranges, defined in
terms of the scaling relation between the hidden-variable h

and the network size N . The three ranges together span the
entire clustering spectrum as shown in Fig. 2. The detailed
calculations are deferred to Appendix A.

The first range pertains to the smallest-degree nodes, i.e.,
vertices with a hidden variable that does not exceed Nβ(τ ) with
β(τ ) = τ−2

τ−1 . In this case we show that

c(h) ∝ N2−τ ln N, h � Nβ(τ ). (5)

In particular, here the local clustering does not depend on the
degree and in fact corresponds with the large-N behavior of
the global clustering coefficient [31,32]. Note that the interval
[0,β(τ )] diminishes when τ is close to 2, a possible explanation
for why the flat range associated with Range I is hard to
recognize in some of the real-world data sets.

Range II considers nodes with hidden variables (degrees)
above the threshold Nβ(τ ) but below the structural cutoff

√
N .

These nodes start experiencing structural correlations, and
close inspection of the integral (4) yields

c(h) ∝ N2−τ

[

1 + ln

(√
N

h

)]

, Nβ(τ )
� h �

√
N. (6)

This range shows relatively slow logarithmic decay in the
clustering spectrum and clearly is visible in the ten data sets.
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TABLE I. Data sets. N denotes the number of vertices, τ denotes
the exponent of the tail of the degree distribution estimated by the
method proposed in Ref. [27] together with the goodness of fit
criterion proposed in Ref. [27] (when the goodness of fit is at least
0.10, a power-law tail cannot be rejected), and α denotes the exponent
of c(k).

N τ Goodness of fit α

Hudong 1.984.484 2.30 0.00 0.85
Baidu 2.141.300 2.29 0.00 0.80
Wordnet 146.005 2.47 0.00 1.01
Google web 875.713 2.73 0.00 1.03
AS-Skitter 1.696.415 2.35 0.06 1.12
TREC-WT10g 1.601.787 2.23 0.00 0.99
Wiki-talk 2.394.385 2.46 0.00 1.54
Catster and Dogster 623.766 2.13 0.00 1.20
Gowalla 196.591 2.65 0.80 1.24
YouTube 1.134.890 2.22 0.00 1.05

Range III considers hidden variables above the structural
cutoff when the restrictive effect of degree-degree correlations
becomes more evident. In this range we find that

c(h) ∝
1

N

(

h

N

)−2(3−τ )

, h �
√

N, (7)

hence power-law decay with a power-law exponent α =
2(3 − τ ). Such power-law decay has been observed in many
real-world networks [4,10,33–36] where most networks were
found to have a power-law exponent close to one. The
asymptotic relation (7) shows that the exponent α decreases
with τ and takes values in the entire range of (0,2). Table I
contains estimated values of α for the ten data sets.

IV. ENERGY MINIMIZATION

We now explain why the clustering spectrum splits into
three ranges using an argument that minimizes the energy
needed to create triangles among nodes with specific hidden
variables.

In all three ranges for h, there is one type of “most likely”
triangle as shown in Fig. 3. This means that most triangles
containing a vertex v with hidden-variable h are triangles with
two other vertices v′ and v′′ with hidden-variables h′ and h′′ of
specific sizes, depending on h. The probability that a triangle

h

h
N

h

(a)

h

N

h

N

h

(b)

FIG. 3. Orders of magnitude of the major contributions in
the different h ranges. The highlighted edges are present with
asymptotically positive probability. (a) h <

√
N and (b) h >

√
N .

is present among v, v′, and v′′ can be written as

min

(

1,
hh′

N〈h〉

)

min

(

1,
hh′′

N〈h〉

)

min

(

1,
h′h′′

N〈h〉

)

. (8)

Although the probability that such a triangle exists among the
three nodes thus increases with h′ and h′′, the number of such
nodes decreases with h′ and h′′ because vertices with higher
h values are rarer. Therefore, the maximum contribution to
c(h) results from a trade-off between large enough h′,h′′ for
a likeliness of the occurrence of the triangle and h′,h′′ small
enough to have enough copies. Thus, having h′ > N〈h〉/h

is not optimal since then the probability that an edge exists
between v and v′ no longer increases with h′. This results in
the bound,

h′,h′′
�

N〈h〉
h

. (9)

Similarly, h′h′′ > N〈h〉 is also suboptimal since then further
increasing h′ and h′′ does not increase the probability of an
edge between v′ and v′′. This gives as a second bound,

h′h′′
� N〈h〉. (10)

In Ranges I and II, h <
√

N〈h〉 so that N〈h〉/h >
√

N〈h〉.
In this situation we reach bound (10) before we reach bound
(9). Therefore, the maximum contribution to c(h) comes from
h′h′′ ≈ N , where also h′,h′′ < N〈h〉/h because of bound (9).
Here the probability that the edge between v′ and v′′ exists is
high, whereas the other two edges have a low probability to be
present as shown in Fig. 3(a). Note that for h in Range I, bound
(9) is superfluous since in this regime N〈h〉/h > hc, whereas
the network does not contain vertices with hidden variables
larger than hc. This bound indicates the minimal values of h′

such that an h vertex is guaranteed to be connected to an h′

vertex. Thus, vertices in Range I are not even guaranteed to
have connections to the highest-degree vertices, hence they
are not affected by the single-edge constraints. Therefore the
value of c(h) in Range I is independent of h.

In Range III, h >
√

N〈h〉 so that N〈h〉/h <
√

N〈h〉.
Therefore, we reach bound (9) before we reach bound (10).
Thus, we maximize the contribution to the number of triangles
by choosing h′,h′′ ≈ N〈h〉/h. Then the probability that the
edges from v to v′ and from v to v′′ are present is high, whereas
the probability that the edge between v′ and v′′ exists is low as
illustrated in Fig. 3(b).

V. CONVERGENCE RATE

We next ask how large networks should be, or become,
before they reveal the features of the universal clustering
spectrum. In other words, although the results in this paper
are shown for the large-N limit, for what finite N values can
we expect to see the different ranges and clustering decay? To
bring networks of different sizes N on a comparable footing,
we consider

σN (t) =
ln[c(h)/c(hc)]

ln(N〈h〉)
, h = (N〈h〉)t (11)

for 0 � t �
1

τ−1 . The slope of σN (t) can be interpreted as a
measure of the decay of c(h) at h = (N〈h〉)t , and all curves
share the same right end of the spectrum; see Appendix B for
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FIG. 4. σN (t) for N = 104, 106, and 108 together with the
limiting function using τ = 2.25 for which 1

τ−1 = 0.8.

more details. Figure 4 shows this rescaled clustering spectrum
for synthetic networks generated with the hidden-variable
model with τ = 2.25. Already 104 vertices reveal the essential
features of the spectrum: the decay and the three ranges.
Increasing the network size further to 105 and 106 nodes shows
that the spectrum settles on the limiting curve. Here we note
that the real-world networks reported in Figs. 1 and 10 are also
of order 105–106 nodes, see Table I.

Figure 4 also brings to bear a potential pitfall when the goal
is to obtain statistically accurate estimates for the slope of
c(h). Observe the extremely slow convergence to the limiting
curve for N = ∞; a well documented property of certain
clustering measures [31,32,37,38]. In Appendix B we again
use the integral expression (4) to characterize the limiting
curve for N = ∞ and the rate of convergence as function of
N , and indeed extreme N values are required for statistically
reliable slope estimates for, e.g., t values of 1

2 and 1
τ−1 ; this

also is apparent from visual inspection of Fig. 4. Therefore, the
estimates in Table I only serve as indicative values of α. Finally,
observe that Range II disappears in the limiting curve due to the
rescaling in (11) but again only for extreme N values. Because
this paper is about structure rather than statistical estimation,
the slow convergence in fact provides additional support for
the persistence of Range II in Figs. 1 and 10.

Table I also shows that the relation α = −2(3 − τ ) is
inaccurate for the real-world data sets, in turn, affecting
the theoretical boundaries of the three regimes indicated
in Fig. 10. One explanation for this inaccuracy is that
the real-world networks might not follow pure power-law
distributions as measured by the goodness of fit criterion
in Table I and visualized in Appendix D. Furthermore,
real-world networks usually are highly clustered and contain
community structures, whereas the hidden-variable model is
locally treelike. These modular structures may explain, for
example, why the power-law decay of the hidden-variable
model is less pronounced in the three social networks of
Fig. 10. It is remarkable that, despite these differences
between hidden-variable models and real-world networks, the
global shape of the c(k) curve of the hidden-variable model is
still visible in these heavy-tailed real-world networks.

VI. DISCUSSION

The hidden-variable model gives rise to single-edge net-
works in which pairs of vertices can only be connected once.

101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

k

c̄(k)

τ = 2.2
τ = 2.5
τ = 2.8

FIG. 5. c̄(k) for a hidden-variable model with connection proba-
bilities (12) (the solid line) and an erased configuration model (the
dashed line). The presented values of c̄(k) are averages over 104

realizations of networks of size N = 105.

Hierarchical modularity and the decaying clustering spectrum
have been contributed to this restriction that no two vertices
have more than one edge connecting them [9,39–42]. The
physical intuition is that the single-edge constraint leads
to far fewer connections between high-degree vertices than
anticipated based on randomly assigned edges. We have
indeed confirmed this intuition not only through analytically
revealing the universal clustering curve, but also by providing
an alternative derivation of the three ranges based on energy
minimization and structural correlations.

We now show that the clustering spectrum revealed by
using the hidden-variable model also appears for a second
widely studied null model. This second model cannot be the
configuration model (CM), which preserves the degree distri-
bution by making connections between vertices in the most
random way possible [6,43]. Indeed, because of the random
edge assignment, the CM has no degree correlations, leading in
the case of scale-free networks with diverging second moment
to uncorrelated networks with non-negligible fractions of
self-loops (a vertex joined to itself) and multiple connections
(two vertices connected by more than one edge). This picture
changes dramatically when self-loops and multiple edges are
avoided, a restriction mostly felt by the high-degree nodes,
who can no longer establish multiple edges among each other.

We therefore consider the erased configuration model
(ECM) that takes a sample from the CM and then erases all
the self-loops and multiple edges. Although this removes some
of the edges in the graph, thus violating the hard constraint,
only a small proportion of the edges is removed so that the
degree of vertex j in the ECM is still close to Dj [44, Chap.
7]. In the ECM, the probability that a vertex with degree Di

is connected to a vertex with degree Dj can be approximated
by 1 − e−DiDj /〈D〉N [45, Eq. (4.9)]. Therefore, we expect the
ECM and the hidden-variable model to have similar properties
(see, e.g., Ref. [31]) when we choose

p(h,h′) = 1 − e−hh′/N〈h〉 ≈
hh′

N〈h〉
. (12)

Figure 5 illustrates how both null models generate highly
similar spectra, which provides additional support for the
claim that the clustering spectrum is a universal property
of simple scale-free networks. The ECM is more difficult
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to deal with compared to the hidden-variable models since
edges in the ECM are not independent. In particular, we
expect that these dependencies vanish for the k �→ c̄(k) curve.
Establishing the universality of the k �→ c̄(k) curve for other
random graph null models, such as the ECM, networks with an
underlying geometric space [46], or hierarchical configuration
models [47], is a major research direction. The ECM and
the hidden-variable model are both null models with soft
constraints on the degrees. Putting hard constraints on the
degrees with the CM has the nice property that simple graphs
generated using this null model are uniform samples of all
simple graphs with the same degree sequence. Dealing with
such uniform samples is notoriously hard when the second
moment of the degrees is diverging, for example, since the
CM will yield many edges between high-degree vertices. This
makes sampling uniform graphs difficult [48–50]. Thus, the
joint requirement of hard degree and single-edge constraints as
in the CM presents formidable technical challenges. Whether
our results for the k �→ c̄(k) curve for soft-constraint models
also carry over to these uniform simple graphs is a challenging
open problem.

In this paper we have investigated the presence of triangles
in the hidden-variable model. We have shown that, by first
conditioning on the node degree, there arises a unique most
likely triangle with two other vertices of specific degrees. We
not only have explained this insight heuristically, but also
reflected it in the elaborate analysis of the double integral

for c(h) in Appendix A. As such, we have introduced an
intuitive and tractable mathematical method for asymptotic
triangle counting. It is likely that the method carries over to
counting other motifs, such as squares or complete graphs of
larger sizes. For any given motif and first conditioning on the
node degree, we again expect to find specific configurations
that are most likely. Further mathematical challenges need
to be overcome though because we expect that the most
likely configurations critically depend on the precise motif
topologies and the associated energy minimization problems.
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APPENDIX A: DERIVATION FOR THE THREE RANGES

In this Appendix, we compute c(h) in (4), and we show
that c(h) can be approximated by (5), (6), or (7), depending
on the value of h. Throughout the Appendix, we assume
that p(h,h′) = min(1,hh′/h2

s ) and ρ(h) = Ch−τ . Then, the
derivation of c(h) in Ref. [16] yields

c(h) =

∫ hc

1

∫ hc

1
ρ(h′)p(h,h′)ρ(h′′)p(h,h′′)p(h′,h′′)dh′′dh′

[∫ hc

1
ρ(h′)p(h,h′)dh′

]2

=

∫ hc

1

∫ hc

1
(h′h′′)−τ min

(

hh′

h2
s

,1

)

min

(

hh′′

h2
s

,1

)

min

(

h′h′′

h2
s

,1

)

dh′′dh′

[∫ hc

1
(h′)−τ min

(

hh′

h2
s

,1

)

dh′
]2 . (A1)

Computing c(h) also will allow us to compute

σN (t) =
ln[c(h)/c(href)]

ln(N〈h〉)
, h = (N〈h〉)t (A2)

for 0 � t �
1

τ−1 , where href ∈ [0,hc] is fixed. We are interested in computing the value of σN (t) for large values of N .
Adopting the standard choices [31],

hs =
√

N〈h〉, hc = (N〈h〉)1/(τ−1), (A3)

and setting hmin = 1 gives

〈h〉 =
τ − 1

τ − 2

1 − N2−τ

1 − N1−τ
. (A4)

For ease of notation in the proofs below, we will use

a = h−1
s = (N〈h〉)−1/2, b =

hc

hs

= (N〈h〉)[(3−τ )/2(τ−1)],

(A5)

and

r(u) = min(u,1). (A6)
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In this notation, (A1) can be written succinctly as

c(h) =

∫ b

a

∫ b

a

(xy)−τ r(ahx)r(ahy)r(xy)dx dy

[∫ b

a

x−τ r(ahx)dx

]2 . (A7)

Because of the four min operators in expression (A1), we have to consider various h ranges. We compute the value of c(h) in
these three ranges one by one.

Range I. h < h2
s/hc

We now show that,, in this range,

c(h) ≈
τ − 2

3 − τ
h4−2τ

s ln

(

h2
c

h2
s

)

∝ N2−τ ln N, (A8)

which proves (5).
This range corresponds to h < 1/(ab) with a and b as in (A5). In this range, r(ahx) = ahx and r(ahy) = ahy for all x ∈ [a,b].

This yields for c(h),

c(h) =

∫ b

a

∫ b

a

(xy)1−τ r(xy)dx dy

[∫ b

a

x1−τdx

]2 . (A9)

For the denominator we compute
∫ b

a

x1−τdx =
a2−τ − b2−τ

τ − 2
. (A10)

Since a ≪ b, this can be approximated as

a2−τ − b2−τ

τ − 2
≈

a2−τ

τ − 2
. (A11)

We can compute the numerator of (A9) as

∫ b

a

∫ b

a

(xy)1−τ r(xy)dx dy =
∫ 1/b

a

∫ b

a

(xy)2−τdx dy +
∫ b

1/b

∫ 1/x

a

(xy)2−τdx dy +
∫ b

1/b

∫ b

1/x

(xy)1−τdx dy

=
(bτ−3 − a3−τ )(b3−τ − a3−τ )

(3 − τ )2
+

1

3 − τ

(

ln(b2) −
a3−τ (b3−τ − bτ−3)

3 − τ

)

+
1

2 − τ

(

b2−τ (b2−τ − bτ−2)

2 − τ
− ln(b2)

)

=
ln(b2)

(3 − τ )(τ − 2)
−

1 − b4−2τ

(τ − 2)2
+

1 − 2(ab)3−τ + a6−2τ

(3 − τ )2
. (A12)

The first of these three terms dominates when
3 − τ

τ − 1

ln(N〈h〉)
(3 − τ )(τ − 2)

≫
1

(τ − 2)2
, (A13)

and
3 − τ

τ − 1

ln(N〈h〉)
(3 − τ )(τ − 2)

≫
1

(3 − τ )2
, (A14)

where we have used that b2 = (N〈h〉)(3−τ )/(τ−1). Thus, when ln(N〈h〉) is large compared to (τ − 1)/(τ − 2) and (τ − 1)(τ −
2)/(τ − 3)2, we obtain

c(h) ≈
τ − 2

3 − τ
a2τ−4 ln

(

b2
)

∝ N2−τ ln(N ), (A15)

which proves (A8).
Range II. h2

s/hc < h < hs

In this range, we show that

c(h) ≈ h4−2τ
s

ln
(

h2
s

h2

)

+ M

(τ − 2)(3 − τ )
∝ N2−τ [ln(N/h2) + M] (A16)
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for some positive constant M , which proves (6).
This range corresponds to (ab)−1 < h < a−1. For these values of h, we have ahx,ahy = 1 for x,y = (ah)−1 ∈ (1,b) and

xy = 1 for y = 1/x ∈ [a,b] when b−1 < x < b. Then for the denominator of (A7) we compute
∫ 1/(ah)

a

ahx1−τdx +
∫ b

1/(ah)
x−τdx =

1

τ − 2
[a3−τh − (ah)τ−1] +

1

τ − 1
[(ah)τ−1 − b1−τ ]

= ah

(

a2−τ

τ − 2
−

(ah)τ−2

(τ − 1)(τ − 2)
−

b1−τ/(ah)

τ − 1

)

. (A17)

Splitting up the integral in the numerator results in

Num(h) =
∫ b

a

∫ b

a

(xy)−τ r(ahx)r(ahy)r(xy)dx dy =
∫ b

1/(ah)

∫ b

1/(ah)
(xy)−τdy dx + 2ah

∫ b

1/(ah)

∫ 1/(ah)

1/x

(xy)−τy dy dx

+2ah

∫ b

1/(ah)

∫ 1/x

a

(xy)1−τy dy dx + a2h2
∫ 1/(ah)

ah

∫ 1/x

a

(xy)2−τdy dx + a2h2
∫ 1/(ah)

ah

∫ 1/(ah)

1/x

(xy)1−τdy dx

+a2h2
∫ ah

a

∫ 1/(ah)

a

(xy)2−τdy dx =: I1 + I2 + I3 + I4 + I5 + I6, (A18)

where the factors 2 arise by symmetry of the integrand in x and y. Computing these integrals yields

I1 = a2h2

(

(ah)τ−2 − a−1b1−τh−1

τ − 1

)2

, (A19)

I2 = 2a2h2

(

1 − 1/(abh)

τ − 2
−

(ah)2τ−4

(τ − 1)(τ − 2)
[1 − (abh)1−τ ]

)

, (A20)

I3 = 2a2h2

(

1 − 1/(abh)

3 − τ
−

hτ−3[1 − (abh)2−τ ]

(3 − τ )(τ − 2)

)

, (A21)

I4 = a2h2

(

ln[(ah)−2]

3 − τ
+

(a2h)3−τ − hτ−3

(3 − τ )2

)

, (A22)

I5 = a2h2

(

ln[(ah)−2]

τ − 2
−

1 − (ah)2τ−4

(τ − 2)2

)

, (A23)

I6 = a2h2

(

1 − hτ−3 + a6−2τ − (a2h)3−τ

(3 − τ )2

)

. (A24)

We have ah < 1 < ahb, and so the leading behavior of Num(h) is determined by the terms involving ln[(ah)−2] in I3 and I4, all
other terms being bounded. Retaining only these dominant terms, we get

Num(h) = a2h2 ln[(ah)−2]

(τ − 2)(3 − τ )
[1 + o(1)] (A25)

provided that ah → 0 as N → ∞. In terms of the variable t in h = (N〈h〉)t , see (11) and (A2), this condition holds when we
restrict to t ∈ [(τ − 2)/(τ − 1), 1

2 − ε] for any ε > 0. Furthermore, from (A17),

(∫ b

a

x−τ r(ahx)dx

)2

= a2h2

(

a2−τ

τ − 2

)2

[1 + o(1)]. (A26)

Hence, when ah → 0, we have

c(h) =
τ − 2

3 − τ
a2τ−4 ln[(ah)−2][1 + o(1)] ∝ N2−τ ln(N/h2). (A27)

We compute c(h = 1/a) asymptotically by retaining only all constant terms between brackets in (A19)–(A24) since all other
terms vanish or tend to 0 as N → ∞. This gives

Num(h = 1/a) = a2h2

(

1

(τ − 1)2
+

2

τ − 2
−

2

(τ − 1)(τ − 2)
+

2

3 − τ
+

1

(3 − τ )2

)

[1 + o(1)] = Pa2h2[1 + o(1)], (A28)

where P = 1
(τ−1)2 + 1

(3−τ )2 + 2
τ−1 + 2

3−τ
. Together with (A26), we find

c(h = 1/a) = P (τ − 2)2a2τ−4[1 + o(1)] ∝ N2−τ. (A29)

In Ref. [31], it has been shown that c(h) decreases in h, and then (A16) follows from (A27) and (A29).
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Range III. hs < h < hc

We now show that when hs < h < hc, then

c(h) ≈
1

(3 − τ )2
(hs/h)6−2τh4−2τ

s ∝ N5−2τh2τ−6, (A30)

which proves (7).
This range corresponds to 1/a < h < b/a. The denominator of (A7) remains the same as in the previous range and is given

by (A17). Splitting up the integral in the numerator of (A7) now results in

Num(h) =
∫ b

a

∫ b

a

(xy)−τ r(ahx)r(ahy)r(xy)dx dy =
∫ ah

1/(ah)

∫ b

1/x

(xy)−τdy dx +
∫ b

ah

∫ b

1/(ah)
(xy)−τdy dx

+
∫ ah

1/(ah)

∫ 1/x

1/(ah)
(xy)1−τdy dx + 2ah

∫ b

ah

∫ 1/(ah)

1/x

(xy)−τy dy dx + 2ah

∫ ah

1/(ah)

∫ 1/(ah)

a

(xy)1−τy dy dx

+2ah

∫ b

ah

∫ 1/x

a

(xy)1−τy dy dx + a2h2
∫ 1/(ah)

a

∫ 1/(ah)

a

(xy)2−τdy dx =: I1 + I2 + I3 + I4 + I5 + I6 + I7. (A31)

Computing these integrals yields

I1 = a2h2

(

(ah)−2 ln(a2h2)

τ − 1
+

b1−τ [(ah)−τ−1 − (ah)τ−3]

(τ − 1)2

)

, (A32)

I2 = a2h2

(

(ah)−2 + b2−2τ (ah)−2

(τ − 1)2
−

b1−τ [(ah)τ−3 + (ah)−τ−1]

(τ − 1)2

)

, (A33)

I3 = a2h2

(

−(ah)−2 ln(a2h2)

τ − 2
+

(ah)2τ−6 − (ah)−2

(τ − 2)2

)

, (A34)

I4 = 2a2h−2

(

−
(abh)−1

τ − 2
+

(ah)−2

τ − 1
+

b1−τ (ah)τ−3

(τ − 1)(τ − 2)

)

, (A35)

I5 = 2a2h2

(

(ah)2τ−6 + h1−τa4−2τ − hτ−3 − (ah)−2

(3 − τ )(τ − 2)

)

, (A36)

I6 = 2a2h2

(

(ab)2−τh−1 − h1−τa4−2τ

(3 − τ )(τ − 2)
−

(abh)−1 − (ah)−2

3 − τ

)

, (A37)

I7 = a2h2

(

a6−2τ − 2hτ−3 + (ah)2τ−6

τ − 3

)

. (A38)

A careful inspection of the terms between brackets in (A32) and (A38) shows that the terms involving (ah)2τ−6 are dominant
when ah → ∞. In terms of the variable t in h = (N〈h〉)t , see (11) and (A2), we have that ah → ∞ when we restrict to
t ∈ [ 1

2 + ε,1/(τ − 1)] for any ε > 0. When we retain only these dominant terms, we have, when ah → ∞,

Num(h) = a2h2(ah)2τ−6

(

1

(τ − 2)2
+

2

(3 − τ )(τ − 2)
+

1

(3 − τ )2

)

[1 + o(1)] = a2h2 (ah)2τ−6

(τ − 2)2(3 − τ )2
[1 + o(1)]. (A39)

Using (A26) again, we get, when ah → ∞,

c(h) =
1

(3 − τ )2
(ah)2τ−6a2τ−4[1 + o(1)] ∝ N5−2τh2τ−6. (A40)

Furthermore, c(1/a) is given by (A29), whereas c(h) decreases
in h. This gives (A30).

Other connection probabilities

In Ref. [31] we have presented a class of functions r(u) =
uf (u), u � 0 so that

p(h,h′) = r(u) with u =
hh′

h2
s

(A41)

has appropriate monotonicity properties. The maximal mem-
ber r(u) = min(u,1) of this class yields p in (3) and is quite
representative of the whole class whereas allowing explicit
computation and asymptotic analysis of c(h) as in Ref. [31] and
this paper. Figure 6 shows that other asymptotically equivalent
choices, such as r(u) = u/(1 + u) and r(u) = 1 − e−u, have
comparable clustering spectra. A minor difference is that the
choice r(u) = min(1,u) for p in (3) forces c(h) to be constant
on the range of h � Nβ(τ ), whereas the other two choices show
a gentle decrease.
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FIG. 6. c(h) for r(u) = min(u,1) (the solid line), r(u) = u/(1 +
u) (the dashed line), and r(u) = 1 − e−u (the dotted line), obtained
by calculating (A7) numerically.

Limiting form of σN (t) and finite-size effects

We consider σN (t) as in (A2) with href = 0. Using (A8),
(A16), and (A30), it readily is seen that

lim
N→∞

σN (t) =
{

0, 0 � t �
1
2 ,

(3 − τ )(1 − 2t), 1
2 � t �

1
τ−1 .

(A42)

Hence, some of the detailed information that is present in
(A8), (A16), and (A30), disappears when taking the limit as in
(A42). This is in particular so for the ln N factor in (A8) and
the logarithmic decaying factor ln(N2/h) in Region II.

Consider σN (t) of (A2) with href = hc as is performed in
Fig. 4. It follows from the detailed forms of (A8) and (A30)
that

σN (0) =
ln[c(0)/c(hc)]

ln(N〈h〉)
= γ +

ln(βy)

y
, (A43)

where

γ =
(3 − τ )2

τ − 1
, β = (τ − 2)γ, y = ln(N〈h〉).

(A44)

We have that σN (0) → γ as N → ∞, and the right-hand side
of (A43) exceeds this limit γ from y = 1/β onwards with
a maximum excess β/e for N〈h〉 as large as exp(e/β). This
explains why the deviation of σN (0) from its limit value in
Fig. 4 persists when τ = 9/4 (for which ee/β = 3 × 1010).

APPENDIX B: EXACT AND ASYMPTOTIC RESULT FOR

THE DECAY RATE OF c(h) AT h = hc AND h = hs

We let hc = (N〈h〉)1/(τ−1) where we assume that N is so
large that hc � N . This requires N to be on the order of
(1/ε)1/ε, where ε = τ − 2. We again consider the function
σN (t) of (11),

σN (t) =
ln[c(h)/c(href)]

ln(N〈h〉)
, h = (N〈h〉)t (B1)

for 0 � t �
1

τ−1 and href is fixed so that

c(h) = c(href)(N〈h〉)σN (t), h = (N〈h〉)t . (B2)

When we fix t0 and linearize σN (t) around t0, we get

c(h) ≈ c(href)(N〈h〉)σN (t0)+(t−t0)σ ′
N (t0)

= c(h0)

(

h

h0

)σ ′
N (t0)

, (B3)

so that σ ′
N (t) = d

dt
σN (t) is a measure for the decay rate of c(h)

at h = h0 = (N〈h〉)t0 .
In this Appendix, we compute an exact expression for σ ′

N (t)
at t = 1

τ−1 , we compute its limit as N → ∞ and discuss
convergence speed, and we show that this limit is a lower
bound for σ ′

N (t).
More precisely, we show the following result:
Proposition 1. Let a and b be as in (A5). Then

σ ′
N

(

1

τ − 1

)

= −2

(

A + 3−τ
τ−2C

A + 4−τ
τ−2C

−
D

E + D

)

, (B4)

where

A =
1

b2

(

− ln(b2)

(τ − 1)(τ − 2)
−

1 − b2(1−τ )

(τ − 1)2
+

b2(τ−2) − 1

(τ − 2)2

)

,

(B5)

C =
(

bτ−3 − a3−τ

3 − τ

)2

, (B6)

D =
1

b

bτ−1 − b1−τ

τ − 1
, (B7)

E =
a2−τ − bτ−2

τ − 2
. (B8)

Furthermore,

σ ′
N

(

1

τ − 1

)

> lim
M→∞

σ ′
M

(

1

τ − 1

)

= −2(3 − τ ) (B9)

for all N .
The limiting value in (B9) is consistent with the limiting

value of σN (t) that has been found in (A42). We assess this
convergence result with plots. Although these indicate that the
limits are reached only for very large N , especially when τ is
close to 2, it can also be seen that the limiting shape of σN (t)
already shows up for considerably smaller N .

To start the proof of Proposition 1, note that in the a,b

notation of (A5),

c(h) =
K(h)

J (h)
, 0 � h � hc, (B10)

where

K(h) =
∫ b

a

∫ b

a

(xy)2−τf (ahx)f (ahy)f (xy)dx dy, (B11)

J (h) =
(∫ b

a

x1−τf (ahx)dx

)2

, (B12)

042309-9



CLARA STEGEHUIS et al. PHYSICAL REVIEW E 96, 042309 (2017)

101 106 1011 1016 1021 1026

−1.8

−1.6

−1.4

−1.2

−1

−0.8

−0.6

N

σ
N

( 1
τ−1

)

τ = 2.5
τ = 2.25
τ = 2.1

(a)

101 106 1011 1016 1021 1026

−0.9

−0.8

−0.7

−0.6

−0.5

N

σ
N

(1
2
)

τ = 2.5
τ = 2.25
τ = 2.1

(b)

FIG. 7. σ ′
N (t) plotted against N for (a) t = 1

τ−1 and (b) t = 1
2 . The dashed line gives the limiting value of σ ′

N (t) as N → ∞.

with f (u) = min(1,u−1). Note that r(u) = uf (u), see (A6).
We compute

σ ′
N (t) =

d

dt

(

ln{c[(N〈h〉)t ]/c(href)}
ln(N〈h〉)

)

= (N〈h〉)t ln(N〈h〉)
c′[(N〈h〉)t ]

c[(N〈h〉)t ] ln(N〈h〉)

= h
c′(h)

c(h)
, h = (N〈h〉)t , (B13)

where the prime on c indicates differentiation with respect to
h. With (B10) we get

c′(h)

c(h)
=

K ′(h)

K(h)
−

J ′(h)

J (h)
, (B14)

and we have to evaluate K(h), K ′(h), J (h), and J ′(h) at

h = hc = b/a. (B15)

Lemma 1.

K(hc) = A +
4 − τ

2 − τ
C, K ′(hc) =

−2a

b

(

A +
3 − τ

τ − 2
C

)

,

(B16)

J (hc) = (D + E)2, J ′(hc) = −
2a

b
(D + E)D, (B17)

with A,C,D,E as in (B5)–(B8).
From Lemma 1, (B13), and (B15) we get (B4) in Proposi-

tion 1.
Proof of Lemma 1. Since hc = b/a,

K(hc) =
∫ b

a

∫ b

a

(xy)2−τf (bx)f (by)f (xy)dx dy. (B18)

With f (u) = min(1,u−1) we split up the integration range
[a,b] × [a,b] into the four regions [a,1/b] × [a,1/b],
[1/b,b] × [1/b,b], [1/b,b] × [a,1/b], and [a,1/b] ×
[1/b,b], where we observe that a � 1/b � 1 � b. Here ×

denotes the Carthesian product. We first get
∫ 1/b

a

∫ 1/b

a

(xy)2−τf (bx)f (by)f (xy)dx dy

=
∫ 1/b

a

∫ 1/b

a

(xy)2−τ dx dy

=
(

bτ−3 − a3−τ

3 − τ

)2

= C. (B19)

Next,
∫ b

1/b

∫ b

1/b

(xy)2−τf (bx)f (by)f (xy)dx dy

=
∫ b

1/b

∫ b

1/b

(xy)2−τ 1

bx

1

by
f (xy)dx dy

=
1

b2

∫ b

1/b

∫ b

1/b

(xy)1−τf (xy)dx dy. (B20)

The remaining double integral with τ + 1 instead of τ has
been evaluated in Ref. [31, Appendix C, (C3)] as

−
ln(b2)

(τ − 1)(τ − 2)
−

1 − b2(1−τ )

(τ − 1)2
+

b2(τ−2)−1

(τ − 2)2
= b2A. (B21)

Finally, the two double integrals over [1/b,b] × [a,1/b] and
[a,1/b] × [1/b,b] are by symmetry both equal to

∫ b

1/b

∫ 1/b

a

(xy)2−τf (bx)f (by)f (xy)dx dy

=
∫ b

1/b

∫ 1/b

a

(xy)2−τ 1

bx
dx dy

=
1

b

bτ−2 − b2−τ

τ − 2

bτ−3 − a3−τ

3 − τ
=

(bτ−3 − a3−τ )2

(τ − 2)(3 − τ )

=
3 − τ

τ − 2
C. (B22)

Here we have used that, see (A5),

b1−τ = a3−τ . (B23)

Now the expression in (B16) for K(hc) follows.
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To evaluate K ′(hc), we observe by symmetry that

K ′(h) = 2
∫ b

a

∫ b

a

(xy)2−τaxf ′(ahx)f (ahy)f (xy)dx dy.

(B24)
At h = hc, we have ah = b, and so

K ′(hc) = 2
a

b

∫ b

a

∫ b

a

(xy)2−τbxf ′(bx)f (by)f (xy)dx dy.

(B25)

Now uf ′(u) = 0 for 0 � u � 1 and uf ′(u) = −f (u) for
u � 1. Hence, splitting up the integration range into the four
regions as earlier, we see that those over [a,1/b] × [a,1/b] and
[a,1/b] × [1/b,b] vanish while those over [1/b,b] × [1/b,b]
and [1/b,b] × [a,1/b] give rise to the same double integrals
as in (B20) and (B22), respectively. This yields the expression
in (B16) for K ′(hc).

The evaluation of J (hc) and J ′(hc) is straightforward from
(B12) with ah = b and a splitting of the integration range [a,b]
into [a,1/b] and [1/b,b]. This yields (B17), and the proof of
Lemma 1 is complete.

We now turn to the limiting behavior of σ ′
N ( 1

τ−1 ) as N →
∞. For this we write

0 <
D

D + E
=

1 − b2(1−τ )

τ−1
τ−2 (ab)2−τ − 1

τ−2 − 1
τ−1b2(1−τ )

, (B26)

in which

b2(1−τ ) = (N〈h〉)τ−3 → 0, (B27)

(ab)2−τ = (N〈h〉)(τ−2)2/(τ−1) → ∞, (B28)

as N → ∞. Hence, D/(D + E) → 0 as N → ∞. Further-
more, we write

C =
b2(τ−3)

(τ − 3)2
[1 − (ab)3−τ ]2, (B29)

and

A =
b2(τ−3)

(τ − 2)2
(1 − F ), (B30)

where

F = b−2(τ−2)

[

τ − 2

τ − 1
ln(b2) +

(

τ − 2

τ − 1

)2

(1 − b2(1−τ )) + 1

]

=
1

τ − 1
b−2(τ−2) ln(b2(τ−2))

[

1 + O

(

1

ln(b)

)]

. (B31)

Now, using (B23), we have

(ab)3−τ = b−2(τ−2) = (N〈h〉)[(τ−2)(3−τ )]/(τ−1) → 0, (B32)

as N → ∞. Thus, we get

lim
N→∞

A + 3−τ
2−τ

C

A + 4−τ
2−τ

C
=

1
(τ−2)2 + 3−τ

τ−2
1

(3−τ )2

1
(τ−2)2 + 4−τ

τ−2
1

(3−τ )2

= 3 − τ, (B33)

and this yields (B9).
Note that D/(D + E) approaches 0 much slower than the

limit in (B33) is reached when τ is close to 2, compare (B28)
and (B33). Thus, we can concentrate on D/(D + E), and the

100 101 102 103 104 105

10−5

10−4

10−3

10−2

10−1

k

c(k)/c(h)

τ =2.2
τ =2.5
τ =2.8

FIG. 8. c̄(k) (the dashed line) and c(h) (the solid line) for N =
105, averaged over 104 realizations.

relative deviation of σ ′
N (t) from −2(3 − τ ) is approximately,

2D

D + E

1

2(3 − τ )
≈

τ − 2

3 − τ

1

(ab)2−τ − 1

≈
τ − 2

3 − τ
(N〈h〉)−[(τ−2)2/(τ−1)]. (B34)

We finally turn to the inequality in (B9) in Proposition 1.
Obviously, we have

σ ′
N

(

1

τ − 1

)

> −2
A + 3−τ

τ−2C

A + 4−τ
τ−2C

. (B35)

We will show that

A + 3−τ
τ−2C

A + 4−τ
τ−2C

�
Aas + 3−τ

τ−2Cas

Aas + 4−τ
τ−2Cas

= 3 − τ, (B36)

where

Aas =
b2(τ−3)

(τ − 2)2
, Cas =

b2(τ−3)

(3 − τ )2
, (B37)

the asymptotic form of A and C as N → ∞ obtained from
(B30) and (B29) by deleting F and (ab)3−τ , respectively. The
function,

x ∈ [0,∞) �→
1 + 3−τ

τ−2x

1 + 4−τ
τ−2x

(B38)

is decreasing in x � 0, and so it suffices to show that

Cas

Aas
�

C

A
, i.e., that

Cas

C
�

Aas

A
. (B39)

We have from (B29) that

Cas

C
=

1

[1 − (ab)3−τ ]2
, (B40)

and from (B30) and (B31) that

A

Aas
= 1 − F = 1 − b−2(τ−2) − b−2(τ−2)

×

[

τ − 2

τ − 1
ln(b2) +

(

τ − 2

τ − 1

)2

(1 − b2(1−τ ))

]

. (B41)
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Using that (ab)3−τ = b−2(τ−2), see (B32), we see that the
inequality Cas/C � Aas/A in (B39) is equivalent to

(1 − b−2(τ−2))2
� 1 − b−2(τ−2) − b−2(τ−2)

×

[

τ − 2

τ − 1
ln(b2)+

(

τ − 2

τ − 1

)2

(1−b2(1−τ ))

]

.

(B42)

Using that (1 − u)2 − (1 − u) = −u(1 − u) and dividing
through by u = b−2(τ−2), we see that (B42) is equivalent to

τ − 2

τ − 1
ln(b2) +

(

τ − 2

τ − 1

)2

(1 − b2(1−τ )) � 1 − b−2(τ−2).

(B43)

With y = ln(b2) � 0, we write (B43) as

K(y):=
(

τ − 2

τ − 1

)2

(1−e(1−τ )y)+
τ − 2

τ−1
y − (1−e(2−τ )y) � 0.

(B44)

Taylor development of K(y) at y = 0 yields

K(y) = 0y0 + 0y1 + 0y2 + 1
6 (τ − 2)2y3 + · · · . (B45)

Furthermore,

K ′′(y) = (τ − 2)2e(1−τ )y(ey − 1) > 0, y > 0. (B46)

Therefore, K(0) = K ′(0) = 0, whereas K ′′(y) > 0 for y > 0.
This gives K(y) > 0 when y > 0 as required.

Similar to Proposition 1, we can derive the following result
for σ ′

N ( 1
2 ):

Proposition 2.

σ ′
N

(

1

2

)

= −2

⎡

⎣

G + H
[

1 +
(

τ−1
3−τ

)2
]

G + 2H
−

I

I + J

⎤

⎦, (B47)

where

G =
(

1 − b1−τ

τ − 1

)2

, (B48)

I =
1 − b1−τ

τ − 1
, (B49)

J =
b(τ−2)(τ−1)/(3−τ ) − 1

τ − 2
, (B50)

H =
1 − 1/b − b1−τ (1 − b2−τ )

(τ − 2)(3 − τ )
−

1 − b1−τ

(τ − 1)(τ − 2)
. (B51)

Furthermore,

σ ′
N

(

1

2

)

> lim
M→∞

σ ′
M

(

1

2

)

= −1 +
2(τ − 2)

3 − (τ − 2)2
(B52)

for all N .
Figure 7 shows the values of σ ′

N ( 1
2 ) and σ ′

N ( 1
τ−1 ) for

finite-size networks together with their limiting values. For
example, when τ = 2.25, Fig. 7(a) shows that N needs to be
on the order of 1016 for the slope to be close to its limiting
value of −1.5. When, for example, N = 106, we see that the
slope is much smaller: approximately −1.1. This makes a
statistical estimation of the true underling power-law exponent
α extremely challenging, especially for the relevant regime
τ close to 2 because enormous amounts of data should be
available to get sufficient statistical accuracy. Most data sets,
even the largest available networks used in this paper, are
simply not large enough to have sufficiently many samples
from the large-degree region to get a statistically accurate
estimate of the power-law part. This also explains why based
on smaller data sets it is common to assume that α is roughly
one [4,10,33–36]. Comparing Figs. 7(a) and 7(b) shows that
the convergence to the limiting value is significantly faster at
point t = 1

2 than at point t = 1
τ−1 .

APPENDIX C: FROM HIDDEN VARIABLES TO DEGREES

In this paper, we focus on computing c(h), the local
clustering coefficient of a randomly chosen vertex with hidden-
variable h. However, when studying local clustering in real-
world data sets, we can only observe c̄(k), the local clustering
coefficient of a vertex of degree k. In this Appendix, we show
that, for the hidden-variable model, the difference between
these two methods of computing the clustering coefficient is

100 101 102 103 104 105
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P
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>
x
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Baidu
Wikipedia
AS-skitter
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100 101 102 103 104 105
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10−4

10−2
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x

P
(X

>
x
)

Catster
Google
Youtube
Gowalla
Wordnet

(b)

FIG. 9. The probability that the degree of a vertex exceeds x in (a) the largest five networks of Table I and (b) the smallest five networks in
Table I.
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FIG. 10. c̄(k) for several information [red; (a)–(c)], technological [green; (d)–(f)], and social [blue; (g)–(i)] real-world networks. (a)
Hudong encyclopedia [12], (b) Baidu encyclopedia [12], (c) WordNet [13], (d) TREC-WT10g web graph [14], (e) Google web graph [11], (f)
Internet on the autonomous systems level [11], (g) Catster and Dogster social networks [15], (h) Gowalla social network [11], and (i) Wikipedia
communication network [11]. The different shadings indicate the theoretical boundaries of the regimes as in Fig. 2 with N and τ as in Table I.

small and asymptotically negligible. We consider

c(h) =

∫ hc

1

∫ hc

1
(h′h′′)2−τp(h,h′)p(h,h′′)p(h′,h′′)dh′dh′′

(∫ hc

1
x1−τp(h,h′)dh′

)2 .

(C1)

We define c̄(k) as the average clustering coefficient over all
vertices of degree k. By Ref. [32], the probability that a vertex
with hidden-variable h has degree k equals

g(k|h) =
e−hhk

k!
. (C2)

Then, by Ref. [32],

c̄(k) =

⎧

⎨

⎩

1
P (k)

∫ hc

1
ρ(h)c(h)g(k|h)dh, k � 2,

0, k < 2,

(C3)

where c̄(k) = 0 for k < 2 because a vertex with a degree less
than 2 cannot be part of a triangle. Here,

P (k) =
∫ hc

1
g(k|h)ρ(h)dh (C4)

is the probability that a randomly chosen vertex has degree k.
First we consider the case where h > N (τ−2)/(τ−1). The

Chernoff bound gives for the tails of the Poisson distribution
that

P(Poi(λ) > x) � e−λ

(

eλ

x

)x

, x > λ, (C5)
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P(Poi(λ) < x) � e−λ

(

eλ

x

)x

, x < λ. (C6)

Let k(h) be the degree of a node with hidden-variable h. Then,
for any M > 1,

∞
∑

k=Mh

g(k|h) �

(

eM−1

MM

)h

, (C7)

and for any δ ∈ (0,1),

δh
∑

k=1

g(k|h) �

(

eδ−1

δδ

)h

. (C8)

Because ex−1/xx < 1 for x �= 1, (C7) and (C8) tend to zero as
h → ∞. Therefore, for h large,

k(h) = h[1 + o(1)], (C9)

with high probability. Therefore, when k is large,

c̄(k) ≈ c(k). (C10)

Thus, c(h) is very similar to c̄(k).
On the other hand, for h ≪ h2

s/hc,

∞
∑

h2
s /hc

g(k|h) � e−h

(

eh

h2
s/hc

)h2
s /hc

, (C11)

which is small by the assumption on h. Thus,

P (k) ≈
∫ h2

s /hc

1
g(k|h)ρ(h)dh. (C12)

Furthermore, c(h) = c(0) in this regime of h. This results in

c̄(k) ≈
c(0)

∫ h2
s /hc

1
ρ(h)g(k|h)dh

∫ h2
s /hc

1
ρ(h)g(k|h)dh

= c(0). (C13)

Therefore, c̄(h) ≈ c(h) also when h is small. Figure 8 shows
that indeed the difference between c̄(k) and c(k) is small. When
τ approaches 2, the difference becomes larger. We see that, for
small values of k, c̄(k) and c(k) are not very close. This is due
to the fact that (C1) does not take into account that a vertex
with hidden-variable h may have less than two neighbors so
that its local clustering is zero. In Ref. [31] we show how to
adjust (A7) to account for this.

APPENDIX D: DEGREE DISTRIBUTIONS

Figure 9 shows the degree distributions of all ten networks
of Table I.

APPENDIX E: ADDITIONAL DATA SETS

Figure 10 presents the clustering spectrum of nine addi-
tional data sets.
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